Поиск по всему репозиторию:
Classical Solutions of Mixed Problem on the Plane for Hyperbolic Equation. The Method of Characteristic Parallelogram
Открыть/скачать файлы документа
Автор
Дата издания
2019Издательство
Uniwersytet Przyrodniczo-Humanistyczny w SiedlcachБиблиографическое описание
Korzyuk, V. Classical Solutions of Mixed Problem on the Plane for Hyperbolic Equation. The Method of Characteristic Parallelogram / V. Korzyuk, S. Naumavets // Computer Algebra Systems in Teaching and Research (CASTR 2019) / Siedlce University of Natural Sciences and Humanities, Institute of Mathematics and Physics ; еds.: A. N. Prokopenya, A. Gil-Świderska, M. Siłuszyk. – Siedlce, 2019. – Vol. 8. – P. 65–87. – Bibliogr.: p. 86–87 (9 titles).Аннотация
This paper regards the mixed problem for wave equation on the
plane. The authors of the article prove that the usage of necessary and su -
cient homogeneous compatibility conditions guarantees coming to the classical
solution in the half-strip. The article gives the classical solution to the one-
dimensional wave equation in analytical form if there are Dirichlet conditions
at the side edges and conditions of Cauchy type at the bottom of the plane.
The Classical solution means function which is de ned in all points presented
in the closure of the de ned domain. This function must have all classical
derivatives included in the equation and conditions of problem. In case of
heterogeneous compatibility conditions correct problem is formulated. In this
case the conjugation conditions are added to the problem. Then the classical
solution is piecewise smooth in the corresponding subdomains of the half-strip.
Also this paper obtains the classical solution of the problem using the method
of the characteristic parallelogram.
URI документа
https://rep.bstu.by/handle/data/4402Документ расположен в коллекции
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.