Поиск по всему репозиторию:
A New Technique for Restricted Boltzmann Machine Learning
Открыть/скачать файлы документа
Автор
Дата издания
2015Издательство
Information Science Warsaw University of TechnologyБиблиографическое описание
A New Technique for Restricted Boltzmann Machine Learning / A. Kroshchanka [et. al] // Proceedings of the 8th IEEE International Conference IDAACS-2015, Warsaw, September 24-26, 2015 / Information Science Warsaw University of Technology. – Warsaw, 2015. – P. 182–186. – Bibliogr.: p. 186 (9 titles).Аннотация
Over the last decade, deep belief neural networks have been a hot topic in machine learning. Such networks can perform a deep hierarchical representation of input data. The first layer can extract low-level features, the second layer can extract high-level features and so on. In general, deep belief neural network represents manylayered perceptron and permits to overcome some limitations of conventional multilayer perceptron due to deep architecture. In this work we propose a new training technique called Reconstruction Error-Based Approach (REBA) for deep belief neural network based on restricted Boltzmann machine. In contrast to classical Hinton’s training approach, which is based on a linear training rule, the proposed technique is based on a nonlinear learning rule. We demonstrate the performance of REBA technique for the MNIST dataset visualization. The main contribution of this paper is a novel view on the training of a restricted Boltzmann machine.
URI документа
https://rep.bstu.by/handle/data/36748Документ расположен в коллекции
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.