Поиск по всему репозиторию:
Neural Networks for Chaotic Time Series Forecasting
Открыть/скачать файлы документа
Дата издания
2001Издательство
BSUIRБиблиографическое описание
Golovko, V. Neural Networks for Chaotic Time Series Forecasting / Vladimir Golovko, Yury Savitsky // The 2nd International Conference on Neural Networks and Artificial Intelligence : proceedings, Minsk, October 2–5, 2001 / Belarusian State University of Informatics and Radioelectronicsb ; ed.: Rauf Kh. Sadykhov [et al.]. – Minsk, 2001. – P. 70–74 : il. – Bibliogr.: p. 74 (10 titles).Аннотация
This paper examines neural network in order to predict behavior o f chaotic systems. The prediction is performed both on the level o f emergent structures and on the level o f individual data points. The network is tested using the Henon and Lorenz chaotic time series. The results o f experiments and future directions are discussed.
URI документа
https://rep.bstu.by/handle/data/37115Документ расположен в коллекции
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция-Некоммерчески») 4.0 Всемирная.