Поиск по всему репозиторию:
К задаче нахождения канонической булевой формулы многоугольника
Открыть/скачать файлы документа
Автор
Дата издания
2010Издательство
БрГТУУДК
004.5Библиографическое описание
Бутов, А. А. К задаче нахождения канонической булевой формулы многоугольника / А. А. Бутов // Вестник Брестского государственного технического университета. Серия: Физика, математика, информатика. – 2010. – № 5. – С. 29–31 : ил. – Библиогр.: с. 31 (5 назв.).Аннотация
Рассмотрен способ нахождения множества «крайних» вершин многоугольника, то есть таких точек его границы, расположенных на стыке двух отрезков, через которые можно провести прямые, не пересекающиеся ни с одним из остальных отрезков границы. Эта частная задача является одной из задач, подлежащих решению в рамках известного в литературе метода нахождения канонической булевой формулы многоугольника. Тем самым указанный метод может быть легко доведен до формы алгоритма и, далее, переведен в форму программ на каком-либо языке программирования. Последние могут быть использованы, в частности, в системах автоматизированного проектирования топологии интегральных схем.
Аннотация на другом языке
Considered a method for finding the set of "extreme" vertices of the polygon, i.e., those points of its boundary, located at the junction of two segments, through which can be put straight line, not overlapping with any of the other segments of the border.
This particular problem is one of the objectives to be achieved within a well-known in the literature method of finding canonical Boolean formula of the polygon. Thus, this method can be easily brought to the form of the algorithm and, further, transferred into a program in some programming language. The latter can be used, in particular, in computer-aided design of integrated circuits.
URI документа
https://rep.bstu.by/handle/data/5002Документ расположен в коллекции
- 2010 [30]
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.