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Abstract: We address two aspects in chaotic time 
series analysis, namely the definition o f  embedding 
parameters and the largest Lyapunov exponent. It is 
necessary fo r  performing state space reconstruction 
and identification o f  chaotic behavior. For the first 
aspect, we examine the mutual information for  
determination o f  time delay and false nearest 
neighbors method fo r  choosing appropriate
embedding dimension. For the second aspect we 
suggest neural network approach, which is 
characterized by simplicity and accuracy.
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I. INTRODUCTION
Chaotic behavior is characterized by highly 

sensitive to initial conditions and observed for many 
systems (stock market, EEG patterns of brainwave 
activity, central nervous system, etc.). The processing 
of chaotic time series may by divided into three stage, 
which are shown in Fig. I . The first stage is time series 
analysis. As a result of this stage we can identificate 
the chaotic behavior and estimate embedding 
parameters. Using the data from previous stage we can 
perform phase space reconstruction or build neural 
networks for optimal forecasting. The common test for 
chaos is calculation of the largest Lyapunov exponent, 
which should be positive [1]. Such a Lyapunov 
exponent is statistical measure of divergence between 
two orbits starting from slightly different initial
conditions. Let d B be initial divergence between two 

trajectories and dn be divergence between such orbits 
after n steps. Then largest Lyapunov exponent is 
defined by
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Dealing with one dimensional time series we must 
first of all perform state space reconstruction. It is 
based on an embedding theorem [2], which guarantees 
that a full knowledge of the behavior a system is 
contained in time series of any a one measurement. As 
a result the full multivariate phase space can be 
constructed from the single time series.

To apply the embedding theorem it is necessary to 
define a suitable embedding dimension and time 
delay. The estimation such parameters provide a 
maximum predictability of chaotic time series and can 
be used for choosing of optimal windows size 
(number of input units) in forecasting neural network. 
The rest of the paper is organized as follows. In the 
section 2 and 3 we describe the approaches for 
choosing of embedding delay and embedding 
dimension. Section 4 and 5 are devoted to definition 
of the largest Lyapunov exponent.

2. CHOOSING OF EMBEDDING DELAY
For the choosing the optimal time delay T can be 

used the following approaches: autocorrelation 
function, mutual information, etc. The optimal time 
delay is typically chosen in accordance with first zero 
of autocorrelation function or first minimum of mutual 
information.

The mutual information can be defined as follows
[3]:
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Figure I. Functional diagram of the data processing
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Figure 2. Graph of mutual information / ( r) 
versus T for Henon attractor

in the z'-th interval, and Plj (t ) is the joint probability
that an observation is located in the z'-th interval and 
the observation time T later is located in the y-th 
interval.

Estimating T by such a way, we can get the 
coordinates as independent as it is possible.

In the Fig. 2 and 3 are represented the graphics of 
mutual information for Henon and Lorenz attractor 
respectively. As can be seen from the Fig.3 the first 
minimum of the mutual information is 0.16 for the 
Lorenz data. For the Henon data we can’t define a 
minimum. In this case we can take r  = I directly from 
the Henon equation.

3. EMBEDDING DIMENSION
As stated earlier embedding dimension is applied 

for state space reconstruction and definition of 
window size for predicting neural networks. Suppose 
we have a given one-variable time series represented 
by the N values as follows:

4 ) = F(x(t - 1), x(t -  2),..., x(t -  к )) (3)
where t = k + \ , N .

Takens proved that dynamic reconstruction is 
possible, if

m>2[d] + \ (4)
where d is fractal dimension of original attractor, [d] 
denotes the integer part of d  and k - m - \ - 2 - d  
characterizes the window size.In this case the 
reconstructed attractor embedded in the m- 
dimensional state space preserves important 
topological properties of the original attractor. There 
exist a lot of methods for estimating the embedding 
dimension m such as the false nearest neighbors, 
fractal dimension, principal component analysis and 
so on. Let’s examine the false nearest neighbors 
approach [4]. It is based on idea, that geometric 
properties of the original and reconstructed attractor 
must be preserved.

Figure 3. Graph of mutual information /( r )  

versus T for Lorenz attractor
The algorithm of the false nearest method is the 

following:
I. Let m=I. Then we seek fo r  each point x(i) in time

series its nearest neighbor x (j )  in m-dimensional 
space.

iterate both point and defineJx(z+ 1)-4/ + 1)1 
| 4 ) - 4 / ) |

4. I f  Ri > R1, where R t is suitable threshold, then
such a point is a false nearest neighbor. As a result 
we can get the number o f the false nearest point 
P .

5. Calculate and repeat algorithm fo r  m=m+1.

6. The algorithm is continued until ^/д, is close to 

zero.
Fig. 4 and 5 show graphics for determination of 

embedding dimension for Henon and Lorenz data 
respectively. From this figures we can define the 
embedding dimension equal 3 for Henon and equal 5 
for Lorenz data.

4. ANALYTICAL APPROACH FOR 
DETERMENITION OF THE LARGEST 
LYAPUNOV EXPONENT

The standard approach for computing A is 
calculated as follows.
1. Starting from two points in the basin o f  attraction, 

separated by distance d 0. Usually d0 is less than

IO'8.
2. Advance both orbits on one iteration ahead and 

calculate the new divergence between trajectories 
using Euclidian metric. As a result we evaluate 
In(Zf1) .
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Figure 4. Determination of embedding 
dimention for Henon attractor by using the 

false nearest neighbors method

Figure 6 .1 - the evolution of distance between 
two nearby orbits for Henon attractor;

II -  regression line
3. We repeat the last step fo r  n points and calculate 

ln(</2),ln(</}) ... ln(6?„).
4. Plot the graph ln(d) versus n.
5. Using method o f least square we construct straight 

line o f  regression, taking into account only points, 
fo r  which \n( d) < O. The slope o f  the regression 
line estimates the largest Lyapunov exponent. 
Estimation A by considered algorithm is a

difficult task in general since initial divergence d0

must be less then IO"8. This condition may be 
performed using a large length of an experimental 
data. However, it is very problematic to reach for real 
data. That’s why the traditional approach has been 
limited in their applicability to many real world 
chaotic data. One way to avoid this problem is to use 
neural networks for computing largest Lyapunov 
exponent.

5. NEURAL NETWORK APPROACH
The key idea of proposed method [5] is to compute 

by help of neural network divergence between two

Figure 5. Determination of embedding 
dimention for Lorenz attractor by using the 

false nearest neighbors method

Figure 6 .1 - the evolution of distance between 
two nearby orbits for Lorenz attractor;

II -  regression line
orbits on n step ahead, using iterative approach. Such
a procedure can be represented as follows:
1. Train neural network using sliding window 

technique.
2. Select any point x(t ) from training set and form 

the following data point: {х(т),х(г-і)...х(т-£)} 
where к is window size.

3. Compute {x(r + 1),_v(t + 2)...x(t + «)}, using
multistep prediction:
x ( t  + і) = F(x(t + і -  і),х(т + i -  2)...x(r + і -  к)),

where і = \,n
4. Compute x'(r) = x(r) + d0, where dn = IO"8 and 

repeat step 3 in order to get х'(т + і), і = I, и .

5. Define In J 1 =1п|х'(т + (')-х (т+ /')(, i = \ ,nand  
mark point fo r  which Xndi < 0 .

6. Plot the graph ln(d) versus n.
7. Biuld line o f regression for marked point and 

compute its slope, which equals to the largest 
Lyapunov exponent.
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Let’s examine numerical experiments for 

estimating Я using feed forward neural network. In 
the experiments, a neural network with 7 input, 5 
hidden units and I output nodes is trained to predict 
Henon and Lorenz time series. The hidden units are 
based on neurons of the sigmoid function and output 
unit on neuron of the linear function of activation 
respectively. The back propagation algorithm with 
adaptive step is used for training of neural network. 
The training set consists of 1500 patterns for Henon 
and 930 patterns for Lorenz time series respectively. 
The mean square error for Henon time series is 
5.92• IO 5 after 1000 iteration. Fig. 6 shows the graph 
ln(<f) versus t and regression line, which 
characterizes the largest Lyapunov exponent. The
estimated value Я = 0.43 is close to the desired value 
0.419. The mean square error for Lorenz time series is 
9.2-10-4 after 700 iteration. The regression line and 
function ln(j) from t is shown on Fig. 7. The largest 
Lyapunov exponent is 0.98 (desired value is 0.906). 
We have seen, that neural network produced fairly 
accurate forecast.

As can be seen an obvious advantage of proposed 
approach in comparison with traditional is simplicity 
and accuracy.

6. CONCLUSION
We have shown in this paper both standard and 

novel approaches to time series analysis. It is 
necessary in order to perform state space

reconstruction and identification of chaotic behavior. 
The new approach for estimation of the largest 
Lyapunov exponent is proposed. It is based on using 
of neural network and permits to decrease the 
computation complexity.
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