

Рис. 4. Схема расположения области поиска и шаблона поиска для двух кадров ИС

Отсюда первый этап алгоритма будет следующим для всех соседних изображений кадров в области перекрытия:

- 1. Вычисление максимума корреляции в области перекрытия двух кадров.
- 2. Если найден единственный максимум, то переход п.6
- 3. Выполняется поиск ключевых точек и вычисление их дескрипторов.
- 4. Выделяются соответствующие друг другу ключевые точки.
- 5. Выделяется поднабор точек максимального размера с одинаковыми параметрами смещений, оставшиеся точки отбрасываются как ложные.
- 6. Вычисляются смещения и оценки качества для пар кадров.

Тестирование с использованием библиотеки openCV показало, что вычисление максимума корреляции выполняется в 3 раза быстрее, чем поиск ключевых точек и вычисление дескрипторов. При

этом в зависимости от входных данных, корректно единственный максимум определятся для 70–97% пар кадров.

Заключение. Модуль, реализующий алгоритм, разработан на основе библиотеки алгоритмов OpenCV и на базе кроссплатформенного инструментария Qt. Данный модуль входит в состав программного комплекса обработки и анализа изображений. Использование программных средств коррекции сшивки и идентификации объектов в СТЗ для контроля технологических процессов изготовления СБИС позволило создать основу для дальнейшей работы по восстановлению принципиальной электрической схемы ИС и повысило качество работы проектировщиков СБИС.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- Дудкин, А.А. Построение полного изображения топологического слоя интегральной схемы из совокупности перекрывающихся кадров / А.А. Дудкин // Вестник БрГТУ. – 2014. – № 5 (89): Физика, математика, информатика. – С. 12-17.
- Lowe, D.G. Distinctive image features from scale-invariant keypoints / D. G. Lowe // International Journal of Computer Vision. – Vol. 60, Issue 2. – Hingham: Kluwer Academic Publishers, 2004. – P. 91–110.
- SURF: Speeded Up Robust Features /H. Bay [etc.] // Computer Vision and Image Understanding (CVIU). Vol. 110, No. 3. Amsterdam: Elsevier, 2008. P. 346–359.
- ORB: An efficient alternative to SIFT or SURF / E.Rublee [etc.] // International Conference Computer Vision on. IEEE. – Barcelona, 2011. – P. 2564–2571.

Материал поступил в редакцию 23.11.15

DOUDKIN A.A., VORONOV A.A., MARUSHKO Y.E. Merging algorithm for VLSI layout frames by key points

Merging algorithm for layout frame of VLSI by key points is considered to form a complete image of VLSI layout without distortion. Each frame of VLSI layout obtained by electron microscope. Many frames require a lot of computation for positioning each frame inside the common image. Results, that was described in this paper, can be applied to image processing and analysis.

УДК 512.7

Волошин М.В., Волошина Т.В.

АЛГЕБРА КВАТЕРНИОНОВ И ЕЕ ПРИЛОЖЕНИЯ

Введение. Геометрическая интерпретация комплексных чисел при помощи точек плоскости подтолкнула математическое сообщество к мысли о поиске обобщения комплексных чисел, которые можно было бы проинтерпретировать как точки трехмерного пространства. Одна из первых попыток была осуществлена К. Весселем в 1799 году. Проинтерпретировав геометрически умножение комплексных чисел, Вессель сопоставил точке с прямоугольными координатами x,y,z выражение $x+y\xi+\xi\eta$, где ξ и η – две разные мнимые единицы, и описал при помощи этих чисел повороты вокруг осей Oy и Oz. Фактически эти выражения были векторами с частичным умножением. Вессель применил построенную числовую систему к решению задач о сферических многоугольниках.

Построение трехмерного аналога комплексных чисел приобрело актуальность после публикации в 1835 году «Теории сопряженных функций или алгебраических пар» ирландского математика и механика Уильяма Роуэна Гамильтона. В этой работе было проведено строгое обоснование комплексных чисел при помощи их представления в виде пар вещественных чисел и равносильного представления векторами плоскости. В дальнейшем Гамильтон пытался построить аналогичную теорию для троек вещественных чисел, однако все эти системы чисел содержали делители нуля, то есть в них обязательно присутствовали такие пары чисел α, β , для которых

$$\alpha \neq 0$$
, $\beta \neq 0$, $\alpha\beta = 0$.

Кватернионы — исторически первый пример некомутативной алгебры с делением. Свои исследования этой числовой системы Гамильтон изложил сначала в работе «О кватернионах, или О новой системе ценности в алгебре» (1844–1850), а потом в «Лекции о кватернионах» (1853).

Пусть H – четырехмерное числовое векторное пространство над полем вещественных чисел. Единичные векторы этого пространства обозначим через

$$e = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), k = (0,0,0,1).$$

Они являются аналогами комплексной мнимой единицы. Упорядоченные четверки вещественных чисел из H однозначно представляются в виде:

$$\alpha = a_0 e + a_1 i + a_2 j + a_3 k$$

и называются кватернионами.

Сложение кватернионов покомпонентное:

$$(a_0e + a_1i + a_2j + a_3k) + (b_0e + b_1i + b_2j + b_3k) =$$

=
$$(a_0 + b_0)e + (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k$$
.

Умножение достаточно определить для единичных базисных векторов e,i,j,k:

Волошин Михаил Владимирович, студент Восточноевропейского национального университета имени Леси Украинки. **Волошина Татьяна Владимировна,** к.ф.-м.н., доцент кафедры алгебры и математического анализа Восточноевропейского национального университета имени Леси Украинки. Украина, 4300, г. Луцк, пр. Воли, 13.

$$e^2 = e$$
, $ei = ie = i$, $ej = je = j$, $ek = ke = k$; $i^2 = j^2 = k^2 = -e$; $ij = k$, $jk = i$, $ki = j$, $ji = -k$, $kj = -i$, $ik = -j$.

Его можно распостранить по дистрибутивности на множество всех кватернионов.

Отметим следующие свойства умножения:

1. Кватернион e является, очевидно, нейтральным элементом относительно умножения. Для удобства обозначим его через 1, а вместо $a \cdot 1$ будем писать просто a. Тогда мы получим общепринятую форму записи кватернионов:

$$a_0e + a_1i + a_2j + a_3k = a_0 + a_1i + a_2j + a_3k$$
.

- 2. Умножение некомутативно: это справедливо даже для единичных кватернионов i, j, k, поэтому H числовым полем не является.
 - 3. Умножение кватернионов ассоциативно.
- 4. Аналогично случаю комплексных чисел, отметим особенную роль кватернионов вида $(a_0,0,0,0)$: умножение на них совпадает с умножением кватернионов на вещественные числа. Естественно такие кватернионы отождествить с соответствующими вещественными числами и считать в дальнейшем, что поле вещественных чисел R содержится в H. Действительно, вещественное число x это кватернион вида $x = x + 0 \cdot i + 0 \cdot j + 0 \cdot k$, а комплексное число z = x + iy можно записать в виде кватерниона $z = x + iy = x + iy + 0 \cdot j + 0 \cdot k$.

Также вполне естественно рассматривать произвольный кватернион как сумму двух кватернионов:

$$\alpha = a_0 + (a_1 i + a_2 j + a_3 k);$$

слагаемое a_0 называют обычно действительной частью кватерниона, а $a_1i+a_2j+a_3k$ — его мнимой частью. В отличие от комплексных чисел, мнимая часть кватерниона является не вещественным числом, а трехмерным вектором, так что кватернион можно представлять как пару — вещественное число a_0 и трехмерный вектор $\left(a_1,a_2,a_3\right)$. Поэтому действительную часть кватерниона еще называют его скалярной частью, а мнимую часть — векторной.

Полученная таким образом алгебра H называется алгеброй кватернионов с базисными элементами 1, i,j,k.

Как и в случае комплексных чисел, кватернион $\overline{q}=a-bi-cj-dk$ называется сопряженным с кватернионом q=a+bi+cj+dk . Операция сопряжения имеет такие свойства:

$$\overline{q_1 + q_2} = \overline{q_1} + \overline{q_2},$$

$$\overline{q_1 \cdot q_2} = \overline{q_2} \cdot \overline{q_1}.$$

Очевидно, сумма сопряженных кватернионов является вещественным числом. Произведение $q\overline{q}$ также будет вещественным, поскольку:

$$q \cdot \overline{q} = (a + bi + cj + dk) \cdot (a - bi - cj - dk) =$$

= $a^2 + b^2 + c^2 + d^2$.

Это произведение сопряженных кватернионов $q\overline{q}$ будем обозначать через N(q) и называть нормой кватерниона. Норма произвольного кватерниона — число вещественное, неотрицательное и равно нулю только для нулевого кватерниона. Для нормы кватернионов выполняется условие мультипликативности:

$$N(q_1 \cdot q_2) = N(q_1) \cdot N(q_2).$$

Действительно.

$$N(q_1 \cdot q_2) = (q_1 \cdot q_2) \cdot (\overline{q_1 q_2}) = q_1 \cdot q_2 \cdot \overline{q_2} \cdot \overline{q_1} = q_1 N(q_2)\overline{q_1} = q_1 \cdot \overline{q_1} N(q_2) = N(q_1)N(q_2).$$

Модулем кватерниона $\, q \,$, или абсолютным значением кватерниона $\, q \,$, называется число $\, \left| q \right| = \sqrt{N(q)} = \sqrt{a^2 + b^2 + c^2 + d^2} \,$; при этом выполняется равенство $\, q \cdot \overline{q} = \left| q \right|^2 \,$.

Для любого кватерниона $q \neq 0$ существует обратный элемент

$$q^{-1}$$
. Из равенства $q\cdot \dfrac{\overline{q}}{N(q)}=1$ вытекает $q^{-1}=\dfrac{\overline{q}}{N(q)}$, или
$$q^{-1}=\dfrac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}.$$
 Важное свойство кватернионов состоит в том, что модуль произ-

Важное свойство кватернионов состоит в том, что модуль произведения равен произведению модулей. Доказательство аналогично случаю комплексных чисел; используется формула $\overline{q_1\cdot q_2}=\overline{q_2}\cdot\overline{q_1}$ и ассоциативность умножения кватернионов:

$$\begin{aligned} &\left|q_{1}\cdot q_{2}\right|^{2} = \left(q_{1}\cdot q_{2}\right)\cdot \left(\overline{q_{1}\cdot q_{2}}\right) = \left(q_{1}\cdot q_{2}\right)\cdot \left(\overline{q_{2}}\cdot \overline{q_{1}}\right) = \\ &= q_{1}\cdot \left(q_{2}\cdot \overline{q_{2}}\right)\cdot \overline{q_{1}} = \left|q_{1}\right|^{2}\cdot \left|q_{2}\right|^{2}. \end{aligned}$$

Равенство $\left|q_1\cdot q_2\right|^2=\left|q_1\right|^2\cdot\left|q_2\right|^2$, записаное в развернутом виде, приводит к интересному тождеству. Пусть $q_1=a+bi+cj+dk$, $q_2=a'+b'i+c'j+d'k$, тогда формула приобретает вид:

$$(a^{2} + b^{2} + c^{2} + d^{2}) \cdot (a'^{2} + b'^{2} + c'^{2} + d'^{2}) =$$

$$= (aa' - bb' - cc' - dd')^{2} +$$

$$+ (ab' + ba' + cd' - dc')^{2} + (ac' + ca' + db' - bd')^{2} +$$

$$+ (ad' + da' + bc' - cb')^{2},$$

то есть произведение суммы чотырех квадратов на сумму чотырех квадратов равняется сумме чотырех квадратов.

Прежде всего обратим внимание на существенное отличие в самой постановке вопросов о делении кватернионов и комплексных чисел. Для комплексных чисел частным от деления Z_1 на Z_2 называют решение уравнения $Z_2X=Z_1$. Но для кватернионов произведение зависит от перестановки множителей, поэтому вместо одного уравнения нужно рассматривать два:

$$q_2 x = q_1 \text{ if } xq_2 = q_1. \tag{1}$$

Следовательно, решение первого уравнения будем называть левым частным от деления q_1 на q_2 и обозначать X_n , а решение второго — правым частным X_n (в случае комплексных чисел оба частные, очевидно, совпадают).

Для решения уравнения (1) используем тот же прием, что и в случае комплексных чисел. Умножим обе части первого уравнения

(1) слева сначала на
$$\,\overline{q_2}\,$$
 , а затем на $\,\frac{1}{|q_2|}\,$. Получим $\,x=\frac{1}{|q_2|}\,\overline{q_2}q_1\,$.

Непосредственная подстановка в уравнение подтверждает, что это на самом деле решение. Таким образом, $x_{_{\!\varPi}}=\frac{1}{|q_{_{\!2}}|^2}\cdot\overline{q_{_{\!2}}}\cdot q_{_{\!1}}.$

Аналогично находим
$$x_n = \frac{1}{\left|q_2\right|^2} \cdot q_1 \cdot \overline{q_2}.$$

Связь кватернионов со скалярным и векторным умножением. Так же как комплексные числа можно представить в виде суммы действительной и мнимной частей, кватернион $\alpha = a + (xi + yj + zk)$ представляется в виде суммы скалярного кватерниона a, который является обычным вещественным числом, и векторного кватерниона q = xi + yj + zk, который можно рассматривать как трехмерный вектор $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, где \vec{i} , \vec{j} , \vec{k} — единичные базисные векторы.

Сложение скалярных и векторных частей кватерниона происходит независимо. С умножением кватернионов немного сложнее. Произведение скалярных кватернионов – скалярный кватернион. В том случае, когда $q_1=a$ – скалярный кватернион, а $q_2=r$ – векторный кватернион, их произведение $q_1q_2=a(xi+yj+zk)==(ax)i+(ay)j+(az)k$ будет векторным кватернионом, и операция умножения совпадает с умножением соответствующего кватерниону вектора \vec{r} на вещественное число a.

Рассмотрим детально умножение векторных кватернионов:

$$q_1 = x_1 i + y_1 j + z_1 k,$$

 $q_2 = x_2 i + y_2 j + z_2 k.$

Для них $q_1q_2 = -(x_1x_2 + y_1y_2 + z_1z_2) + (y_1z_2 - z_1y_2)i - (x_1z_2 - z_1x_2)j + (x_1y_2 - y_1x_2)k$

или, используя определители:

$$q_{1}q_{2} = -(x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}) + \left(\begin{vmatrix} y_{1} & z_{1} \\ y_{2} & z_{2} \end{vmatrix} \cdot i - \begin{vmatrix} x_{1} & z_{1} \\ x_{2} & z_{2} \end{vmatrix} \cdot j + \begin{vmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \end{vmatrix} \cdot k\right).$$
(2)

Если отождествить векторный кватернион q=xi+yj+zk с вектором $\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}$, то из последней формулы вытекает, что скалярная часть произведения кватернионов q_1q_2 равна скалярному произведению (\vec{r}_1,\vec{r}_2) соответствующих векторов \vec{r}_1 и \vec{r}_2 со знаком минус. Векторная часть произведения q_1q_2 – это векторное произведение $\begin{bmatrix}\vec{r}_1,\vec{r}_2\end{bmatrix}$ тех же векторов \vec{r}_1 и \vec{r}_2 , записанное через координаты. Получаем общую формулу для умножения кватернионов $q_1=a_1+\vec{r}_1$ и $q_2=a_2+\vec{r}_2$:

$$q_1 q_2 = (a_1 \cdot a_2 - (\vec{r}_1, \vec{r}_2)) + (a_1 \cdot \vec{r}_2 + a_2 \cdot \vec{r}_1 + [\vec{r}_1, \vec{r}_2]).$$
 (3)

Геометрический смысл умножения произвольного кватерниона на векторный. Поскольку умножение кватернионов соединяет в себе два вида умножения векторов, скалярное и векторное, кватернионы являются хорошим средством для решения некоторых задач геометрии и механики.

Пусть q=a+bi+cj+dk — произвольный кватернион, модуль которого равен 1, то есть $a^2+b^2+c^2+d^2=1$. Запишем q=a+q', где q' — вектор bi+cj+dk. Поскольку $\left|a\right|^2+\left|q'\right|^2=1$, существует такой угол ϕ , что $a=cos\,\phi,\,\left|q'\right|=sin\,\phi$. Очевидно, $q'=\left|q'\right|\cdot p$, где p — соответствующий вектор единичной длины. Тогда

$$q = \cos \varphi + p \cdot \sin \varphi$$
.

В таком виде представляется любой кватернион с модулем 1. Умножим кватернион q на некоторый векторный кватернион v, при этом ограничимся случаем, когда вектор v перпендикулярный к p. Получим:

$$q \cdot v = (\cos \varphi + p \cdot \sin \varphi)v = v \cos \varphi + p \cdot v \cdot \sin \varphi$$
.

Поскольку p и v – перпендикулярны, действительная часть произведения $p\cdot v$ равна нулю, а векторная – произведению [p,v], то есть вектору длиной $|p|\cdot |v|\cdot sin\frac{\pi}{2}=|v|$, перпендикулярному к обеим векторам p и v, с ориентацией относительно p и v такой же, как у вектора k относительно i и j. Обозначим этот вектор через σ . Можно считать, что σ получен из вектора v при помощи поворота вокруг вектора p на угол $\frac{\pi}{2}$. Таким образом,

 $q \cdot v = v \cos \varphi + \nabla \sin \varphi$.

Заметим, что вектор qv получается из вектора v поворотом вектора q на угол ϕ вокруг оси, определяемой вектором p. Следовательно, если p – некоторый вектор длины 1, а v – произвольный вектор, перпендикулярный к p, то умножение v слева на кватернион $q = cos \phi + p sin \phi$ осуществляет поворот вектора v вокруг оси p на угол ϕ .

Этот факт можно рассматривать как геометрический смысл умножения слева на кватернион q; недостатком такой интерпретации является то, что вектор v выбирается не произвольный, а перпендикулярный к p.

Представление произвольного поворота в пространстве с помощью кватернионов. Можно записать в кватернионной форме и поворот вокруг оси p любого вектора v, если вместо умножения вектора v на q слева рассмотреть более сложную операцию – умножение v слева на q, а справа на обратный кватернион q^{-1} . Тогда получаем произведение $q \cdot v \cdot q^{-1}$, где q^{-1} — такой кватернион, что $q \cdot q^{-1} = 1$. Легко видеть, что $q^{-1} = \cos \varphi - p \sin \varphi$. Действительно, $(\cos \varphi + p \sin \varphi) \cdot (\cos \varphi - p \sin \varphi) = \cos^2 \varphi - p^2 \sin^2 \varphi = \cos^2 \varphi + \sin^2 \varphi = 1$.

Покажемо, что вектор $q \cdot v \cdot q^{-1}$ получается из v поворотом вокруг оси p на угол 2ϕ . Пусть сначала v перпендикулярный к p. В этом случае имеем:

 $q\cdot v\cdot q^{-1}=q\cdot v(\cos\phi-p\sin\phi)=qv\cos\phi-(qv)p\sin\phi$. Но qv – это снова вектор, перпендикулярный к p , поэтому (qv)p=-p(qv) . Кватернион p(qv) , как показано ранее, является вектором, полученым из qv при помощи поворота вокруг оси

p на угол $\dfrac{\pi}{2}$. Обозначим его, как и ранее, через $\stackrel{\sim}{qv}$. Отсюда име-

ем: $qvq^{-1}=qv\cos\phi+qv\sin\phi$. Выражение справа является вектором, полученным из qv при помощи поворота вокруг p на угол ϕ . Если учесть, что сам вектор qv получен из v при помощи такого же поворота, то оказывается, что qvq^{-1} получается из v поворотом вокруг p на угол 2ϕ .

Перед тем, как рассмотреть общий случай, заметим: если вектор v коллинеарный к p (то есть $v=\lambda p$), то, очевидно, qv=vq и $qvq^{-1}=vqq^{-1}=v$.

Пусть теперь V – произвольный вектор. Запишем его в виде суммы двух слагаемых: $V=V_1+V_2$, где V_1 – вектор перпендикулярный к p, а V_2 – коллинеарный к p. Тогда

$$qvq^{-1} = qv_1q^{-1} + qv_2q^{-1} = qv_1q^{-1} + v_2$$
.

Отсюда вытекает, что вектор v_1 поворачивается на угол 2ϕ вокруг p, а слагаемое v_2 остается неизменным. В результате вектор v поворачивается вокруг p на угол 2ϕ .

Таким образом, при повороте вокруг оси p на угол 2ϕ произвольный вектор v переходит в qvq^{-1} , где $q=\cos\phi+p\sin\phi$.

Задача о сложении поворотов. Рассмотрим задачу о сложении поворотов в пространстве.

Пусть сначала осуществеляется поворот на угол $2\phi_1$ вокруг некоторой оси, заданой при помощи единичного вектора p_1 ; потом выполняется следующий поворот – на угол $2\phi_2$ вокруг оси, заданой единичным вектором p_2 . Получаем некоторый новый поворот – результат последовательного выполнения двух даных поворотов. Нужно найти ось и величину угла поворота, полученного в результате выполнения двух последовательных поворотов.

При первом повороте произвольный вектор v переходит, как уже доказано, в вектор $v_1=q_1\cdot vq_1^{-1}$, где $q_1=cos\phi_1+\rho_1sin\phi_1$. При втором повороте v_1 переходит в $v_2=q_2v_1q_2^{-1}==q_2\left(q_1vq_1^{-1}\right)q_2^{-1}=\left(q_2q_1\right)v\left(q_2q_1\right)^{-1}$. Заметим, что $\left(q_2q_1\right)^{-1}=q_1^{-1}q_2^{-1}$, так как $\left(q_2q_1\right)\cdot \left(q_1^{-1}q_2^{-1}\right)=1$. В результате последовательного выполнения двух поворотов вектор v переходит в вектор $v_2=\left(q_2q_1\right)v\left(q_2q_1\right)^{-1}$. Таким образом, в результате последоватального выполнения двух поворотов, соответствующих кватернионам q_1 и q_2 , получается третий поворот, соответствующий кватерниону q_2q_1 .

Вычислить кватернион q_2q_1 не составляет труда. Запишем q_2q_1 в виде

$$q_2 q_1 = \cos \psi + p \sin \psi \,, \tag{4}$$

где p – вектор единичной длины. Тогда полученый в результате поворот – это поворот вокруг оси p на угол 2ψ .

Пример. Пусть первый поворот осуществляется вокруг оси Ox на угол $\frac{\pi}{2}$, а второй – вокруг оси Oy на тот же угол $\frac{\pi}{2}$. Первому повороту соответствует кватернион $q_1 = cos\frac{\pi}{4} + i sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}(1+i)$.

а второму – кватернион $\ q_2=rac{\sqrt{2}}{2}\left(1+j
ight)$. Тогда:

$$q_2 \cdot q_1 = \frac{1}{2} (1+j) \cdot (1+i) = \frac{1}{2} (1+i+j-k).$$

Для представления этого кватерниона в виде (4) заметим, что его

действительная часть равна $\frac{1}{2} = cos \frac{\pi}{3}$. Исходя из этого запишем:

$$q_2\cdot q_1=\cosrac{\pi}{3}+\left[rac{1}{\sqrt{3}}\left(i+j-k
ight)
ight]$$
 $\sinrac{\pi}{3}$; таким образом, по-

лученый в результате поворот совершается вокруг вектора $p=rac{1}{\sqrt{3}}ig(i+j-kig)$ на угол $rac{2\pi}{3}$.

Заключение. Алгебра кватернионов является обобщением поля комплексных чисел. Геометрическая интерпретация умножения произвольного кватерниона на векторный кватернион позволяет представить произвольный поворот в пространстве при помощи кватернионов. Этот подход применяется в задаче о сложении поворотов.

СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ

- 1. Арнольд, В.И. Геометрия комплексных чисел, кватернионов и спинов. М.: МЦНМО, 2002. 40 с.
- Арнольд, В.И. Теоретическая арифметика. М.: Учпедгиз, 1938. – 480 с.
- 3. Ван дер Вандер, Б.Л. Алгебра. М.: Наука, 1976. 648 с.
- Джон, Х. О кватернионах и октавах, об их геометрии, арифметике и симметрии / Х. Джон, Д. Конвей, А. Смит – М.: МЦНМО, 2009. – 184 с.
- Калужнин, Л.А. Введение в общую алгебру. М.: Наука, 1973. 448 с.
- Кантор, И.Л. Гиперкомплексные числа / И.Л. Кантор, А.С. Солодовников – М.: Наука, 1973. – 144 с.
- 7. Мищенко, А.С. Кватернионы / А.С. Мищенко, Ю.П. Соловьев // Квант. М.: Наука, 1983. № 9. С. 10–15.
- Понтрягин, Л.С. Обобщение чисел // Квант. М.: Наука, 1985. –
 № 2. С. 6–22.
- 9. Понтрягин, Л.С. Обобщение чисел. М.: Наука, 1986. 120 с.
- 10. Чеботарев, Н.Г. Введение в теорию алгебр. М.: Гос. изд. тех.теорет. лит-ры, 1949. – 88 с.
- Яглом, И.М. Комплексные числа и их применение в геометрии. М.: Физматгиз, 1963. – 192 с.

Материал поступил в редакцию 29.10.15

VOLOSHYN M.V., VOLOSHYNA T.V. Quaternion algebra and its applications

In paper properties of quaternions, their relationship with vectors, an applications of quaternions to describe the rotations in three-dimensional space is considered.

УДК 681.327

Дудкин А.А.

АЛГОРИТМ ЭКСПРЕСС-АНАЛИЗА СОСТОЯНИЯ РАСТИТЕЛЬНОСТИ ПО ИЗОБРАЖЕНИЯМ

Введение. Одной из наиболее значимых областей приложения методов обработки изображений является точное земледелие, которое позволяет снизить материальные и другие затраты в задачах, связанных с выращиванием и прогнозированием урожаев, мониторингом уровня всхожести посевов и др. Решение этих задач подразумевает использование геоинформационных систем (ГИС), в которых совмещаются необходимые методы для обработки изображений [1].

При принятии решений в процессе мониторинга сельскохозяйственных полей основным является распознавание пораженных заболеваниями участков. Для решения данной задачи предложено использование программно-аппаратного комплекса, мощности которого представлены мобильной системой и сервером. Данный комплекс предназначен для сбора информации и ее обработки с целью объективного контроля за состоянием сельскохозяйственной растительности. Серверная часть предполагает использование мощного

компьютера. Она представлена подсистемами параллельной обработки изображений и принятия решений. Первая из них включает в себя наиболее часто используемые методы обработки фотоаэроснимков, вторая — отвечает за выбор способа построения информационных признаков на основе данных дистанционного зондирования Земли (ДЗЗ), а также выделение площадных объектов, их распознавание и формирование управляющего решения в ГИС. В результате эксперт (агроном, агрохимик) получает возможность детального изучения обработанных фотоаэроснимков различными методами, сэкономив при этом время на обработку за счет распараллеливания на современных вычислительных системах.

Мобильное приложение (мобильная подсистема) – это программные средства, предоставляющие возможность отображать информацию о состоянии сельскохозяйственной растительности на карте, которая является набором упорядоченных по географическим координа-