МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ СХЕМ С ИСПОЛЬЗОВАНИЕМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

И. А. АНТОНИК (МАГИСТРАНТ)

Проблематика. Анализ физических процессов, происходящих в системах управления с использованием моделирующих программ, с учетом параллелизации алгоритма, а также возможной аппаратурной реализации.

Цель работы. Построение моделей устройств на основе конечноэлементного представления процессов в электрических машинах и конверторах и механизмов управления в преобразователях.

Объект исследования. Переходные процессы в электрических машинах и конверторах. Связь между магнитным полем, электрической цепью и системой управления.

Использованные методики. Уравнения непрерывности для дырок и электронов, уравнение Пуассона для электростатического потенциала, уравнение Максвелла для электромагнитного поля, полной плотности тока, уравнение для плотностей электронного и дырочного тока. Имитационное моделирование магнитного поля, электрических цепей и управления.

Научная новизна. Определено в качестве базовой сеточное описание конвертора, конечно-элементная расчетная модель для решения уравнения оптимизации внешних воздействий.

Полученные научные результаты и выводы. Конечно-элементная модель может быть использована для разработки инструментария для построения базовых моделей расчета уравнений, описывающих процессы в конверторах. Возможен переход к наиболее часто употребляемой на практике имитационной модели системы управления, связанной с процессами преобразования в электрических машинах.

Практическое применение полученных результатов. Важным приложением разработанных средств является использование для задач обучения. В целом предложенные средства позволяют сократить время при подготовке тестирующего контента для системы обучения и контроля знаний.

ПОДХОД К МОДЕЛИРОВАНИЮ УПРАВЛЕНИЯ ЭНЕРГЕТИЧЕСКИМИ УСТАНОВКАМИ

А. Ю. БАХМАЧ, И. В. МАЗУР (СТУДЕНТЫ 4 КУРСА)

Проблематика. Анализ физических процессов, происходящих в системах управления энергетическими установками с использованием моделирующих программ, с учетом параллелизации алгоритма, а также возможной аппаратурной реализации.

Цель работы. Построение моделей элементов на основе функционального моделирования системы управления частотными преобразователями.

Объект исследования. Процессы управления в тяговых электротрансмиссиях. Реализация дискретных управляющих автоматов сводится к реализации двух логических контроллеров (для случая представления автомата в виде автомата Мура): первый логический контроллер обеспечивает выдачу вектора

выходного управляющего воздействия X[k] на основе информации о текущем состоянии автомата Q[k]; второй логический контроллер обеспечивает расчет нового вектора состояния автомата (состояния перехода) Q[k+1] на основе текущего состояния автомата Q[k] и текущего состояния вектора входа X[k]. На каждом проходе программы (скане) текущее состояние автомата заменяется состоянием перехода.

Использованные методики. Быстрое преобразование Фурье, теорема Котельникова-Шеннона, метод конечных разностей, функциональное моделирование, Временной анализ наиболее существенных процессов в системах управления, реализация аппаратурных схем с программным управлением с различной степенью приближения.

Научная новизна. Описаны временные процессы в модели ШИМпреобразователя с учетом использования в тяговых электротрансмиссиях. Определена в качестве базовой VHDL-модель для аппаратурной реализации, для использования в составе программно-управляемой системы частотного преобразователя.

Полученные научные результаты и выводы. Функциональная модель может быть использована для разработки инструментария, для построения базовых частотных преобразователей, для управления различными типами электродвигателей. Возможен переход к употребляемой на практике функциональности процессоров цифровой обработки сигналов и микроконтроллеров.

Практическое применение полученных результатов. Важным приложением разработанных средств является использование для задач обучения. В целом, предложенные средства позволяют сократить время при подготовке тестирующего контента для системы обучения и контроля знаний.

ПРОБЛЕМА ПОВЫШЕННОГО УРОВНЯ АВАРИЙНОСТИ ПРИ ДВИЖЕНИИ СПЕЦТРАНСПОРТА

В. В. ВЬЮННИК (МАГИСТРАНТ)

Проблематика. Данная работа направлена на уменьшение вероятности ДТП при движении спецтранспорта на место вызова.

Цель работы. Разработка системы, которая предназначена для регулирования дорожного потока во время движения спецтранспорта.

Объект исследования. Процесс движения спецтранспорта на место вызова.

Научная новизна. Система проектируется в виде веб-приложения. Архитектура данного вида ПО представляет собой клиент-серверный тип архитектуры. Преимушеством такого подхода является тот факт, что клиенты не зависят от конкретной операционной системы пользователя, поэтому веб-приложения являются кроссплатформенными сервисами.

Полученные научные результаты и выводы. В результате выполнения данной работы были разработаны алгоритмы для приоритетного движения спецтранспорта через светофоры. Данные алгоритмы позволят беспрепятственно перемещаться спецтранспорту, минимизируют время его проезда. Также разработанная система обеспечит комфортные и безопасные условия всем участникам дорожного движения.