Поиск по всему репозиторию:

Показать краткое описание

dc.contributor.authorBendersky, Diego
dc.contributor.authorSantos, Juan Miguel
dc.date.accessioned2023-11-23T12:07:09Z
dc.date.available2023-11-23T12:07:09Z
dc.date.issued2006
dc.identifier.citationBendersky, D. Learning From The Environment With A Universal Reinforcement Function / Diego Bendersky, Juan Miguel Santos // International Conference on Neural Networks and Artificial Intelligence : proceedings, Brest, 31 May – 2 June, 2006 / Edited: V. Golovko [et al.]. – Brest : BSTU, 2006. – P. 182–186 : il. – Bibliogr.: p. 186 (12 titles).ru_RU
dc.identifier.urihttps://rep.bstu.by/handle/data/37186
dc.descriptionДиего Бендерски, Сантос Хуан Мигель. Изучение Окружающей Среды С Универсальной Функцией Подкрепленияru_RU
dc.description.abstractTraditionally, in Reinforcement Learning, the specification of the task Ls contained in the reinforcement function (RF), and ach new task requires the definition of a new RF. But in the nature, explicit reward signals are limited, and the characteristics of the environment afTects not only how animals perform particular tasks, but also what skills an animal will develop during its life. In this work, we propose a novel use of Reinforcement Learning that consist in the learning of different abilities or skills, based on the characteristics of the environment, using a fixed and universal reinforcement function. We also show a method to build a RF for a skill using information from the optimal policy learned in a particular environment and we prove that this method is correct, i.e., the RF constructed in this way produces the same optimal policy.ru_RU
dc.language.isoenru_RU
dc.subjectобучениеru_RU
dc.subjecttrainingru_RU
dc.subjectокружающая средаru_RU
dc.subjectenvironmentru_RU
dc.titleLearning From The Environment With A Universal Reinforcement Functionru_RU
dc.title.alternativeИзучение Окружающей Среды С Универсальной Функцией Подкрепленияru_RU
dc.typeНаучный доклад (Working Paper)ru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать краткое описание