Поиск по всему репозиторию:
Fatigue Crack Growth Prediction via Artificial Neural Network Technique
Открыть/скачать файлы документа
Автор
Дата издания
2006Издательство
BrSTUБиблиографическое описание
Fatigue Crack Growth Prediction via Artificial Neural Network Technique / Konstantin N. Nechval [et al,] // International Conference on Neural Networks and Artificial Intelligence : proceedings, Brest, 31 May – 2 June, 2006 / Edited: V. Golovko [et al.]. – Brest : BSTU, 2006. – P. 124–129 : il. – Bibliogr.: p. 128–129 (26 titles).Аннотация
The artificial neural network (ANN) technique for the data processing of on-line fatigue crack growth monitoring is proposed after analyzing the general technique for fatigue crack growth data. A model for predicting the fatigue crack growth by ANN is presented, which does not need all kinds of materials and environment parameters, and only needs to measure the relation between a (length of crack) and N (cyclic times of loading) in-service. The feasibility of this model was verified by some examples. It makes up the inadequacy of data processing for current technique and on-line monitoring. Hence it has definite realistic meaning for engineering application.
URI документа
https://rep.bstu.by/handle/data/37209Документ расположен в коллекции
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.