Поиск по всему репозиторию:

Показать краткое описание

dc.contributor.authorGolovko, Vladimir
dc.contributor.authorSavitsky, Yury
dc.coverage.spatialMinskru_RU
dc.date.accessioned2023-11-17T06:38:33Z
dc.date.available2023-11-17T06:38:33Z
dc.date.issued2003
dc.identifier.citationGolovko, V. Computing of Lyapunov Exponents Techniques Using Neural Networks / Vladimir Golovko, Yury Savitsky // The 3nd International Conference on Neural Networks and Artificial Intelligence = Нейронные сети и искусственный интеллект : proceedings, Minsk, November 12–14, 2003 / Belarusian State University of Informatics and Radioelectronicsb ; ed.: Rauf Kh. Sadykhov [et al.]. – Minsk, 2003. – P. 227–231 : il. – Bibliogr.: p. 231 (8 titles).ru_RU
dc.identifier.urihttps://rep.bstu.by/handle/data/37121
dc.descriptionГоловко Владимир Адамович, Савицкий Юрий Викторович. Методы вычисления показателей Ляпунова с использованием нейронных сетейru_RU
dc.description.abstractThe authors examine neural network techniques for computing of Lyapunov spectrum using observations from unknown dynamical system. Such an approach is based on applying of multilayer perceptron (MLP) for forecasting the next state of dynamical system from the previous one. It allows for evaluating the Lyapunov spectrum of unknown dynamical system accurately and efficiently only by using scalar time series. The results of experiments are discussed.ru_RU
dc.language.isoenru_RU
dc.publisherBSUIRru_RU
dc.subjectспектр Ляпуноваru_RU
dc.subjectLyapunov spectrumru_RU
dc.subjectмногослойная нейронная Сетьru_RU
dc.subjectmultilayer neural networksru_RU
dc.subjectхаотический процессru_RU
dc.subjectchaotic processesru_RU
dc.subjectdynamical systemru_RU
dc.subjectдинамическая системаru_RU
dc.titleComputing of Lyapunov Exponents Techniques Using Neural Networksru_RU
dc.title.alternativeМетоды вычисления показателей Ляпунова с использованием нейронных сетейru_RU
dc.typeНаучный доклад (Working Paper)ru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать краткое описание