Поиск по всему репозиторию:

Показать краткое описание

dc.contributor.authorSavitsky, Jury
dc.contributor.authorGolovko, Vladimir
dc.coverage.spatialMinskru_RU
dc.coverage.spatialSzczecinru_RU
dc.date.accessioned2023-11-15T13:43:58Z
dc.date.available2023-11-15T13:43:58Z
dc.date.issued1999
dc.identifier.citationSavitsky, J. Training of the recurrent neural networks for prediction / J. Savitsky, V. Golovko // Pattern recognition and information processing : proceedings of Fifth International Cоnference, Minsk, 18–20 Мay 1999 / Belarusian state university of informatics and radioelectronics, Technical university of Szczecin [et. al] ; editors: Rauf Sadykhov [et al.]. –Minsk ; Szczecin, 1999. – Vol. 2. – P. 248–252 : il. – Bibliogr.: p. 252 (9 titles).ru_RU
dc.identifier.urihttps://rep.bstu.by/handle/data/37092
dc.descriptionСавицкий Юрий, Головко Владимир. Обучение рекуррентных нейронных сетей для прогнозированияru_RU
dc.description.abstractIn this paper the technique of creation of effective methods of training recurrent neural network for prediction problems are discussed. The various functions of activation of neural units are considered. The adaptive algorithms of training of neural networks with varied functions of activation of neural elements are considered. The computing experiments on prediction of time series demonstrate possibilities of the developed methods.ru_RU
dc.language.isoenru_RU
dc.publisherBSUIRru_RU
dc.subjectrecurrent neural networkru_RU
dc.subjectрекуррентная нейронная сетьru_RU
dc.subjectpredictionru_RU
dc.subjectпрогнозированиеru_RU
dc.titleTraining of the recurrent neural networks for predictionru_RU
dc.title.alternativeОбучение рекуррентных нейронных сетей для прогнозированияru_RU
dc.typeНаучный доклад (Working Paper)ru_RU


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать краткое описание