Поиск по всему репозиторию:

Показать краткое описание

dc.contributor.authorBharath, B.
dc.contributor.authorDeepaIakshmi, V.
dc.contributor.authorNelson, I.
dc.coverage.spatialBrestru_RU
dc.date.accessioned2023-11-24T08:35:44Z
dc.date.available2023-11-24T08:35:44Z
dc.date.issued2006
dc.identifier.citationBharath, B. A Neural Network Based Speech Recognition System For Isolated Tamil Words / B. Bharath, V. DeepaIakshmi, I. NeIson // International Conference on Neural Networks and Artificial Intelligence : proceedings, Brest, 31 May – 2 June, 2006 / Edited: V. Golovko [et al.]. – Brest : BSTU, 2006. – P. 153–157 : il. – Bibliogr.: p. 157 (14 titles).ru_RU
dc.identifier.urihttps://rep.bstu.by/handle/data/37195
dc.descriptionБхарат Б., Дипайакшми В., Нельсон И. Система Распознавания Речи На Основе Нейронной Сети Для изолированных Тамильских Словru_RU
dc.description.abstractSpeech recognition is always looked upon as a fascinating field in human computer interaction. It is one of the fundamental steps towards understanding human cognition and their behavior. White most of the literature on speech recognition is based on Hidden Markov Models (HMM). This paper presents a neural network approach for speech recognition in Tamil language.This paper proposes a neural network approach to build a speaker independent isolated word recognition system for Tamil language. The proposed system includes six steps. First, preprocessing step is to denoise the input speech signal using wavelet transform. Second, the unvoiced part is removed by using the energy values and number of zero crossings. Thirdly, to do feature extraction based on Mel Frequency Cepstral Coefficients (MFCC). Fourthly, these feature vectors are normalized to reduce speaking rate specific variations of the features o f the phonetic classes using Cepstral Mean Formalization. Next, Self Organizing Map (SOM) neural network makes each variable length MFCC trajectory of an isolated word into a fixed length MFCC trajectory and thereby making the fixed length feature vector. Finally, the resulting fixed number of feature vector is submitted to a feed forward neural network in order to recognize the spoken words.ru_RU
dc.language.isoenru_RU
dc.publisherBrSTUru_RU
dc.subjectTalim speech recognitionru_RU
dc.subjectраспознавание речиru_RU
dc.subjectnoise removalru_RU
dc.subjectудаление шумаru_RU
dc.subjectfeature extractionru_RU
dc.subjectизвлечение признаковru_RU
dc.subjectcepstral mean normalizationru_RU
dc.subjectнормализация среднего значенияru_RU
dc.subjectSelf Organizing mapru_RU
dc.subjectсамоорганизующаяся картаru_RU
dc.subjectfeed forward neural networkru_RU
dc.subjectнейронная сеть прямой связиru_RU
dc.titleA Neural Network Based Speech Recognition System For Isolated Tamil Wordsru_RU
dc.title.alternativeСистема Распознавания Речи На Основе Нейронной Сети Для изолированных Тамильских Словru_RU
dc.typeНаучный доклад (Working Paper)ru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать краткое описание