dc.contributor.author | Хомицкая, Татьяна Георгиевна | |
dc.coverage.spatial | Мінск | ru_RU |
dc.date.accessioned | 2023-12-07T08:22:34Z | |
dc.date.available | 2023-12-07T08:22:34Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Хомицкая, Т. Г. Программное и позиционное решения линейно-выпуклой задачи оптимального управления с терминальным ограничением / Т. Г. Хомицкая // Весці Нацыянальнай акадэміі навук Беларусі. Серыя Фізіка-матэматычных навук. – 2006. – № 3. – С. 103–109 : ил. – Библиогр.: с. 109 (5 назв.). | ru_RU |
dc.identifier.uri | https://rep.bstu.by/handle/data/37980 | |
dc.description | Khomitskaya, Т. G. Open-loop and closed-loop solutions of linear-convex optimal control problem with terminal restriction | ru_RU |
dc.language.iso | ru | ru_RU |
dc.publisher | Нацыянальная акадэмія навук Беларусі | ru_RU |
dc.subject | решение задач | ru_RU |
dc.subject | problem solving | ru_RU |
dc.subject | математика | ru_RU |
dc.subject | mathematics | ru_RU |
dc.title | Программное и позиционное решения линейно-выпуклой задачи оптимального управления с терминальным ограничением | ru_RU |
dc.type | Статья (Article) | ru_RU |
dc.identifier.udc | 517.977 | ru_RU |
dc.abstract.alternative | An optimal control problem for a linear nonstationary system is under consideration. The behavior of this system is estimated by the values of convex objective function on its terminal state that belong to the bounded convex set. The method of construction of optimal open-loop solution is proposed. It consists from the linearization of the considered problem and special finishing procedure. On the base of this method the algorithm of optimal controller work is realized. It allows to synthesis an optimal feedback control. Results are illustrated on the example of fourth-order dynamical system. | ru_RU |