Поиск по всему репозиторию:

Показать краткое описание

dc.contributor.authorGolovko, Vladimir
dc.contributor.authorManiakov, Nikolaj
dc.contributor.authorMakhnist, Leonid
dc.coverage.spatialLvivru_RU
dc.date.accessioned2023-12-06T08:18:04Z
dc.date.available2023-12-06T08:18:04Z
dc.date.issued2003
dc.identifier.citationGolovko, V. Multilayer Neural Networks Training Methodic / Vladimir Golovko, Nikolaj Maniakov, Leonid Makhnist // Proceeding of the Second IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications : IDAACS’2003, Lviv, September 8–10, 2003 / Institute of computer information technologies [et. al]. – Lviv : Lviv polytechnic, 2003. – P. 185–190. – Bibliogr.: p. 190 (6 titles).ru_RU
dc.identifier.urihttps://rep.bstu.by/handle/data/37552
dc.descriptionГоловко Владимир Адамович, Маньяков Николай Владимирович, Махнист Леонид Петрович. Методика обучения многослойных нейронных сетейru_RU
dc.description.abstractIs proposed three new techniques for training of jnpUt vector If is defined as' multilayer neural networks. Its basic concept is based on the gradient descent method. For every methodic are showed formulas for calculation of the adaptive training steps. Matrix algorithmization for all of this techniques are very helpful in its program realization.ru_RU
dc.language.isoenru_RU
dc.publisherLviv polytechnicru_RU
dc.subjectmultilayer neural networksru_RU
dc.subjectмногослойные нейронные сетиru_RU
dc.subjectgradient descent methodru_RU
dc.subjectметод градиентного спускаru_RU
dc.subjectadaptive training stepru_RU
dc.subjectэтап адаптивного обученияru_RU
dc.titleMultilayer Neural Networks Training Methodicru_RU
dc.title.alternativeМетодика обучения многослойных нейронных сетейru_RU
dc.typeНаучный доклад (Working Paper)ru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать краткое описание