dc.contributor.author | Драган, Вячеслав Игнатьевич | |
dc.contributor.author | Глушко, Константин Константинович | |
dc.coverage.spatial | Варшава | ru_RU |
dc.date.accessioned | 2020-04-24T06:48:39Z | |
dc.date.available | 2020-04-24T06:48:39Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Драган, В. И. Локальная устойчивость плоских многогранников сетчатых куполов / В. И. Драган, К. К. Глушко // Modern Engineering. – 2016. – № 1. – С. 82–93. – Библиогр.: с. 92–93 (11 назв.). | ru_RU |
dc.identifier.uri | https://rep.bstu.by/handle/data/5084 | |
dc.description | Dragan Vyacheslav Ignatievich; Glushko Konstantin Konstantinovich. Local stability of flat polyhedrons of mesh domes | ru_RU |
dc.language.iso | ru | ru_RU |
dc.publisher | Centrum Rzeczoznawstwa Budowlanego Sp. z o.o. | ru_RU |
dc.subject | stress-strain state | ru_RU |
dc.subject | fragment | ru_RU |
dc.subject | mesh dome | ru_RU |
dc.subject | напряженно-деформированное состояние | ru_RU |
dc.subject | фрагмент | ru_RU |
dc.subject | сетчатый купол | ru_RU |
dc.title | Локальная устойчивость плоских многогранников сетчатых куполов | ru_RU |
dc.type | Статья (Article) | ru_RU |
dc.abstract.alternative | The dependences for determining the stress-strain state of a fragment of a mesh dome.
These formulas are valid for the case of constant-largest hub load on a mesh dome. Experimentally
determined tense and strained state of the dome fragment. The proposed method has
a good agreement with the experimental results. | ru_RU |