Поиск по всему репозиторию:
Some Aspects of Chaotic Time Series Analysis
Открыть/скачать файлы документа
Дата издания
2001Издательство
BSUIRБиблиографическое описание
Some Aspects of Chaotic Time Series Analysis / Vladimir Golovko [et al.] // The 2nd International Conference on Neural Networks and Artificial Intelligence= Нейронные сети и искусственный интеллект : proceedings, Minsk, October 2–5, 2001 / Belarusian State University of Informatics and Radioelectronicsb ; ed.: Rauf Kh. Sadykhov [et al.]. – Minsk, 2001. – P. 66–69 : il. – Bibliogr.: p. 69 (5 titles).Аннотация
We address two aspects in chaotic time series analysis, namely the definition of embedding parameters and the largest Lyapunov exponent. It is necessary for performing state space reconstruction and identification of chaotic behavior. For the first aspect, we examine the mutual information for determination of time delay and false nearest neighbors method for choosing appropriate
embedding dimension. For the second aspect we suggest neural network approach, which is characterized by simplicity and accuracy.
URI документа
https://rep.bstu.by/handle/data/37116Документ расположен в коллекции
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.