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I INFINITE SEQUENCES AND SERIES

1.1 Series. Test for Divergence
Infinite sequences and series were introduced briefly in 4 Preview of Calculus in
connection with Zeno’s paradoxes and the decimal representation of numbers. Their
importance in calculus stems from Newton’s idea of representing functions as sums
of infinite series.

Sequences
A sequence can be thought of as a list of numbers written in a definite order:
a,, a,, ds,...,a,

The numberq, is called the first term, a, is the second term, and in general a, is
the n-th term. We will deal exclusively with infinite sequences and so each term a,
will have a successor a,,,. Notice that for every positive integer n there is a corre-
sponding number a, and so a sequence can be defined as a function whose domain is
the set of positive integers. But we usually write a, instead of the function notation
f(n) for the value of the function at the number 7.

The sequence {al, a,, a3,...,an} 1s also denoted by{an}.

Some sequences can be defined by giving a formula for the n-th term. There are
three descriptions of the sequence: one by using the preceding notation, another by
using the defining formula, and the third by writing out the terms of the sequence (the
Fibonacci sequence). Notice that it does not have to start at 1.

Definition A sequence{an} has the limit L and we write lima, =L if we can

Nn—>0

make the terms a, as close to L as we like by taking n sufficiently large. If lima, ex-

n—0
ists, we say the sequence converges (or is convergent). Otherwise, we say the se-
quence diverges (or is divergent).

If we try to add the terms of an infinite sequence {an} we get an expression of

the form
a+a,+a,+..+a, +.. (1)
which is called an infinite series (or just a series) and is denoted, for short, by

the symbol ian or Zan :
n=1

We use a similar idea to determine whether or not a general series (1) has a sum.
We consider the partial sums

S =a,S,=a +a,,S;,=a,+a,+a,,

and, in general,

n

Sn:a1+a2+a3+...+an=Zai (2)

i=1



These partial sums form a new sequence {Sn} , which may or may not have a

limit. If imS, =S exists (as a finite number), then, as in the preceding example, we
n—0

call it the sum of the infinite series Za" .

n

Definition 1f the sequence {S,} is convergent and limS, =S exists as a real
n—o0

number, then the series Zan is called convergent and we write

S=a,+a,+a,+...+a,+...
The number S is called the sum of the series. Otherwise, the series is called di-

o0

vergent. So when we write Zan =S, we mean that by adding sufficiently many
n=1
terms of the series we can get as close as we like to the number S'.

0

Definition A series a,,, +a,,+a, ,+..= Z a, 1s called the remainder of the

n+l n+2 n+3 o

k=n+1
series and denoted by R . The remainder R, is the error made when the sum of the
first n terms, is used as an approximation to the total sum.
Example 1 An important example of an infinite series is the geometric series

a+aq+aq’+aq’ +aq’ +..+aq"" +...= Z:aq”_1 .
n=1
Solution Each term is obtained from the preceding one by multiplying it by the
common ratio ¢.

Ifg=1,thenS =a+a+a+..+a=na—> +o. Since limS, does not exist, the

n—0
geometric series diverges in this case.
If g #1, we have

S =a+aq+aq’ +aq’ +aq* +..+aq""
qS, =aq+aq’ +aq’ +aq’ +..+aq".

Subtracting these equations, we get S, —¢S, =a—aq",

S = all-q") 3)
I-¢
If -1<g<1, we know from that g -0 as n — «, so
lims, = lim44 =4 __a
n—o noo ] — q 1-— q
Thus when |q| <1 the geometric series is convergent and its sum is S = 1L.
—-q

If |q| >1 or g =-1, the sequence {q”} is divergent and so, by Equation 3, lim.S,

n—0

does not exist. Therefore the geometric series diverges in those cases.

6



We summarize the results of Example 1 as follows.
The geometric series is convergent if |q| <1 and its sum is S = IL' If|q| >1, the
—q

geometric series is divergent.

Example 2 Find the sum of the geometric series Z (%j :

n=l

: 3 . 3 .. 3
Solution The first term is g, :§ and the common ratio is g = 3 Since g = 3 <1

3
. : : a 5 3
the series is convergent and its sum is S = .- T3
-q .3

5

o0

Example 3 Show that the series Z

=i n(n+1)

is convergent, and find its sum.

Solution This is not a geometric series, so we go back to the definition of a con-
vergent series and compute the partial sums.

11 1
+ ...+ .
Zk(k+1) 12 23 3.4 n(n+1)

We can simplify this expression if we use the partial fraction decomposition
11 1

k(k+1) &k k+1

Thus we have

- 1 1 I 1 I 1
R I R ER Rl

_ . 1 1 1
= j(i+1) n+1

and so

limS, =lim(1— 1 ):1'

n—»o0 n—»o0 n + 1
Therefore the given series 1s convergent and

8 8 Z n(n+ 1)
) ) 1 1 1 .
Example 4 Show that the harmonic series Z— =l+—+—+...+—+...is diver-
n 2 3 n

gent.
Solution For this particular series it is convenient to consider the partial sums
SZ,S4,S8,...,S2,, ,.. and show that they become large.



S2:1+1,S4:1+l+ l+l >1+l+ l+l :1+%,
2 2 \3 4

2
1 (1 1 1 1 1 1 1 (1 1 1 1 1 1 3
Sg=l+—=—+|-+—|+|=F+=F+=+= [>]+—+| —F+— |+| =+ =+ —+— =]+,
2 3 4 5 6 7 8 2 4 4 8§ 8 8 8 2

4 5 6
Si6 >1+§’ S5, >1+§, S >1+§, S, > 1+

This shows that S, - asn—oo and so the harmonic series is divergent.

Therefore, the harmonic series diverges.

In general, it is difficult to find the exact sum of a series. We develop several tests
that enable us to determine whether a series is convergent or divergent without ex-
plicitly finding its sum.

Theorem 1 If the series Zan is convergent, then lima, =0.

Nn—»0
n=l1

Note 1 The converse of Theorem 1 is not true in general. If lima, =0, we cannot

n—»0

conclude that a series is convergent. Observe that for the harmonic series Z we

n=1

have lima, =0, but we showed in Example 4 that it is divergent.

n—0

The test for divergence 1f lima, does not exist or if lima, # 0, then the series

Nn—»0 n—»0

Zan is divergent.

n=l1
®© 2

Example 5 Show that the series Z 2n”+3

diverges.
— n+5

n—>0 n—>0 n2 +5 o0 n—>0 n2

the Test for Divergence.

2 2
Solution lima, =lim 2n” +3 (szlim 2n =2#0. So the series diverges by

Example 6 Find the sum of the series Z{ ( 3 D + (%) J .
n(n+

_ >(3) . o 3 3
Solution The series Z(EJ 1s a geometric series with g, :§ andq=§,

n=l1

SO

n

Z(gj _3 .In Example 3 we found that Z =1.
5 2 n(n+ 1)

n=l1




So, the given series is convergent and

(03 3 1 3 39
Z(n(n+1)+(§j ]3Zn(n+l)+z(g) =3y =y

n=1

Exercise Set 1.1
In Exercise 1 to 6, write down first five terms using a,,:

3n 2+(-1)"
]. an: 3 2 a :#
2n° +1 § n!
n+1 (2+sinmjcosn7r
3. = 2
n n' 4 an = \
n!
5 ln(n+1) 6 a = 1
a = n
R (3+D")

1 2 3 4 2 4 8

7. —F+—+—+—+... 8 1-——+———
35 7 9 20 31 4!

0 In2 N In3 N In4 N In5 L 10. arctg%+arctg%+arctg%+arctg3—12+...
4 9 16 25
sin;’ sin”” sin’g sing 5 2,4.6 8

11. + + + +... N E e S S B
NN 5 8 11 14

In Exercise 13 to 27, determine whether the series Zan is convergent or diver-

gent. If it is convergent, find its sum

—2n+3 = 30 -1 20’ +6
13. 14. 15.
; n+5 ;2n2+5 ;5n3+5n
o0 o0 — 2 311—1
n+3 2n+3 18 E nron-
16. 17. ’ 2
;n2+9 ;4n+5 Rt

19 i(%} 20. 2(23_5) 21. i{%)

n=1 n=1 n=1



o0

22 25”1;’12" 23 23,,1;4” 24 252_515

n=1 n=l n=1
= 1 = 3 N 5
25. —_— 26. 27. _—
;n(n+2) ;n(n+3) ;n(n+4)
Individual Tasks 1.1

1-5. Determine whether the series Zan is convergent or divergent. If it is con-

vergent, find its sum.

L II.
- n+1 — Tn+1
1. 1.
2 4n © 3
2.y —— 2.
,1221‘3n+2n3 ,1221‘5+n2
— 5" +3" o g 4 30
3. 3.
nzzl‘ 15" § 21"
4. 4.
;(6n—1)(6n+5) ;(zn+3)(zn+5)
5. 5. —_—
n:13n+n2 nzz;n2+3n+2

1.2 Tests of Convergence of Positive Series
Theorem (Integral Test) Suppose f is a continuous, positive, decreasing func-

0

tion on [1,+OO) and let a, = f(n). Then the series Zan is convergent if and only if

n=l1

the improper integral j. f(x)dx 1s convergent. In other words:

1

(a) If j f(x)dx is convergent, then Zan 1s convergent;
1

n=l1

(b) If J. f(x)dx 1s divergent, then Zan is divergent
1

n=l1

10



Example 1 For what values of « is the seriesZ%:l+%+%+...+%+...

n 2 3 n

n=l1

convergent?

Solution If <0, then limia =, Ifa=0, then limia =1. In either case

n—0 n n—>0 n

.1 : L :
lim— #0, so the given series diverges by the Test for Divergence.

n—>0 n

: 1 . : . :
If & <0, then the function y =— is clearly continuous, positive, and decreasing
X

on [1,+oo) . We found that I Ladx converges if ¢ >1 and diverges if o <1.
X
1

= ]
It follows from the Integral Test that the series Z_"‘ converges if a >1 and di-
n
n=l1

verges if a <1.

Example 2 Determine whether the series Z

n=1

1
(n+D)In*(n+1)

converges or di-

verges.
1

(x+1D)In*(x+1)
x > 1 because the logarithm function is continuous.

Solution The function f(x)= is positive and continuous for

So we can apply the Integral Test:

In(x+1)=t

r r r din(x+1))=dt| ¢

1 ) (x+1) In*(x+1) In*(x+1) x=l=t=mn2 | J1
X=00=>f =00

f A\ 1 1 1 1

=1lim | *dt=lim | — =lm|-———+—— |=0+—-=-——-=1001

e d vou\ =3 )| o= 3N 3In’2 3n*2 3In’2

Since this i integral i t, the seri i ! is al

1INCe 1S 1IMproper mtegral 1S convergent, € SCricsS 1S al-

POper HeE 8 i (n+1)In* (n+1)

so convergent by the Integral Test.

In the comparison tests the idea is to compare a given series with a series that is
known to be convergent or divergent.

11



Theorem (Comparison Test) Suppose that Zan and an are series with

positive terms:

(a) If an is convergent and @, <b, for all n, the Zan is also convergent;

(b) If an is divergent and @, >b_for all n, then Zan is also divergent.

5

Example 3 Determine whether the series 22—
2n" +4n+3

converges or diverg-
es.

Solution The largest of the dominant term in the denominator is 2n°, so we

: : : : 5
compare the given series with the series ZF
n

Observe that
5 5
<
2n° +4n+3 2’

because the left side has a bigger denominator. We know that 22—52 = %Z%
n n

is convergent because it is a constant times «-series with @ =2>1. Therefore

5 : :
ZZ— is convergent by part (a) of the Comparison Test.
2n" +4n+3

Theorem (Limit Comparison Test) Suppose that Zan and an are series with

. . a ) ) ) )
positive terms. If im— = ¢, where ¢ >0 is a finite number, then either both series

n— b

converge or both diverge.

® 2
Example 4 Determine whether the series Zw converges or diverges.
- n+6

Solution The dominant part of the numerator is 3n° and the dominant part of the

denominator is #°. This suggests taking

3’ +4n+7 nt 1
TS b=—5=—
n+6 n n
3+ 4 + !
2 3 —+—
) ) 4 ) 2 3
llmﬂzhmon +5n+7)n = lim—2 6” =3.
n—w bn n—w n +6 n—»o0 1+75

o0
) | ) : ) )
Since E — is convergent «-series with & =3>1, the given series converges
n=l1

by the Limit Comparison Test.
12



Notice that in testing many series we find a suitable comparison series by keep-
ing only the highest powers in the numerator and denominator.

Example 5 Use the sum of the first 100 terms to approximate the sum of the se-

o0

ries Z 31 . Estimate the error involved in this approximation.
=n" +1

Solution Since
1 - 1
w4+l
the given series is convergent by the Comparison Test. There we found that
+00 1 1
T, < j—3dx =57
X 2n

9

: : . . 1 :
Therefore, the remainder R, for the given series satisfies R, <7, <——. With

n=100 we have R, < % =0.00005.
2-100

The following tests are very useful in determining whether a given series is con-
vergent.

Theorem (Ratio Test)

.a : :
(a) If lim—L = 4 <1, then the series Zan 1s convergent.

n—»0
aﬂ

(b) If lim &L = 4>1 or lim 22 = 4 = o, then the series D a, is divergent.

a : .. : : :
(¢) If lim—=L = 4 =1, the Ratio Test is inconclusive; that is, no conclusion can

n—»0
aﬂ

be drawn about the convergence or divergence of Zan

n=l1
o0

Example 6 Determine whether the series ) ————
; (n"+1)-n!

n

converges or diverges.

Solution We use the Ratio Test with

_ 311 . _ 3n+l _ 3n+1
T+l " ((+ )P +D) -+ D! (P +2n+2)-(n+1))
n+l 2 ! . 2

lim %t — lim 37 (0" +1)-n! -~ lim—; 3-(n" +1) _
oo g o (nt +2n+2)-nl(n+1)-3" e (n’ +2n+2)(n+1)

1 1

+
=3-lim 0=0.

iy

13



Since 4=0<1, the given series is convergent by the Ratio Test.
The following test is convenient to apply when n-th powers occur. Its proof is
similar to the proof of the Ratio Test.

Theorem (Root Test)

o0

(a) If 11m\/7 A <1, then the series Zan 1s convergent.

Nn—»0
n=1

o0

(b) If hm\/7 A>1 or hm\/7 A =00 , then the series Zan is divergent.

n—»o0 n—>0
n=1

(o) If hm\/7 A =1, the Root Test is inconclusive.

n—»0

If hm\/7 A =1, then part (c) of the Root Test says that the test gives no in-

n—0

formation. The series Zan could converge or diverge. (If 4=1 in the Ratio Test, do

not try the Root Test because A will again be 1. And if 4 =1 in the Root Test, do not
try the Ratio Test because it will fail too.)

Example 7 Test the convergence of the series Z ( in il ;J :
n+

2n+3jn

3n+2

hm(—hmn 2n+3) limzn+3 :1im2—n:z
n—0 n—0 3In+2 nso3p4+2  n-o3p 3

: 2 : ..
Since A = 3 <1, the given series is convergent by the Root Test.

Solution We use the Root Test with a, =(

Exercise Set 1.2
In Exercise 1 to 42, determine whether the series Z a, 1s convergent or diver-

gent.

0

DY » T e,

n=l1 n=l1
n+4 n o n+4
P PN S Yy v
(05
7 Z (n+2] o Z (4n+2] 4 Z(SnZJ

n=l1

14



10.

13.

16.

19.

22.

25.

28.

31.

34.

37.

40.

=(2n-1)
Z(5n+3]

n=l1

n=1
2 o
2
= n-5

Z“(n +1)3

n=l1

i(n+l)(n+2)

n!

n=1

0

i 6(8n+1J"
n
On+5

Zl-3-5-...-(2n—1)

4-8-12-...(4n)

n=l

© n

n
Zn! (2" +1)

n=1

e
n=1
0

.3
E arcsin” —
n

n=1

()

i 1

(n+1)-1n(n+1)

n=l

32.

35.

38.

41.

i3-5-...-(2n+1)
1-4-..-(3n-2)

n=1

12.

15.

18.

21.

24.

27.

30.

39.

42.

(4n—-1)
;(9n+5j

o0

. .3
arcsin” —
n

n=l1

® 3n71
; n(n + 1)

—n(n+1
3 (5")

n=l1

i n!

— (n + 1) 3"
- .

Z arcsin—
n=l1 2

0

Zl-3-5-...-(2n—1)
5-9-13-...(4n+1)

n=1

o0

ZZ”-n!
) e

15



Individual Tasks 1.2

1-6. Determine whether the series Za" is convergent or divergent. If it is con-

vergent, find its sum.

I. II.

0 0

! Z(?annltl)n ! Z(nfs)2

n=l1 n=1

0

2n+1 - 1
2. 2.
Zn&w Z(211—1)\/271—1

n=l1 n=l1
3. 3
;(nﬂ)lnz(nﬂ) ;(2n+1)1n3(2n+1)
= 3n+2 > g/
4. > 4 ZS_M
o (11! e~ (n+2)!

n

n=l1 ) (3”1)'

x 4 _1 n’-n o0 3 _2 n’+n
o Y[ BYE

n=l n=l1

1.3 Alternating Series

The convergence tests that we have looked at so far are applied only to series
with positive terms. In this section we learn how to deal with the series whose terms
are not necessarily positive. The alternating series, whose terms alternate in sign are
of particular importance.

Definition An alternating series is a series whose terms are alternately positive
and negative.

Theorem (Alternating Series Test) If the alternating series

a—a,+a,—a, +..+(-1)""a, +..= Z(—l)"*lan
n=l1

satisfies the following conditions:
(a) a>a,>a,>..>a,>a, >..
(b) lima, =0

n—»0
then the series is convergent.

® n-1
Example 1 Test the series Z& for convergence or divergence.
n

n=l1

Solution The alternating harmonic series

16



21\
ZL:1—l+l—l+...+(—1)”‘ll+...
= n 2 3 4 n

satisfies the following conditions:

1
<—;
n+l n

(@) a,>a,>a,>..>a,>a,, >.., because

(b) lima, =lim~=0.

n—>0 n—>0 n

So the series is convergent by the Alternating Series Test.

o0

Example 2 Test the series Z:(—l)”_1
n=1
Solution The given series is alternating, so we try to verify conditions (a) and
(b) of the Alternating Series Test.
Unlike the situation in Example 1, it is not obvious that the sequence given by

5 for convergence or divergence.

n-+2

a,= 2n > i1s decreasing. However, if we consider the related function
n-+
f(x)= Zx , we find that
x"+2
, 2—x?
X)=———.
S (x*+2)

Since we are considering only positive x, we see that f'(x)<0 if x > J2 . Thus

f is decreasing on the interval (\/5 ;+00). This means that f(n+1)< f(n) and,
therefore, a, > a,,, when n=2. (The inequality a, > a, can be verified directly but all

that really matters is that the sequence {an} is eventually decreasing.)

Condition (b) 1s readily verified:

. N |
lim— =lim— =lim—=0.
n—wo p- 4 2 n—w pn n—o p
Thus the given series is convergent by the Alternating Series Test.
Estimating Sums

A partial sum S, of any convergent series can be used as an approximation to

the total sum S, but this is not of much use unless we can estimate the accuracy of
the approximation. The error involved in using S ~ S, is the remainder R =S5 -5, .

Theorem (Alternating Series Estimation Theorem) 1f S = Z:(—l)”‘1 a, 1s the
n=1

sum of an alternating series that satisfies the following conditions:

(a) a>a,>a,>..>a,>a, >..
(b) lima, =0
Hn—>0
then | S-S |=|R|<a,,,.

17



Example 3 Find the sum of the series i(—l)n+l correct to three decimal places.
= n!

Solution We first observe that the series is convergent by the Alternating Series
Test because
1 1 1
a)

(it ) nl(n+1) !

b) O<l<l—>0 S0 l—)O as n—» o .
n! n n!

To get a feel for how many terms we need to use in our approximation, let’s
write out the first few terms of the series:

1 11 1 1 1 1 1 1 1 1 1 1 1
=t ———t———+———+.. ==+ —— +...
or 1t 2t 3! 4! 5! 6! 7! 2 6 24 120 720 5040
Notice that a, = < 1 =0.0002
5040 5000
andS:1—1+l—l+L—L+Lz0.368056.

2 6 24 120 720
By the Alternating Series Estimation Theorem we know that

| S -S| <a, <0.0002.
This error of less than 0,0002 does not affect the third decimal place, so we
have S = 0.368 correct to three decimal places.

dn+1

n

Example 4 Find the sum of the series Z(— "

n=l1

correct to three decimal

places.
Solution We first observe that the series is convergent by the Alternating Series
Test
4x +1

x b

(a) If we consider the related function f(x) = we find that

6" —6"In6-(4x—1) 4-In6-(4x—1)
62x - 6x
Since we are considering only positivex, we see that f'(x)<0 if

x>l+ﬁz0.808. Thus f is decreasing on the interval [l;+00). This means that
n

f(n+1)< f(n) and therefore a, >a,,, whenn>1.
4

(b) ima, =lim dn+l = [L'Hopitals Rule] =lim =0

n—>o0 n—o 6 n—>00 6” Iné6

4
S(x)=

To get a feel for how many terms we need to use in our approximation, let’s

write out the first few terms of the series: S = é — i + i — E + 2 — E +

6 36 216 6 6 6
18



Notice that a, = % =0.0005358 <0.001 and

5 9 13 17 21
ScS;=———+ - + =
6 36 216 1296 7776

=0.8333-0.2500+0.0602-0.0131+0.0003=0.6307 ~ 0.631

Absolute Convergence
Definition A series i(_l)"-l . 1s called absolutely convergent if the series of ab-

n

n=l1

solute values E ‘an‘ 1s convergent.

n=l1

© n+l
Example 5 Test the series Z(()3) for an absolute convergence.
n(n+

n=l1

Solution We use the Limit Comparison Test with a, = , where a, 1s an

n (n + 3)
absolute value of the n —th term. The dominant part of the numerator is 0 and the

dominant part of the denominator is 7”. This suggests taking

1
a, b and b, =—.
n(n+3) n
2 2
lim[lz%}:lim[l-n—)zlim—n “lim =1
=0 n(n+3) n n—ew n(n+3) 1 ;z—)oonz(1+3j n—)oo1+7
n n

: o1 : : : :
Since 2_2 is convergent ( & -series with @ =2 >1), the given series converges
n

n=l1

by the Limit Comparison Test. Thus, the given series is absolutely convergent and,
therefore, convergent.

Definition A series Z:(—l)"_1 a, is called conditionally convergent if it is con-
n=1

vergent, but not absolutely convergent.

o0

Theorem If a series Z:(—l)”_1 a, 1s absolutely convergent, then it is convergent.
n=1

Example 6 Determine whether the series

0

cosn cosl cos2 cos3 cosn
Z =ttt —
n 1 2 3 n

n=1
is convergent or divergent.
Solution This series has both positive and negative terms, but it is not alternat-
ing. The first term is positive, the next three are negative, and the following three are

19



positive. The signs change irregularly. We can apply the Comparison Test to the se-

ries of absolute values
i|cosn =Z'°:|005n|
L | nz nz

‘COSI’I
2 - .
n n

Since ‘cos n‘ <1 for all n, we have

o1 : :
We know that E — 1is convergent ( ¢ -series with @ =2>1) and therefore
n
n=1
cosn .
— is
n

= |cosn| | . : . X

E Q is convergent by the Comparison Test. Thus the given series E
n

n=l1 n=l1

absolutely convergent and therefore convergent by Theorem.

Example 7 Determine whether the series i(_l)”-l 7 5 is absolutely convergent,
— n +

conditionally convergent or divergent.

Solution We use the Limit Comparison Test with a, = —; %
n +
The dominant part of the numerator is # and the dominant part of the denomina-

tor is n° . This suggests taking

1
a,=— and b, =—
n +2 n
2 2
hmb =lim 2” l.lzlim 5 l—lim n n =lim 11 =1
n A n n + n n n + n n2(1+2j n 1+72
n n

Since Zl is divergent ( « -series with & =1<1), the given series diverges by
n
n=1
the Limit Comparison Test.
We try to verify conditions (a) and (b) of the Alternating Series Test:
(@ a,>a,>a,>a, >a,>a,>..(see Example 2);

(b) lima, = lim—— = lim——— = lim——_—0.
n—0 n—o p° 4 2 n—ow 4 2 n—o0 2
n 1 + — n- 1 + —
n n
Exercise Set 1.3

In Exercise 1 to 18, determine whether the series is absolutely convergent, con-
ditionally convergent, or divergent.

n=l1 n=l n=1
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© (_1)n+1 3n 0 (_1)n+1 © (_1)n+1
4 sy V) 6.
nZ: n+2 Z4”(2n+3) an(n+1)
© ( 1)n+1 5” n+1 0 (_1)n+1
7. ~ 7 8. 9. N
Z (n+2) Z:2" n+1 ;3”“(2?1—1)

" Vs
10. Z sm—n i Z y s1n3" 2 i(_lj/s'tgm
n

n=l1

13 ;n-ln@n) ]4';(n+1)-1nn I3 Z(_l) (2n+1j
cos2rwa = (=1)" N ,Inn
16. Z e 17.Zn_1nn 18. Z(—l) an

n=l1 n=2 n=2

In Exercise 19 to 24, approximate the sum of the series correct to three decimal
places.

n—1 n o n ) n—1
e~ (n+1)-(4n+3) e 2" .1 e 3" .1
(D" -n-3" N o 1 < w1 (0,7)
23. - — 24. - —=——
~ (2n+1)-7" ;( ) 7" HZ; D (n+1)!
Individual Tasks 1.3

1-3. Determine whether the series is absolutely convergent, conditionally con-
vergent, or divergent.
4. Approximate the sum of the series correct to three decimal places.

I. II.

LY LYy 2ntd
;( ) 6n* +7 %( ) n®+3

2 i (_ l)n_l 4dn+1 2 i (_ l)n_l 3n+2
n=1 6n n=1 Sn

N Z“’:(—l)" N Z”:(—l)" Jn+1
n=l1 3’1 ) n' n=l1 (27’1)'

4 i (_l)n_l 3n+2 4 i (_1)}1—1 n+6
n=1 n! n=1 n!
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1.4 Power Series

Definition A power series is a series of the form
®
Zanx"=a0+a1x+a2x2+...+anx”+... (1)
n=0
where x is a variable and the g, ’s are constants called the coefficients of the se-
ries. For each fixed x, the series (1) is a series of constants that we can test for con-
vergence or divergence. A power series may converge for some values of x and di-
verge for other values of x. The sum of the series is a function

2
f(xX)=a,+ax+ax" +..+a x"+..

whose domain is the set of all x for which the series converges. Notice that f
resembles a polynomial. The only difference is that f has infinitely many terms.

More generally, a series of the form

[ee)

Zan(x—xo)” =a,+a,(x—x))+a,(x—x,) +..+a,(x—x,)" +...

Py )

is called a power series in (x — x,) or a power series centered at x,, or a power se-
ries about x,, . Notice that in writing out the term corresponding to # =0 in Equations 1

and 2 we have adopted the convention that (x —x,)" =1, even when x = x, . Notice also
that when x = x,, all of the terms are 0 for n =1, and so the power series (2) always
converges when x = x; .

Example 1 For what values of x is the series Zﬂ-(x—k@” conver-

(n+1)-7"

n=l1

gent?

Solution We use the Ratio Test. We apply the Ratio Test for the absolute value
3n+2 ‘

u (x)|= -x
o )‘ (n+1)-7"
3n+5

n+1"x+

(n+2)-7
_ Gna )T ()T x4 GrtS)n+l)

=lim — = -lim =

>t (n+2)- 7" GBn+2)|x+4 T 2 (n+2)Bn+2)
‘x+4‘, 3n® ‘x+4‘
= lim—= :

7 = 3n 7

n

of the n —th trrm of the series u, (x): +4| .

n+l

If x #—4, we have

un+1 (X)‘ =

un+1 (X)

u,(x)

lim

n—»

22



By the Ratio Test, the given series is absolutely convergent, and therefore con-

|x+4| |x+4|

vergent, when <1 and divergent when >1 . Now

‘x+4‘
7
so the series converges whenxe(—11;3) and diverges when

xe€(—o;—-11)U3;+ ).

<l < ‘x+4‘<7 & -—T<x+4<7 < —11<x<3,

‘x+4‘ )
=1 so we must consider

The Ratio Test gives no information when

x=-11 and x =3 separately.

If we put x =3 in the series, it becomes Z (3n(+ 2)1')(3; 4 = Z%, which
n+1)- n+

n=l1 n=1

is divergent by the test for divergence.

If x=—11, the series is

N (Bn+2)-(-11+4)" _ o Gn+2) 7 3n+2
(n+1)-7" < (n+1) ¢ )_Z( b

n=1

3n+2

which diverges by the Alternating Series Test ( lima, =1lim =3#0). Thus

n—0 n—o g+ 1

the given power series converges for —11<x <3,

Theorem For a given power series Za" (x—x,)"» there are only three possibili-
n=0
ties:
(a) The series converges only when x = x,;
(b) The series converges for all x;

(c) There is a positive number R such that the series converges if |x—x0 | <R
and diverges if | X=X, | >R.

The number in case (c) is called the radius of convergence of the power series.
By convention, the radius of convergence is R =0 in case (a) and R =00 in case (b).

The interval of convergence of a power series is the interval that consists of all values
of x for which the series converges. In case (a) the interval consists of just a single

point x,. In case (b) the interval is (—o0;+00). In case (c) note that the inequality

|x—x0|<R can be rewritten as x, —-R<x<x, +R.

In general, the Ratio Test (or sometimes the Root Test) should be used to de-
termine the radius of convergence R. The Ratio and Root Tests always fail when x
is an endpoint of the interval of convergence, so the endpoints must be checked
with some other test.
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Note The following formulas to finding radius of convergence can be used:

: .1
R=lim—|, R=lim——
n—>»0 an+1 n—o0 n an

Example 2 Find the radius of convergence and the interval of convergence of
the series

2
n-1
n=1 3
. 1 1
Solution Leta,=———.Thena,,,=—F5—:
.3 (n+1) -3
a (n+1)-3" (n+1)°
R =lim—~=lim————=3-lim~——5~—=3
noelq noo|l p°.3" n—>0 n

So it converges if |x| <3 and diverges if |x| > 3. Thus the radius of convergence
is R=3.

The inequality |x| <3 can be written as —3<x<3, so we test the series at the
. .. 3 = 1 . — 1
endpoints x =—3 and x=3. When x =3, the series is 2—2 = 32—2. Since Z_Z
n n n

is convergent ( «r-series with @ =2>1), the given series converges by the Limit
Comparison Test.

When x =-3, the series is Z

n=l1

gent and therefore convergent.

Thus the series converges only when —3<x <3, so the interval of convergence is
e[-3;3].

Exercise Set 1.4
In Exercise 1 to 18, find the interval of convergence of the series.

- (2n—1)
. Z o

= n ]’l' 2n
4. n+2)(x+3 5 6. —(x—6
> (m+2)(x+) > & (r-6)

(x+1)"
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0 Y- ey £ 2 (1) 2 (42
"= ' —  /n+2

13 )y 14. i“jﬁx 5. Z’;'

- In' x " - 13
16. 17, 18. p
Z‘ n Z(l Zx} Z‘(xﬂ)
Individual Tasks 1.4
1-4. Find the interval of convergence of the given series.
L. IL.
At > 2n-1
1. x" 1. — X"
; 4" ; 3"(n+1)
S n-(x—3) N
—_— 2. x—2)"
; (61 +1)° Z4n — =2
- n+4 S (2n+1)
3. —(x+2)" 3. +4
2+ 2 e Y
- -3
2" - sin— 4. al
Z 3" ;(1 — 3xj

1.5 Representations of Functions as Power Series
We start with an equation:

o0

1 _
1—:1+x+x2+...+x”1+...:Zx”, —1<x<1
—X

(D

n=0

We now regard Equation 1 as expressing the function as a sum of a power series.

Example 1 Express - as the sum of a power series and find the interval of

1+x
convergence.

Solution Replacing x by —x” in Equation 1, we have

1 1 2 2N\2 2\3 n_2n
e R R R Z( x’) —;( "x
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. . . . 2 . 2
Because this is a geometric series, it converges when ‘—x ‘<1, that is, x” <1, or

—1<x <1. Therefore the interval of convergence is (—1;1). (Of course, we could have

determined the radius of convergence by applying the Ratio Test, but that much work is
unnecessary here.)

Example 2 Find a power series representation for >
X+

Solution In order to put this function in the form of the left side of Equation 1
we first factor 2 from the denominator:

1 __r 1 1 zl.i(_ﬁjnz (D"
x+2 2.(1+%) 2 1_(_%) 2 &\ 2 L

X

This series converges when || <1, that is, x| < 2. So the interval of convergence is

(—2;2).
Example 3 Find a power series representation for ln(l—x) and its radius of

convergence.
Solution We notice that, except for a factor of —1 , the derivative of this func-

tion is 1/ (1 —x). So we integrate both sides of Equation (1):

2 3 4
—ln(l—x)=JAde=j(l+x+x2 +x° +...)dx:x+x—+x—+x—+...+C:
1-x 2 3 4

n+l

=Zx o= ¢ ] <1-
n+1 n

n=0 n=l1

To determine the value of C, we putx=0 in this equation and obtain
—ln(l—O) =C. Thus C=0 and

3
ln(l—x)z—x—%—x?—...z—z)% ‘x‘<1.

n=1

The radius of convergence is the same as for the original series: R=1.

Taylor and Maclaurin Series
We start by supposing that f* is any function that can be represented by a power

series

o0

Zan(x—xo)” =a,+a,(x—x,)+a,(x—x,)" +..+a,(x—x,)" +...,

x— xo‘ <R (2)
n=0

Let’s try to determine what the coefficients ¢, must be in terms of f .
Theorem 1 1f f has a power series representation (expansion) at x, , that is, if

f)=) a,x=x),

x—xo|<R,

) . . (m)
then its coefficients are given by the formula 4 :M.
n n!
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Substituting this formula for a, back into the series, we see that if f has a pow-
er series expansion at x,, then it must be of the following form:

S X)) =f(x)+ f'(x) (x— x0)+f”( o) f(") ('xo)
n

The series in Equation 3 is called the Taylor series of the function f at x,, (or
about x, or centered at x, ). For the special case the Taylor series becomes

@)= 70+ 10 v+ Oy L0y @)

n!
This case arises frequently enough that 1t is given the special name Maclaurin series.
Note 1 We have shown that if f° can be represented as a power series about x,,,
then it isequal to the sum of its Taylor series. But there exist functions that are not

equal to the sum of their Taylor series.
We collected some important Maclaurin series that we have derived in this sec-
tion and the in preceding one and organized them in the following table.

(x— xo) +...+ (x—x,)" +... (3)

Table 1
x2 3 xn
ex:1+x+—'+—+...+—‘+... —00 < X < 00
n!
x3 xS 2n—1
Sinx=x— -t (=) —00 < X <00
3151 Qn-n"
2 4 2n-2
cosx=1-2+2 T ) —— ol —00 < X <00
|41 Qn-21"
%:1+x+x2+...+x”_l+... —l<x<l1
- X
X X x"
In(l+x)=x——+"— . +(=1)"—+... —1<x<1
2 3 n
(1+x)“:1+ax+Mx2+...+a(a_1)'“('a_n+l)x”+ ~1<x<1
n!
Exercise Set 1.5

In Exercise 1 to 15, find a power series representation for the function and de-
termine the interval of convergence.

2x-5 3 _ x2
x*—4x+3 'f(x)_1+x

1 f(X)=$ 2 f(x)=
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1

4 f =)= x+6
1

7. f(x)=ﬁ

10. f(x)=¢e*

13. f(x)=e2*

3x+5
x*=3x+2

5. f(x)=

2

8. f(x)= sinx?

11. f(x)=xcos/x

14. f(x)=xsin2/x

Individual Tasks 1.5

2

A

3

9. f(x)= cosz%

12. f(x)=+1-x" arcsinx

15. f(x)=In(1-4x)

1-4. Find a power series representation for the function and determine the inter-

val of convergence.

L
1
1. =
A
2. f(x)zxz-e_x
3. f(x)zln(1—5x+4x2)
4. f()c)zsinz—x4

II.

1.6Aplications of Representations of Functions as Power Series

One reason why Taylor series are important is that they enable us to integrate func-

: : : 2 :
tions that we could not previously handle. The function f(x)=e " can not be integrat-

ed by the techniques discussed so far because its antiderivative is not an elementary
function. In the following example we use Newton’s idea to integrate this function.

Example 1 Evaluate Ie‘xz dx correct to within an error of 0.001.

Solution First, we find the Maclaurin series for f(x)= e . Although it is pos-

sible to use the direct method, let’s find it simply by replacing x with x* in the series

for e given in Table 1. Thus, for all values of x, ¢ = Z
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Now we integrate term by term:
7 9

1 1 2 4 6 3 5 1
J.e_xzdxzj‘ l—x—+x——x—+... dx =| x — al + r 7 + al | =
! 3! 3.1 5.2t 7.3t 9.4! o

12!
0 0
3 5 7
:1—1—+1——1— L..zl—l+i—L~O.748.
3 10 42 216 3 10 42

. . . . . — 2
This series converges for all xbecause the original series for e converges for all x.

The Alternating Series Estimation Theorem shows that the error involved in this
9

b <0.01.

4! 216

Example 2 Evaluate lim$

x—0 X

approximation is less than 5

Solution Using the Maclaurin series for e , we have

2 3 4
X X X 2 3 4
1+x+7+7+7+... —l_x X +X7+ +
x_1_ 21 31 4]
. e —-1l-x . . ! . .21 31 41
hm—2 =lim 5 =lim-== —— =
x—0 X x—0 X x—0 X

: 1 x x 1
=lm| —+—+—+... |==
ol 21 31 41 2
because power series are continuous functions.

Example 3 Use power series to solve the initial-value problem
Y =4xy" —x, y(0)=2.
Solution We assume there is a solution of the form
' " m 4
y(X):y(O)ﬁL%!O)-H%!O)-xz + 2 3(!0) X7+ /! ;('O) xt
¥'(0)=4-0-2°-0"=0.
We can differentiate power series term by term, so

(3)=(7 ) (7] () =470 e (7 -3¢ -
=4y 1+4x-2y-y =3x" =4y’ +8xyy —3x*.
Letx=0, y=2, '(0)=0, then

yn(o):4.22+8.0.2-0—3-02 =16.

! !

y”'(x):(4y2+8xyy'—3x2) =(4y2),+(8xyy') —(3x2),:
=8y-y'+8yy'+8x-(yy') —6x=16yy'+8xyy"+8x-(y’)2—6x.
29



Letx=0, y=2, y'(O)zO, y"(O):16,then
y’"(O)=16-2-0+8-0-2-16+8-0-(0)2—6-O=O.

!

y(4)(x) = (16yy’ +8xyy" +8x-(y')2 — 6x) =

! !

= (16yy’)' +(8xyy") +(8x-(y')2) —(6x)

!

=16y'y’+16yy"+8yy"+8x-(yy") +8(y’)2+8x-2y'-y"—6=

=24(y')2 +24yy"+24xy' y" +8xyy" —6.
Letx=0, y=2, y'(O)zO, y"(O):16, y"'(O):(),then
y(4)(0)=24-02+24-2-16+24-0-0-16+8-0-2-0—62768—62762.

Substituting the obtained coefficients in the Maclaurin series, we will obtain the
solution of the initial differential equation

y(x)=2+9-x+E-x2+9-x3+7—62-x4+...=2+E-x2+7—62-x4+...:
1! 2! 3! 4! 2

=2+8x2+31.75x" +....

Exercise Set 1.6

In Exercise 1 to 12, use a power series to approximate the definite integral to

three decimal places.
0,5

1 .
L 2 [oosxar o ¢ L
1+x X
0 0 0.1
0.5 0.25 1
4. J- NIES'S 5 j sin x*dx 6 sz e dx
0 0 0
1/3 0,5 10 2
¢ In(1+x
7. j Jl+x* 8. I AT 9. _[ (—2)dx
0 0 X 5 X
0.25 0.4 0.1

2
10. j dx 11 Icos(s—x)d 12, Iln(1+x)dx
i x ) 2 x

0 0.01

In Exercise 13 to 22, use power series to solve the initial-value problem.

13. Y =2y+y°, y(0)=3 4. ¥y =3cosx+y”, y(0)=1
15. V' =3xy—e"+4, y(0)=0 16. y =2sinx—x"y, y(0)=1
17. y'=e"+xy, y(0)=0 18. y=2x"+y’, y(1)=1
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]9 yll+zy’—|-y:0,y(0):1,y'(O):O 20 y":y.cosy’+x,y(())zl’yr(o):ﬂ_/?)
X

21. Y'=x"+y, y(0)=-1, y'(0)=1 22, y=l+x+x" -2y, y()=1

Individual Tasks 1.6

1-2. Use a power series to approximate the definite integral to three decimal
places.

3-4. Use power series to solve the initial-value problem.

I. II.
0,25 0,5

e’ dx 1. J sin x> dx

3. y’:4y+2xy —e>, y(0)=2
4. y"=y +3x,y(H)=-1y'1) =1

0
1
J‘csxl

= ycosx+x2, y(0)=2
y =2y, y(=D=Ly'(-1)=05

1.7 Fourier Series
Many phenomena in the applications of the natural and engineering sciences are
periodic in nature. Examples are the vibrations of strings, springs and other objects,
rotating parts in machines, the movement of the planets around the sun, the tides of
the sea, etc. The central problem of the theory of Fourier series is how arbitrary peri-
odic functions or signals might be written as a series of sine and cosine functions.
Definition 1 (Fourier coefficients) Let f(x) be a periodic function with period
T' and fundamental frequency w, =27 /T , then the Fourier coefficients a,,b, of
f(x), if they exist, are defined by
2 T/2
a, =7 I f(x)coswnxdx (n=0,1, 2,...) (1)

-T/2
T/2

bn:% j f)sinanxdy (n=1,2, 3,..) @)
-T/2

In fact, in Definition] a mapping or transformation is defined from functions to
number sequences. This is also denoted as a transformation pair:

f(x)>a,b, .

One should pronounce this as: "to the function f(x) belong the Fourier coeffi-
cients a,,b, ". This mapping is the Fourier transform for periodic functions. The func-
tion f(x) can be complex-valued. In that case, the coefficients @, ,b will also be
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complex. Using definition 1 one can now define the Fourier series associated with a
function f(x).

Definition 2 (Fourier series) When a ,b are the Fourier coefficients of the pe-
riodic function f(x) with period I’ and fundamental frequency @, =27 /T, then the
Fourier series of f(x) is defined by

% + ;(an cosnwyx +b, sin nw,x) 3)

Example 1 Determine the Fourier coefficients of the sawtooth function given by

f(x)=x on the interval (—z,7) and extended periodically elsewhere, and sketch the
graph.

Solution In the present situation we have T =27, so w, =27 /T =1. The defini-

tion of the Fourier coefficients can immediately be applied to the function f(x). Us-

ing integration by parts it follows for n =1 that Fourier series
T/2 V4 V4

2 1 1 : - 1 :
a, =— I f(x)cosnxdx=— J. X cosnxdx = —[xsm nx]  —— | sinnxdx =
T V4 n R/ 7 /)
-T/2 - -
1 X=T
= cosnx =0.
nZﬂ_ [ ]x:—ﬂ

For n=0 we have
T/2

aOZ% _[ f(x)dx=ljxdx:%[%x2} =0

T
-T2 -
For the coefficients b, we have that
T/2 V5 Vg
2 : 1 . 1 v 1
b =— j f(x)sinnxdx=— J‘ xsinnxdx = ——[xcos nx] 4+ — | cosnxdx =
T V4 n =7 7n
-T/2 - -z
1 1 . X=TT 27[ n— 2
= ——(zcoszn—(-m)cos(—zn)) ———|[sinnx| " =—"—cosnz =(-1) =
n nr = n n
Here we used that coszn =(—1)" for ne N . Hence, the Fourier coefficients are
(_ l)n—l

all equal to zero, while the coefficients b, are equal to 2 . The Fourier series of

n
the sawtooth function is thus indeed equal to

® _ 1)1
z 2&sin nx
n=l1 n

Theorem (Fundamental theorem of Fourier series) Let f(x) be a piecewise
smooth periodic function on R with Fourier coefficients a,,b, , with period 7' and
fundamental frequency @, =27 /T . Then for any x € R one has:

1. S(x)= f(x) at each point of continuity of a piecewise smooth periodic
function;
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f(xo_0)+f(xo+0)

2. S(x,) = at a point x, where the function 1s discon-
2
tinuous;
5. Sr/2)=sr/2)=LT2Z0+TETI240) e endpoints of the

2
interval (-7/2,T/2).

According to the fundamental theorem, the Fourier series converges to the func-
tion at each point of continuity of a piecewise smooth periodic function. At a point
where the function is discontinuous, the Fourier series converges to the average of the
left- and right-hand limits at that point. Hence, both at the points of continuity and at
the points of discontinuity the series converges to ( f(x=0)+ f(x+ O)) /2.

Exercise Set 1.7
In Exercises 1 to 10 determine the Fourier coefficients of the given functions on
the given intervals:

i — <
1+=, if —7<x<0, 0. i ~m<x<0,

2. =
1 f(x)= 7): S ﬂ, if O0<x<m.
l-—, if 0<x<m. 4
Vs
3 ) L ax, if —r<x<0,
= —IT: . . X)=
- JW=x, xelma] bx, if 0<x<um.
5. f(x)=1-x, ifxe(-2;2) 6. f(x)=x(1-x), if xe(-L1)
x, if 0<x<1, L, if 0<x<1,
7. f(x)=q 8 f(x)= .
0, if 1<x<3/2. x, if 1<x<3.
0, if —3<x<0; 0, if —mr<x<0;
9. f(x)=1"" 10. f(x)=1"
x, if 0<x<3. 2, if O<x<m.
Individual Tasks 1.7

1-2. Determine the Fourier coefficients of the given functions on the given in-
tervals:

L II.
; |, if —r<x<0, ] B 0, if —m<x<0,
' S (x)= r—x, if 0<x<m. ' @)= l-x,if 0<x<n
2. f(x)=1-3x, if xe(-L]) 2. S()=2x+1, if xe(-3;3)
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1.8 Fourier Cosine and Fourier Sine Series
The ordinary Fourier series of an even periodic function contains only cosine
terms and the Fourier series of an odd periodic function contains only sine terms. For
the standard functions we have seen that the periodic block function and the periodic
triangle function, which are even, do indeed contain cosine terms only, and that the
sawtooth function, which is odd, contains sine terms only. Sometimes it is desirable
to obtain what for an arbitrary function on the interval (0,7") a Fourier series contain-

ing only sine terms or containing only cosine terms. Such series are called Fourier
sine series and Fourier cosine series. In order to find a Fourier cosine series for a
function defined on the interval (0,7'), we extend the function to an even function on

the interval (—=7,7") by defining f(—x)= f(x) for =7 <x<0 and subsequently ex-
tending the function periodically with period 27 .The function thus created is now an

even function and its ordinary Fourier series will contain only cosine terms, while
f(x) is equal to the original function on the interval (0,7).

In a similar way one can construct a Fourier sine series for a function by extend-
ing the function defined on the interval (0,7') to an odd function on the interval

(=T,T) and subsequently extending it periodically with period 27". Such an odd

function will have an ordinary Fourier series containing only sine terms. Determin-
ing a Fourier sine series or a Fourier cosine series in the way described above is
called a forced series development.

Example 1 Determine the Fourier coefficients of the sawtooth function given by

f(x)=x" on the interval (—1,1).

Solution
Let the function f(x) be given by f(x)=x" on the interval (0, 1). We wish to

obtain a Fourier sine series for this function. We then first extend it to an odd func-
tion on the interval (—1, 1) and subsequently extend it periodically with period 2. The
function and its odd and periodic extension are drawn in Figure 1.

v
Lt

Figure 1

The ordinary Fourier coefficients of the function thus created can be calculated
using (1) and (2). Since the function is odd, all coefficients a, will equal 0. For b, we

have
T/2 0

1 1
b = % I f(x)sinnxdx= | (—x")sin nxdx + sz sin nxdx = 2-“x2 sin nxdx .
1 0

-T/2 - 0
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Applying the integration by parts twice, it follows that

-2 1 2 . 2
b,, _ _U:xz coS ”nx]o —E[xsm ﬂnx]i) — 7r2n2 [COSJZ'nx]:)j =

n
zz(uew—n_ew)

n T n

The Fourier sine series of f(x)=x" on the interval (0, 1) is thus equal to

Z 2 (2((_12) 2_ D_ (—1)"]sin nx
et 1711 mn

Example 2 Determine the Fourier coefficients of the function given by
f(x)=sinx on the interval (0,7).

Solution In this final example we will show that one can even obtain a Fourier co-
sine series for the sine function on the interval (0,7). To this end we first extend
f(x)=sinx to an even function on the interval (—z,7) and then extend it periodically
with period 7 =27 ; see Figure 2. The ordinary Fourier coefficients of the function thus

created can be calculated using (1) and (2). Since the function is even, all coefficients
will be equal to 0.

v 7

—2n - l n n

Figure 2
For a, one has

0 Vg V4
a, = l[_[ (—sinx)cosnxdx + jsinxcos nxdx] = gjsinxcos nxdx .
a - 0 4 0
1T, . 17 -1 -1 g
a, = —j(sm(l +n)x +sin(1+ n)x)dx =— cos(1+n)x+———cos(l—-n)x | =
T | l+n l-n 0

:1{1—04Y*+1—c4r*jzza—c4r*x

Vs l+n l-n z(l—-n?)
0-1
Ifn=0,thenaO=2(l_(_1)2 ):i.
7(1-07) T

The Fourier cosine series of the function f(x)=sinx on the interval (0,7) is
thus equal to

z + Z.O: 2(1 _ (_l)nil) cosnx

T = (- nz)
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Exercise Set 1.8

In Exercises 1 to 4 determine the Fourier sine series of the given functions on
the given intervals:

1. y=1-0.5x,x€[0;2]. 2. f(x)=1-x, x(0;2).

3. f(x)=x(1-x), xe(0;1). 4. f(x)=x, xe(0;2).

In Exercises 5 to 8 determine the Fourier cosine series of the given functions on
the given intervals:

5. f(x)=2-x, xe(0;2) 6. f(x)=x(2—-x), xe(0;2).
x, if 0<x<2,
7. f(x)= / 8. y=cosx,xe[0;7]
2, if 2<x<4.
Individual Tasks 1.8
1. Determine the Fourier sine series of the given functions on the given inter-
vals.
2. Determine the Fourier cosine series of the given functions on the given intervals.
L II.

; () Lif O<x<m/2; 1. f(x):x—47z,xe(47z;57r)
. xX)=
0,if n/2<x<m.

x, if 0<x<7/2,
0, if n/2<x<nx

2. f(x)=x-sinx, x e(0;7) 2 f(X):{
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II FUNCTIONS OF A COMPLEX VARIABLE

2.1 The Complex Number System
We can consider a complex number as having the form a +ib where a and b

are real numbers and I, which is called the imaginary unit, has the property that

i’ =—1.1f z=a+ib, then a is called the real part of z and b is called the imaginary
part of z and are denoted by Re{z} and Im{z}, respectively. The symbol z, which

can stand for any complex number, is called a complex variable.
Definition Two complex numbers a +ib and ¢ +di are equal if and only if a =c¢

and b=d .

Definition The complex conjugate, or briefly conjugate, of a complex number
a+ib is a—ib. The complex conjugate of a complex number z is often indicated by
Zorz .

Note In algebraic operations with complex numbers we can proceed as in the al-
gebra of real numbers, replacing i* by —1 when it occurs.

Figure 3 Figure 4

Definition The absolute value or modulus of a complex number a +ib is defined

as |cz+l)1'|:\1612+l)2 :
Example 1 |4+ 2i]=/(=4)? +2? =20 =245.

Polar Form of Complex Numbers
Let P be a point in the complex plane corresponding to the complex number

(x,y) orx+iy. Then we see from Figure 3 that x=rcos@,y=rsin@, where

r=yx"+y" = |x+iy| is called the modulus or absolute value of z=x+1y (denoted

by modz or |z|) and ¢, called the amplitude or argument of z=x+1iy (denoted by
arg z), is the angle that line OP makes with the positive x axis.
It follows that
Z:x+iy:r(c0s¢+isin¢) (1)
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which is called the polar form of the complex number, where r and ¢ are called

the polar coordinates.
For any complex number z #0 only one value of ¢ in 0<¢ <27 corresponds.

However, any other interval of length 27z, for example —7 <@ <, can be used. Any

particular choice, decided upon in advance, is called the principal range, and the val-
ue of @ is called its principal value.

Let z, =x, +iy, =r,(cosg, +ising) and z, =x, +iy, =1, (cosg, +ising, ), then
we can show that

212, = N1, (COS(§01 +@,) +isin(g, + @2) 2)
z, 7 »
L =—L(cos(p, — p,) +isin(p, — p,) (3)
ZZ rz
A generalization of (2) leads to
22,2, =FE T (cos(go1 +@, +...+@)+isin(g + @, +..+ gon) 4)
z" =r"(cosng +isinng) (5)

Euler’s Formula. Polynomial Equations. Roots of Complex Numbers
A number w is called an n-th root of a complex number z if W' =z, and we

write w= z""". From Equattion 5 we can show that if n is a positive integer
6
2V =yl [cos((p+ 2"”) + isin(¢+ 2"”}],/( =0,1,2,...n—1 ()

n n

1/n

from which it follows that there are n different values for z'", i.e., n different

n -th roots of z, provided z #0.
2 3
: e : L X x
By assuming that the infinite series expansion e’ =1+ x+ 1 + 3 +... holds

when x =i, we can arrive at the result
e’ =cosp+ising (7)
which is called Euler’s formula. It is more convenient, however, simply to take
(7) as a definition of e . In general, we define

z

e’ =" = e*(cos y +isin y) (&)
Let P (Figure 4) be a complex plane and consider that a sphere S tangents to P at
z=0. The diameter NS is perpendicular to P and we call points N and S the north and
south poles of S . Corresponding to any point 4 on P we can construct line N4 intersect-
ing § at point 4. Thus to each point of the complex plane P there corresponds one and
only one point of the sphere S, and we can represent any complex number by a point on the
sphere. To complete at all we say that the point /V itself corresponds to the “point at infini-

ty” of the plane. The set of all points of the complex plane including the point at infinity is
called the entire complex plane, the entire z plane, or the extended complex plane.
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Example 2 Perform each of the indicated operations.
Solution
(@) B+2i)+(6-T7i)=3+6+2i—7i=9-5i.
(b) (4-30)—(5-Ti)=—4-5-3i+7i=-9+4i.
(c) (2-3i)-(5+2i)=2-5+2-2i-5-3i-3-2i" =10+ 6+4i—15i=16—11i.
@ 3-2i _3-2i 1-6i _ 3-2i—18i+12i> -9-20i 9 201,

1+6i 1+6i 1-6i 1-36i 37 37 37
Example 3 Suppose, z, =2 +1i, z, =3 —2i. Evaluate each of the following.
Solution

(@) 3z, —4z,|=[3(2+i) - 4(3 - 2i)| = |-6 + 11i| = \(-6)" + 11" =+/157 .
(b) z' =3z +4z,—-8=(2+i) =32 +i)’ +4(2+i)-8=
=2’ 4+3.2%1+3- 2"+ =3(2* +4i+i*)+8+4i —8=

=8+12i-6—-i—-12—-12i +3+8+4i—-8=-7+3i.
Example 4 Express each of the following complex numbers in a polar form.

Solution (a) 2+ 23 (See Figure 5)

-"‘ .
e W : o
24273 2, A
el ™
o5 1N ¢

Figure 5 Figure 6 Figure 7

Modulus or absolute value equals r = ‘2 + 2\/51" =V4+12=4.

Amplitude or argument ¢ = arcsin73 =60° =2 (radians).

Then 2+2+/3i= r(cos@ +isin@)=4(cos60’ +isin60°) = 4(005% +isin Zj :

i

The result can also be written as, using Euler’s formula, 4e3
(b) — J6 —/2i (See Figure 6)
r:‘—\/g—\/zi‘:\/6+2 = 2J2, p=180"+30"=210"=77/6.

Tri
Then —\/g—ﬁi=2x/5(cos7?ﬂ+isin7?ﬂj=2\/5e 6.
(c) —3i (See Figure 7)
r=|-3i|=|0-3i|=v0+9 =3, p=270"=37/2.

37i

Then —3i= 3(cos37ﬂ+ isin%[j =3¢ ? .
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Example 5 Find all values of z for which.
Solution In polar form, —32 =32(cos(7 + 27k) +isin(r + 27k) ),k = 0,£1,%2....
Let z=r(cos@+ising). Then, by De Moivre’s theorem,

2> =1’ (cos5p +isin5p) =32(cos(z + 27k) +isin(z + 27k)).

and so 7 =32,5¢ =7 + 27k , from which 7'22,(0:M

( (7[+27rk) .. (72'4—272’](])
z=2| cos s +isin s )

. Hence

If
T .. T 3z .. 37w
k=0,z=2=2 COS—+lSll’1— k=1,z=2z,=2| cos—+isin—
5 5 5
k=2z=z= 2(cos—+zsm—j: k:3,z:z4:2(cos7?ﬂ+isin7?ﬂj
k=4,z= 222( s—+zsm—j

Figure 8 Figure 9

By considering k£ =5,6,.. as well as negative values, —1,—2,... , repetitions of the

above five values of z are obtained. Hence, these are the only solutions or roots of
the given equation. These five roots are called the fifth roots of —32 and are collec-

tively denoted by (—32)1/5. In general, a"" represents the n-th roots of a and there

are n such roots. The values of z are indicated in Figure 8.

M+W—ﬂ:

Example 6 Represent graphically the set of values of z for which
(a) 2‘3‘=2,<b> =
z+3 zZ+

Solution The given equation is equivalent to |Z —3| = 2|Z + 3| or, ifz=x+iy,

, 1.€., \/(x—3)2 +y° :2w/(x+3)2 +)°.




Squaring and simplifying, this becomes x° + > +10x+9=0or
(x+5) +y* =16

z +5| =4, a circle of radius 4 with the center at (—5,0) as shown in Figure

1.e.,

(b) The given inequality 1is equivalent to |z - 3| < 2|z + 3| or
(x —3)2 +y° <2 (x+ 3)2 +y°. Squaring and simplifying, this becomes

X' +37+10x+9>0 0r(x+5)2+y2>16,i.e. z+5]>4 .

The required set thus consists of all points external to the circle of Figure 9.

Exercise Set 2.1
In Exercises 1 to 9 perform each of the indicated operations:

1. (2-3i)+(5+8i) 2. (i-2)-((4-)+3(7+6i)) 3. i(2—i)(4+3i0)

4. 4 =3 420 +7i-1 9 (i4—5i)(3i3+2i+1) 6. (2—i)2(3+i)
. Y22 .4 .9 .16
7 3 l s (4 61)(? 2) g +i +i
S+i 1+ 27 +i"

In Exercises 10 to 12, suppose z; =21, z, =3—2i . Evaluate each of the fol-
lowing expressions:
10.  z'+2z-3i+5 ] |222_321

|2 12. ‘2132 — 42122‘

In Exercises 13 to 18, describe and graph the locus represented by each of the
following expressions:

13, |z-i=2 14. |z+2i+|z-2i|=6  15.|z-3|-|z+3|=4
16. Z(E+2):3 17. Z:3eit—% 18 Z:1+i+t(2_4i)
2¢ -t 1-t

In Exercises 19 to 24, describe graphically the region represented by each of the
following inequalities:

19, 1<|z+i|<2 20. -/ 4<arg(z—i)<m/2 21. |z+3i]>4

22 |Z+2|+|Z_2|<} 23. 0<argz<57/6 24. Rez>>1

In Exercises 25 to 30, express each of the following complex numbers in a polar
form:

25, 2_2i 26, —1++/3i 27 J2i
28. 23 -2i 29, g—%i 30. -5
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In Exercises 31 to 36, solve the following equations, obtaining all roots:

31. Z2+4=0 32. z'-81=0
34. z2+6z+25=0 35, Z'45z22+4=0
Individual Tasks 2.1

1. Perform each of the indicated operations.
2-3. Describe and graph the locus represented by the following expression.
4. Describe graphically the region represented by the following expression.

5. Solve the following equations, obtaining all roots.

33. 22=27=0
36. z*-2z+5=0

I.

207 —i” + 4"
3-2° +i"°
Imz* =4

1 :
z=——+121gt
cost

|Z—i|<1, argz>r /4
2t +16=0

I1.

4.
5.

477 —3i° +i°

34 +i"
Imz-Rez=1
I+t .2+t
Z=——t—
-t 2-—t¢
‘22‘>‘1+22‘

2 +64=0

2.2 Functions of a Complex Variable
A symbol such as z which can stand for any one of a set of complex numbers is

called a complex variable. Let two sets D and E be given, whose elements are

complex numbers. The numbers z=x+iy of the set D will represent the points of

the complex plane z, and the numbers w=u+1iv of the set £ are the points of the

complex plane w (see Figure 10).

@f:&@

z 1

Figure 10

Figure 11

4 W plane

& L

T LT

Figure 12

Suppose to each value of a complex variable z can assume, one or more values

of a complex variable w corresponds. Then we say that w is a function of z and

write w= f(z) or w=G(z), etc. The variable z is sometimes called an independent
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variable, while w is called a dependent variable. The value of a function at z=a is
often written as f(a). Thus, if f(z)=2z", then f(2i)=(2i)’ =—4.

The set D is called a domain of function w= f(z); the set E is called a domain
of the values of this function (if each point of the set £ is the value of the function,
then E is the range of values functions; in this case, the function w= f(z) maps D
to £).

If only one value of w corresponds to each value of z, we say that w is a single-
valued function of z or that f(z) is single-valued. If more than one value of w cor-
responds to each value of z, we say that w is a multiple-valued or many-valued
function of z .

A multiple-valued function can be considered as a collection of single-valued
functions, each member of which is called a branch of the function. It is customary
to consider one particular member as a principal branch of the multiple-valued
function and the value of the function corresponding to this branch as the principal
value.

Example 1

(a) If w=2z, then to each value of z there is only one value of w. Hence,
w= f(z)=2z" is a single-valued function of z.

(b) If w’ =z, then to each value of z there are two values of w. Hence, w* =z
defines a multiple-valued (in this case two-valued) function of z.

Whenever we speak of a function, we shall, unless otherwise stated, assume a
single-valued function. If w= f(z), then we can also consider z as a function, possi-

bly multiple-valued, of w, written as z=g(w)= f'(w). The function ' is often

called the inverse function corresponding to f . Thus, w= f(z) and w= f'(z) are

inverse functions of each other.
If w=u+iv (whereu and v are real) is a single-valued function of z=x+1iy

(where x and y are real), we can write u +iv = f(x +iy). By equating real and imag-
inary parts, this is seen to be equivalent to

{u =u(x,y)

v=v(x,y) M

Thus given a point (x,y) in the z plane, such as P in Figure 11, there corre-
sponds a point (#,v) in the w plane, say P’ in Figure 12. The set of equations (1)
(or the equivalent, w= f(z)) is called a transformation. We say that point P is
mapped or transformed into point P’ by means of the transformation and call P’ the
image of P.
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Example 2 If w=z", then w=u+iv=(x+iy)’ =x" —y> +2xyi and the trans-
formation is u =x* —y*, v=2xy. The image of a point (1,2) in the z —plane is the

point (—3,4) in the w plane.

The Elementary Functions
1. Polynomial Functions are defined by

w=a,z" +az"" +..+a, = P(z) (2)

where a, #0,a,,...,a, are complex constants and » is a positive integer called the
degree of the polynomial P(z). The transformation w=az+b is called a linear
transformation.

2. Rational Algebraic Functions are defined by

e P(2) 3)
0(2)
where P(z) and J(z) are polynomials. We sometimes call (3) a rational trans-
az+b

where ad —bc # 0 is often called a bilinear or

formation. The special case w =
cz+d

fractional linear transformation.
3. Exponential Functions are defined by

w=¢’ =¢"" =¢*(cosy +isiny) 4)
where e is the natural base of logarithms. If a is real and positive, we define
z zlna
a=e (5)

where Ina a is the natural logarithm of a. This reduces to (4) if a =e.

4. Trigonometric Functions. We define the trigonometric or circular functions
sinz,cosz, etc., in terms of exponential functions as follows:

. ef—e " e“+e” sin z cosz
sinz=——— cosz=———,tgz= ctgz =— (6)
2i 2 COSZz sinz

Note that the trigonometric functions sinz and cosz in the complex plane are

unbounded.: lim sinz=o0, lim cosz=c0. For example,
Imz—> to Imz—> tw
1 -1
. €+ .
cosi = ~1,54>1,cos3i>10.

5. Hyperbolic Functions are defined as follows:

V4 -z z -z z -z

e“+e e‘+e”
,ch z=

€ —¢
,ch:ﬁ,Cth Z=—"—" (7)
e +¢ € —¢

e
shz=

44



The following relations exist between the trigonometric or circular functions and
the hyperbolic functions:
shz=—isin(iz), chz=cos(iz),
sinz=sinx-chy+icosx-shy,
cosz=cosx-chy—isinx-shy.
6. Logarithmic Functions. If z=e¢", then we write w=Lnzand it is called the
natural logarithm of z .
The natural logarithmic function can be defined by

w:an:ln|z|+iargz+i2k7r, keZ, (8)

where z=re” =re'”?*™  Note that Lnz is a multiple-valued (in this case, in-
finitely many-valued) function. The principal-value or principal branch of Lnz is
sometimes defined as 1n|z|+i(p, where 0< ¢ <27z . However, any other interval of
length 27 can be used, e.g., —7 <@ <1, etc.

. . . . -1 .
7. Inverse Trigonometric Functions. If z=smw, then w=sin" z is called the
inverse sine of z or arcsin of z.
Using the definition of sinz, we have

w=—iLn

1z+ 1—22) 9)

Similarly, we define other inverse trigonometric or circular functions cos™ z,
tg™' z, etc. These functions, which are multiple-valued, can be expressed in terms of
natural logarithms as follows. In all cases, we omit an additive constant 2kzi,k € Z
in the logarithm:

w:Arcsinz:—iLn(iz+ 1—22) (9a)
w:Arccosz:—iLn(z—l— zz—l) (9b)
1 1+iz
w= Arctg z=—1Ln
S TR e ©e)
w = Arcct z——LLnlJriZ 9d
8 2i  iz—1 (d)

8. The Function z°, where @ may be complex, is defined as e“"*. Similarly, if

f(z) and g(z) are two given functions of z, we can define **(z) =e*®"/®  In

general, such functions are multiple-valued.

9. Algebraic and Transcendental Functions. If w is a solution of the polyno-
mial equation

P(z)W' +B)W ™ +..+ P_(z2)w+P(2)=0 (10)
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where P, #0,P(z),..., P, (z) are polynomials in z —plane and » is a positive inte-
ger, then w= f(z) is called an algebraic function of z .

Any function that cannot be expressed as a solution of (9) is called a transcen-
dental function. The logarithmic, trigonometric, and hyperbolic functions and their
corresponding inverses are examples of transcendental functions.

The functions considered in 1-9 above, together with the functions derived from
them by a finite number of operations involving addition, subtraction, multiplication,
division and roots are called elementary functions.

Example 3 Determine the values of (a) i, (b) Arcsin3, (c) Ln(12 + 5i )

Solution
1+0)| i=+2ki 1) Z+2k
(@) i "= eI = oL+ in|iriargi+2ki) _ e( I\ e(l \ o _
- z+2k72' i z+2k72' - £+2k7r T . T
=¢ (2 ]-e(2 ):e {2 ) cos| —+2kx |+isin| =+2kx ||=
2 2
. —[%+2k7r]
=ie ke Z.

(b) Arcsin3 :—iLn(3iii\/§) :—iLn((3i2\/§)i):
:_i(ln(?)i2\/5)+i%+2k7zij=%+2k7z—iln(3i2\/§), keZ.

(¢) Ln(12+5i) =In| 12+ 5i |+ iarg (12 + 5i) +i 2k =

‘12+5i‘:\/144+25=13, 5
= 5 :1n13+i(arctgﬁ+2k7rj,keZ.

12>0, 5>0, arg(12 +5i) = arcth

Example 4 Show that the line joining the points P(=2,1) and O(1,-3) in the z

plane is mapped by w=z" into the curve joining points P’Q’ (Figure 13) and deter-
mine the equation of this curve.

Solution Points P and Q have coordinates (—2,1) and (I,—3) respectively. Then,
the parametric equations of the line joining these points are given by

x—(=2)_y-1_ or x=3t-2,
y=1-4t.
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Figure 13

The equation of the line PQ can be represented by z=3¢f—-2+i(1—-4¢). The
curve in the w plane into which this line is mapped has the equation
w=z"= (3t —2+i(l —4t))2 =3t =2 —(1—-4t) +2(3t=2)(1—4t)i =
=34t =T +(—4+22t 241 .
Then, since w=u +iv, the parametric equations of the image curve are given by
u=3—4t-7¢ and v=—4+22r - 241>
By assigning various values to the parameter 7, this curve may be graphed.

Limits. Continuity
Let f(z) be defined and single-valued in a neighborhood of z = z, with the pos-

sible exception of z = z, itself (i.e., in a deleted 0 neighborhood of z,).
Definition The number L is the limit of f(z) as z approaches z, and write
lim f(z) =L, if for any positive number & (however small), we can find some posi-

z—z)

tive number 0 (usually depending on &) such that | f(2) —L| <&, whenever
0< |Z - ZO| <0.

There are three conditions that must be met in order that f(z) be continuous at
z=1z,:(1) }1&1 f(z)=L must exist; (2) f(z,) must exist, i.e., f(z) is defined at z;
() L=f(z).

Points in the z —plane, where f(z) fails to be continuous, are called discontinui-
ties of f(z), and f(z) is said to be discontinuous at these points. If }Lr? f(z) exists,

but is not equal to f(z,), we call z, a removable discontinuity, since by redefining
f(z,) to be the same as lim f(z), the function becomes continuous.

Z—Z

Note To examine the continuity of f(z) at z=o00, we let z=1/w and examine
the continuity of f (1 / w) at w=0.

Exercise Set 2.2

1. Let w= f(z) =z(2—z). Find the values of w corresponding to (@) z=1+1,
(b) z=2—2i and graph corresponding values in the w and z planes.
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1
2. Let w= f(2) :1—'_—2. Find: (@) f(i), (b) f(1—i) and represent them graph-
—z

ically.
In Exercises 3 to 8 separate each of the following expressions into real and im-
aginary parts, i.e., find u(x,y) and v(x, y) such that f(z)=u+iv:

3. w=Q2-3)z"—iz—i 4. w=|z|-ReZ 5. w=Z_l_
Z+1
6. w=5iz—iz’ -1 7. w=z-Imz 8 w=3z2-2iz+8
9. Find all values of z for which (a) e’ =1, (b) e¥ =i
In Exercises 10 to 21, find the value of the given numbers:
10. Ln(\3 i) 11. Ln(1++/31) 12. Ln(=1-1)
. (37 V4 V4
13. sin| — +i 14. cos| ——1i Cto—]
[4 ) (6 J ey
16. sh(l—%i) 17. ch(2+§i} 18. Arctgl
6i
19. Arcsini 20. Arccosl 21. (V3 +i)

Individual Tasks 2.2
1-2. Separate each of the following expressions into real and imaginary parts.
3-4. Find the value of the given numbers.
5. Solve the following equations, obtaining all roots.

I. II.

1 w=Q2+5i)z—iz" +3i 1 w=B+4i) 2> +7iz+6
2. w=z-Re(z’ —2z) 2. w=z-Im(3z-2%)

3. sinzi 3. sin(7/4—1i)

4. (-1-p" 4. (4-3i)

5. 3 = 5. 57 =i

2.3 Derivatives. Analytic Functions.
Cauchy—-Riemann Equations.

Definition If f(z) is single-valued in some region R of the z plane, the deriva-
tive of f(z) is defined as
f'(z) = lim

Az—0

489/ 0
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provided that the limit exists independent of the manner in which Az — 0. In such
a case, we say that f(z) is differentiable at z . In the definition (1), we sometimes use /
instead of Az . Although differentiability implies continuity, the reverse is not true.

If the derivative f'(z) exists at all points z of a region R, then f(z) is said to be
analytic in R and is referred to as an analytic function in R or a function analytic in R .
The terms regular and holomorphic are sometimes used as synonyms for analytic.

Definition A function f(z) is said to be analytic at a point z, if there exists a
neighborhood ‘Z —ZO‘ <0 at all points of which f'(z) exists.

Theorem A necessary and sufficient conditions that w= f(z) =u(x, y) +iv(x, y)
be analytic in a region R is that u(x,y) and v(x,y) satisfy the Cauchy—Riemann

equations
ou _0v du_ 0v
ox 0y 8y ox @)
where the partial derivatives in (2) are continuous in ‘R .
Using the Cauchy—Riemann conditions the derivative f/'(z)can be evaluated by
one of the following formulas
f’(z)zu;+iv;:v;—iu;zu;—iu;:v;+iv; (3)
Note The Cauchy-Riemann equations in the polar coordinates
f(x,y)=u(rcos@,rsin@) +iv(rcosg,rsing) take the following form
1
b Ve (3a)
U, =~r-v,
The functions u(x,y) and v(x,y) are sometimes called conjugate functions.
Given u(x,y)( v(x,y)) having continuous first partials on a simply connected region
R, we can find v(x,y)( u(x,y)) [within an arbitrary additive constant] so that
u+iv=w= f(z) is analytic.
(x,9)
V= J (—u;(x,y) dx +u’ (x,y) dy) (4a)
(x0:30)
(x.)

u= | (rde=vi(nrdy) (4)
(x0,50)
If the second partial derivatives of u(x,y) andv(x,y) with respect to x and y
exist and are continuous in a region ‘R, then we find from (2) that
o'u 0u o’v 0
>t 2 = 0, >t 2 =
ox" 0y ox" 0y

0 )
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Definition Functions such as u(x,y) and v(x,y) which satisfy Laplace’s equa-
tion in a region ‘R are called harmonic functions and are said to be harmonic in R .

Let z, be a point P in the z plane and let w, be its image P’ in the w plane un-
der the transformation w= f(z). Since we suppose that f(z) is single-valued, the
point z, maps into only one point w .

Then | f '(ZO)| is equal to the coefficient of expansion at the point z, of the z —
plane in the w plane under the transformation w= f(z). If | f'(z,) | >1, then stretch-
ing takes place, and if | f'(z,) | <1, then compression occurs.

Let an arbitrary point z =z, + Az from a neighborhood of the point z, moves to
the point z, along some continuous curve /. Then in the planew the corresponding
point w = w, + Aw will move to the point w, along some curve L, which is a map of
curve / in the plane w.

The argument f'(z,) is geometrically equal to the angle at which you need to
turn the tangent line at the point z, to a smooth curve / in the z plane passing through
the point z, to get the direction of the tangent line at the point w, = f(z,) to the im-
age L of this curve in the w plane under the transformation w= f(z). This angle is
called the rotation angle at the point z, under the transformation w= f(z).

Example 1 Find out which of the following functions are analytic at least at one
point
(@) w=2+5i)z—iz" +3i (b) w=z"-Z.

Solution
(a) If z=x+1iy, then

w=Q2+5))z—iz" +3i=Q2+5)(x+iy)—i(x+iy)" +3i=2x-5y+
Hi(5x+2y)+2xy —i(x* =y ) +3i=(2x =5y +2xp) +i(—x" + Y +5x + 2y +3)

u=2x—-5y+2xy v=y"—x’ +5x+2y+3
u =2x=5y+2xy) =2+2y U, =(2x =5y +2xy), ==5+2x
V=01 —x> +5x+2y+3). =-2x+, v, :(yz—x2+5x+2y+3)'y =2y+2

Using the Cauchy—Riemann equations we have:

U, =v, 2+2y=2y+2 (2=2
u;z—v" —542x=2x-510=0

X

The system has infinity set of solutions, therefore the function is analytic at any
points of the complex plane.
(b) If z=x+1iy, then
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w=z? -Ez(x+iy)2(x—iy) =(x2 —y2 + 2xyi)(x —iy) =(x3 +)g/2)+i(x2y+y3).

u=x+xy’ v=x"y+y’
u =(x’ +xyz); =3x" +y’ u; =(x’ +x)/2)'y =2xy
Vi=(X’y+y") =2xy Vo=(xPy+ ), =x"+3)°

Using the Cauchy—Riemann equations we have:

we=v, 3 +yt=a43yt [at=yt [x=0
U;Z—V;’ 2xy =-2xy ’ 4xy=0’ y=0’
The given function is analytic at origin.

Example 2 (a) Prove that v=x" —y” +2x+1 is harmonic. (b) Find u(x, y) such
that f(z) =u+iv is analytic.

Solution
(2)
v.=2x+2 v, ==2y
Vxx = 2 vyy = _2
2 62\7
Adding v}, and V] yields — +——=0 and v is harmonic.
ox~ 0y

(b) Using the Cauchy—Riemann equations we have:

Integrate u; with respect to y, keeping x constant. Then
. I(—Zx ~2)dy = —2xy—2y + F(x),
where F(x) is an arbitrary real function of x.
Substitute —2xy -2y + F(x) intou. =-2y and obtain —2y+ F'(x)=-2y or
F'(x)=0 and F(x)=c is a constant. Then, u(x,y)=-2xy—-2y+c.
Example 3 Find a coefficient of expansion and the rotation angle at a given
point when mapping w=u(x,y)+iv(x,y) is given by:
u(x,y)=3x"y—y°, v(x,y)=3x0"-x, z,=1-i.
Solution Using the Cauchy—Riemann equations we have:
{ u, =v, =6xy,
' ' 2 2
u,=-v,=3x"-3y
for all points of the complex plane. Then
f'@)=u, +iv,=v (x,y)—iu, (x,),

"(2)=u' +iV. =6xy+i(3y* - 3x°
X X XY Y
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and find the value of the set point z, =1-i

[1(1-i)=(6xy+i3y* -3x)) , =-6.
y=-1
A coefficient of expansion equals the modulus of a complex number

fA-i)=-6+0i,
-6+ 0 =~/36+0=6.
The rotation angle equals the argument of f'(1—i)=—-6+0i

argz=@ = arctg%: .

Differentials. Rules for Differentiation. Derivatives of Elementary Functions
Definition The expression

dw= f'(z)dz (0)

is called the differential of w or f(z), or the principal part of Aw. Note that
Aw # dw in general. We call dz the differential of z.

Suppose f(z), g(z) are analytic functions of z. Then the following differentia-
tion rules (identical with those of elementary calculus) are valid.

1. (fig),:f'ig'.
2. (cf ), =c- f' where ¢ is any constant.

3. (fe)=/"g+g-f.

4. (iJ =M if g(z)=0.
g g

50 (£(e@) =gl

g'®)
1@

In the following we assume that the functions are defined in the similar way as
in previous chapter. In the cases where functions have branches, i.e., they are multi-
valued, the branch of the function on the right is chosen so as to correspond to the
branch of the function on the left. Note that the results are identical with those of el-
ementary calculus.

If z= f(¢) and w= g(¢) where ¢ is a parameter, then w, =

1. () =0. 2. (z"Y =nz"".

3. (e’) =¢". 4. (a’)=a’Ina.

5. (Inz) = 1 . 6. (log,z)' = .
z zlna
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7. (sinz) =cosz. 8. (cosz) =—sinz.
9. (tgz) = 12 : 10.  (ctgz) =————.
COS” z sin” z
11.  (arcsinz) = ! : 12.  (arccosz) =-— ! :
1-2° 1-2°
13. (arctgz) = > 14.  (arcctgz) =———.
I+z I+z
15.  (shz) =chz. 16. (chz) =shz.
17.  (thz)' = : 18. cthz) =-— :
(thz) ch’z ( ) sh® z

Higher Order Derivatives. L’Hospital’s Rule. Singular Points
If w= f(z) is analytic in a region ‘R , its derivative is given by f'(z), w' or d_w
z

If '(z) is also analytic in the region R, its derivative is denoted by f"(z), w", or
d’w
-

z

Similarly, the # - th derivative of f(z), if it exists, is denoted by "’ (z), w"

n

, OF where n 1is called the order of the derivative. Thus the derivatives of the

dz"
first, second, third, etc. orders are given by f'(z), f"(z), ... . Computations of these

higher order derivatives follow the repeated application of the above differentiation
rules.
Theorem 1 Suppose f(z) is analytic in a region R. Then so also are f'(z),

f"(2), ... analytic in R, i.e., all higher derivatives exist in ‘R .
Let f(z) and g(z) be analytic in a region R containing the point z, and suppose
that f(z,) = g(z,) =0 but g'(z,) # 0. Then, L ’Hospital’s rule states that
NICIPAEN
a0 g(z)  g'(z))
In the case of f'(z,) = g'(z,) =0, the rule may be extended.
Definition The pointz=z, is called a zero of f(z) if f(z,)=0. If
f(z)=1f"(z)=.= f*"(z,)=0, but f“(z,)#0 then z=z, is called a zero of
f(2) of order k.
Definition A point at which f(z) fails to be analytic is called a singular point

or singularity of f(z). Various types of singularities exist.

1. Isolated Singularities
Definition The point z = z; is called an isolated singularity or an isolated singu-

(7

lar point of f(z) if we can find J >0 such that the circle ‘z —zo‘ =0 encloses no sin-
gular point other than z, (i.e., there exists a deleted 0 neighborhood of z, containing
no singularity). If no such & can be found, we call z, a non-isolated singularity.
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Definition 1fz, is not a singular point and we can find 6 >0 such that
‘z — ZO‘ =0 encloses no singular point, then we call z, an ordinary point of f(z).

2. Poles
Definition 1f z, is an isolated singularity and we can find a positive integer n

such that lim(z —z,)" f(z) = A#0, then z = z, is called a pole of order n. If n=1, z,

is called a simple pole.

3. Branch Points

Branch Points of multiple-valued functions, already considered in the previous
chapter, are non-isolated singular points since a multiple-valued function is not con-
tinuous and, therefore, not analytic in a deleted neighborhood of a branch point.

4. Removable Singularities
Definition An isolated singular point z, is called a removable singularity of

f(z) iflim f(z) exists. By defining f(z,)=1im f(z), it can then be shown that

f(2) is not only continuous at z, but is also analytic at z,.

5. Essential Singularities

Definition If f(z) does not have the limit at the point z, then it is called an es-
sential singularity.

If a function has an isolated singularity, then the singularity is either a remova-
ble one, a pole, or an essential singularity. For this reason, a pole is sometimes called
a non-essential singularity. Equivalently, z =z, is an essential singularity if we can-

not find any positive integer n such that lim(z —z,)" f(z)=A4#0.
Z*)ZO

6. Singularities at Infinity
The type of singularity of f(z) at z =0 (the point at infinity) is the same as that

off(l/w) at w=0.

For methods of classifying singularities using infinite series, see next chapter.
Example 4 Using rules of differentiation, find the derivatives of each of the fol-
lowing functions:

(@) cos®(2z +3i) (b) ztg(Inz) © (=30
Solution Using the chain rule, we have

(@) (cos*(2z +3i)) =—-2cos(2z +3i)sin(2z + 3i)2 = ~4sin(4z + 6i).

(b) ( z-tg(In Z))’ =tg(lnz)+ (tg(ln Z))' z=tg(lnz)+ 2Z l
cos’lnz z
(C) ((Z _ 31-)4z+2 )' _ (e(4z+2)ln(zf3i)) _ e(4z+2)ln(z—3i). (411’1(2 _ 31) N 4z + 2) ‘
z—3i
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dw

Example 5 Suppose W —3z°w+4Inz=0. Find o
z

Solution Differentiating with respect to z, considering w as an implicit function

/ ! 4 . .
of z, we have 3w'W —3z°W —6zw+—=0. Then, solving for d—w, we obtain
Z

z
4
4zw——
dw _ z_
dz 3w’ -3z’
Example 6 Evaluate
10 . _1—cos
(@ lim =1 (b) lim——=
=i z° 4] z—>0 z

Solution
(a) Let f(z)=z"+1 and g(z)=z°+1. Then f(i)=g(@)=0. Also, f(2),2(2)
are analytic at z=1.
Hence, by L’Hospital’s rule
2% +1 (0) 1022 . 5, 5
lim———=| — |=lim =lim—z" =—
=i z2+1 0 3
(b) Let f(z)=1—cosz and g(z)=z". Then f(0)=g(0)=0. Also, f(2),2(z)
are analytic at z=0.
Hence, by L’Hospital’s rule
. l—cosz (0 . sinz 1. sinz 1
lim 2 =| —|=lIm =—lim =
O z—0 2Z 2 z=>0 7

Example 7 Classify all the singularities of the functions.

z—0 z

(a) The function f(z)= has a pole of order 4 at z =3.

(z=3)"

3z-2
(z=1)*(z+1)(z-4)
simple poles at z=—-1 and z=4.

has a pole of order 2 at z=1, and

(b) The function f(z)=

1
(c) The function f(z)=(z—3)? has a branch point at z =3.
(d) The function f(z)=In(z>+2z~-2) has branch points where z* +z—-2=0,

le,atz=1and z=-2.
: : : : . sinz .
(e) The singular point z=0 is a removable singularity of f(z)=—— since
z

sinz
=1.

lim
z—0 z
1

(f) The function f(z)=e=2 has an essential singularity at z =2.
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(g) The function f(z)=2z" has a pole of order 3 at z =00, since f(1/w)=1/w’
has a pole of order 3 at w=0.

Exercise Set 2.3
In Exercises 1 to 4, find out which of the following functions are analytic at least
at one point.

1.
W=1icoSz

4.
w=0B+4i)z"+7iz+6

In Exercises 5 to 10, prove that given function is harmonic. Find u(x,y) or
v(x,y)such that f(z) =u +iv is analytic.

2. w:|z|-Rez 3. w=z- -Imz

5. u=x" -y +x, f(0)=0. 6. u=1-e"siny, f(0)=1+i.

7. v=3x’y—y°, f(0)=1. 8. u=e”’cosx+x, f(0)=1.
10.

9. u=3x"y-y’, f(1-i)=0.

v=—e"sinx, f(7/4+i)=0.

In Exercises 11 to 14, find a coefficient of expansion and the rotation angle at
this point when the mapping given by the following transformation

11. u(x,y)=x>+2x-y", v(x,y)=2xy+2y, z, =i.

12. u(x,y)=x"-3x" +x> =", v(x,y)=3x"y -y’ +2xy, z, =2i/3.
13. u(x,y)=x"=3xy" +3x, v(x,y)=3x>y -y’ +3y—1, z,=—1+i.
14. u(x,y)=e"cosx, v(x,y)=—e"sinx, z,=x/4+i.

In Exercises 15 to 23, using rules of differentiation, find the derivatives of each
of the following functions:

15. sin’(5z +7i) 16. In(tg5z) 17. ze™
18. (22 —3z)cos4z 19. ( z+4q )i_zz 20. (22 + 2Z)COSZ
2 5 T
21 2= 3 22. ctg 7z 23. arc:sin(3z2 71)
sh2z In(z +3) zZ7+1i
: .o d
24. Suppose W' —5z°w* +4sinz=0. Find d_w
z
In Exercises 25 to 33, evaluate the following limits.
. 201 ) z'—4 . Z°+9
25. lim — 26. lim——— 27. lim
z>1 7 _1 Z—>2Z +Z_6 Z—>3iZ_3i
_ . 1— z
28 lim cosdz : coSz 29 lim cosz ' 30 i e
0 3z =0 ztgz >0 77
2 .
3] hmw 32. lim(Z—Zi)Zﬂ 33. lim (Ctgz)tgz
z—> ® ZZ+Z—6 z—> w0 z— 7/2

56



Individual Tasks 2.3
1. Find out which of the following functions are analytic at least at one point.
2. Prove that the given function is harmonic. Find u(x,y) or v(x,y)such that
f(z)=u+iv is analytic.
3. Find a coefficient of expansion and the rotation angle at this point when map-
ping given by the following transformation.
4-5. Differentiate the following functions.

I. I1.
1. w=i(l-2")-2z 1. w=2z-iz’
2. u(x,y)=-2e"'siny+x+y 2. v(x,y)=2e"cosy+y—x
3. u(x,y)=e “siny, 3. u(x,y)=3x" - x°,
v(x,y)=e"cosy,z=ri v(x, )=y =3x"y, z=—1+i
4. w=(z—i)*" 4. w=(z-3i)"
4 In* 6z
s mtégz iz3) S

2.4 Complex Integration

Complex Line Integrals
Let f(z) be continuous at all points of a curve C (Figure 14), which we shall
assume has a finite length, i.e., C is a rectifiable curve.

Subdivide C into n parts by means of points z,,z,,z,,...,z, ;,z,, chosen arbitrari-

ly, and call z, =a,b =z, . On each arc joining z, , to z, [where k goes from 1 to n],
choose a point &, . Form the sum

S, =)z —a)+..+ f(g)Nb~z2,) (1)

Figure 14

On writing z, —z, , = Az, , this becomes

S, = Zn:f(é:k Nz, —z,,) = if(é:k )Az, (2)

Definition Let the number of subdivisions 7 increases in such a way that the
largest of the chord lengths Az, approaches zero. Then, since f(z) is continuous, the
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sum S approaches a limit that does not depend on the mode of subdivision and we
denote this limit by

Jim 5, = lim 3 (6, - j f(2)dz = j f(2)dz G)

and it is called the complex line zntegral or 81mp1y line integral of f(z) along
curve C, or the definite integral of f(z) from a to b along curve C.

Suppose f(z)=u(x,y)+iv(x,y). Then the complex line integral (3) can be ex-
pressed in terms of real line integrals as follows

jf(z)dz:I(u(x,y)+iv(x,y))(dx+idy):

‘ 4)
= [(ue e =y )dv) i [ (v, ) de =) dy)
C C
For this reason, (4) is sometimes taken as a definition of a complex line integral.

Letz= Z(f),{x =x(),

o a <t < [ be a continuous function of a complex variable
y=y{),
t =u+iv. Suppose that curve C in the z plane corresponds to curve C' in the z

plane and that the derivative z'(¢) is continuous on C'.
Then

j f(2)dz = j f(z@)-2(0)d1 = jf(z(r)) 2/ (0)dr 5)
These condltlons are certamly satisfied if Z is analytic in a region containing curve C’ .

Example 1 Evaluate j zdz from z=0 to z=4+2i along the curve C given by:

C
(a)z:t2+il’, (b) the line from z=0 to z=2{

Solution
(a) The points z=0 and z=4+2i on C correspond to =0 and =2, respec-

tively. Then, the line integral equals

2 2 2
8i
2 —it)d (¢ +it =j tz—t 2t +1i) jzt —it? +z dt=10——
[(2 =y (e +ir)= [ (¢ =ie) 2 +1) l 3
0 0 0
(b) The given line integral equals

J(x —iy)(dx+idy) = jxdx + ydy + ijxdy — ydx
C C

C

The line from z=0 to z=2i is the same as the line from (0;0) to (0;2)for
which x =0, dx=0 and the line integral equals

2 2 2
Iydy+iIOdy=Iydy=2
0 0 0
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Definition A region R is called simply-connected if any simple closed curve,
which lies in R, can be shrunk to a point without leaving R . A region R, which is

not simply-connected, is called multiply-connected.

Definition Any continuous, closed curve that does not intersect itself and may or
may not have a finite length, is called a Jordan curve.

Definition The boundary C of a region is said to be traversed in the positive

sense or direction if an observer travelling in this direction (and perpendicular to the
plane) has the region to the left. This convention leads to the directions indicated by
the arrows in Figures 15, 16, and 17.

We use a special symbol Cﬁ f(z)dz to denote integration of f(z) around the
C

boundary C in the positive sense. In the case of a circle (Figure 15), the positive di-
rection is the counterclockwise direction. The integral around C is often called a con-

tour integral.

A »

Figure 15 Figure 16 Figure 17

Theorem Let f(z) be analytic in a region R and on its boundary C. Then
95 1(2)dz=0 ©)
C

This fundamental theorem, often called Cauchy’s integral theorem or simply
Cauchy’s theorem, is valid for both simply- and multiply-connected regions.
Theorem Let f(z) be continuous in a simply-connected region R and suppose

that 4} f(2)dz =0 around every simple closed curve C in R . Then f(z) is an ana-
C

lytic function in R .

where C is any simple closed curve C and z=a is

Example 2 Evaluate Cﬁ a

zZ—a

C
(a) outside C, (b) inside C'.
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Solution

(a) If a is outside C, then f(z) =

is analytic everywhere inside and on C'.
z—a

dz 0.
a

Z_

Hence, by Cauchy’s theorem, (ﬁ
C

(b) Suppose a is inside C and let I' be a circle of radius ¢ with center at z=a so
that I is inside C (this can be done since z = a is an interior point).

fﬁza :Cﬁfa (7)

r

Now on I, z—a|=€ orz—a=e¢e’, ie., z=a+¢ee'?, 0<p<2r. Thus, since

dz=ige'’dp, the right side of (7) becomes

2z, ip 2z
J‘w:l]‘d(o:zﬂ-i
e )

which is the required value.
Definition Suppose f(z) and F(z) are analytic in a region ‘R and such that

F'(z)= f(2). Then F(z) is called an indefinite integral or anti-derivative of f(z)
denoted by

F(z)= j [(2)dz+ A, A— const ®)

Just as in real variables, any two indefinite integrals differ by a constant. For this
reason, an arbitrary constant A4 is often added to the right of (8).

Table of Indefinite Integrals

n+l P
r z dz
Z"dz = n#=—1. —=Inz.
. n+l1 J z
o V4 -
a z z
a’dz = ) e“dz=¢".
. Ina *
coszdz =sinz. sinzdz=-cosz.
* dz * dz
—=1gz. —— =—Ctgz.
Jcos z Jsin“z
*  dz
* dz 1 z—a —  —In|z++z*td?
7=, In JNZPtd
Jz—a 2a |z+a -
[_dz ! t z [ & arcsinZ
=—arctg—. e .
JZ22+a a a Jat-2* a
shzdz=chz. chzdz=shz.
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Example 3 Determine

(@) (b) jZZ\/4+Z3dZ

jsin zsin3zsin2zdz

Solution

(a) J-sinzsin 3zsin2zdz = %J.(cos 2z —cos4z)sin2zdz =

= %J-cos 2zsin2zdz - %Icos 4zsin2zdz =%Isin 4zdz — %I(sin 6z —sin2z)dz =

cosdz cosb6z cos2z

= + + 4.
16 24 8
! : !
() j22\/4+z3d22%j(4+z3)2(4+Z3) dz :§I(4+z3)2d(4+23):

:§(4+Zs)i+cz§m+,4.

Theorem Suppose a and b are any two points in R and F'(z) = f(z). Then
jf(Z)dZ =F(b)-F(a) 9)

This can also be Writter: in the form familiar from elementary calculus

j F'(2)dz =(F(2))|, = F(b)~ F(a) (10)

Example 4 Calculate [ = Izln zdz .

Solution Using the formula for integration by parts we get
dz

u=Inz, du=— 5 e?
I = z :(Z—lan
2

z
dv=zdz, v=—

Exercise Set 2.4

In Exercises 1 to 14, evaluate
2i 2

1. ‘(Z3+Z)622 dz
1+i

i
o

2. zsinz dz

0
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3. (3-2z" +sinz)dz, 7/:‘2‘:2’11’1’1220
y
4. |(z'+cosz)dz, y:|z|=1,Rez20
r

i
"

5. zcoszdz
0
6. | Bz’ +2z)dz, yis the line from z=1—i to z=2i

y

7. | Rez-Re(zz)dz,Zis the arc of the parabolay=1-x" fromz =-1 to
/

8. Imz-Re(z*)dz y is the line from z, =—1+i to z, =1+3i

/

9. z°dz, y is the line from z=0 to z=2i
7
10. |zdz, y is the broken line OAB, where O(0;0), A(1;1), B(1;0)

e

1. (zdz, yz|=2,Imz <0

e

12. qSZReZdZ, y:‘z‘zl

y

13. | zImz’dz, 7/:‘2‘:1,—7z£arg230

e

14, [RED 4 (12]=1, mz20, Rez>0)
z+1
In Exercises 15 to 23 determine
. d -
15, I\/sinzcoszdz 16. 2—2 17. ZL
J sin*(1-3z) J222+6z+4
3 . o R
18. j zdz 9. [— %= 2. |2 dz
J5+ 74 J cos"(3z+2) J
o dZ o
21. j522+1 e ¥ dz 22, | —— 23 |sin’ zcos’ zdz
( ) J1+z+43 J




Individual Tasks 2.4

[ -5. Evaluate the following integrals.

I.

.(3—222+sinz)dz,7/:‘z‘=2
¥

z-zdz, y:(‘z‘zl,lmzﬁO]
7
i
(2-1-3)62/3 dz
3
* Z°dz
9+ 2

dz

JZ224+6z+10

II.

.idz, y:lS‘Z‘SL Im:z
‘z
y

.(siniz+z)dz, y:‘z‘zl,
¥
2i

(22 + 3)ezdz

dz

J2—-+z-1

(1g(3z+2)dz

J cos’(3z+2)

2.5 Cauchy’s Integral Formulas
Theorem Let f(z) be analytic in a region bounded by two simple closed curves

C and C, (where C, lies inside C as in Figure 11) and on these curves. Then

1= fz,

where C and C, are both traversed in the positive sense relative to their interiors

(counterclockwise in Figure 18).
The result shows that if we wish to integrate f(z) along curve C, we can

equivalently replace C by any curve C, so long as f(z) is analytic in the region be-
tween C and C, as in Figure 18.

Theorem Let f(z) be analytic in a region bounded by the non-overlapping sim-
ple closed curves C,C,,C,,...,Cwhere C,,...,C, are inside C (as in Figure 19) and
on these curves. Then

Figure 18

Figure 19

cﬁ f(2)dz = <J5 f(2)dz+ 4) f(2)dz+ <ﬁ f(2)dz+ .+ <J'> f(2)ds= .

¥

Figure 20
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Cauchy’s Integral Formulas
Theorem Let f(z) be analytic inside and on a simple closed curve C and let a

be any point inside C (Figure 20). Then
z
006 @ 0

27n —

where C is traversed in the positive (counterclockwise) sense.
Also, the n -th derivative of f(z) at z=a is given by

n!
@=L e, @
27i (Z — a)
Formula 2 can be rewritten as the following
z 27,
<j5 SE) f”( ), nxl (2a)
c (Z N a)

The result (1) can be considered a spemal case of (2) with n =0 if we define 0!=1.

The results (1) and (2) are called Cauchy’s integral formulas and are quite re-
markable because they show that if a function f(z) is known on the simple closed

curve C, then the values of the function and all its derivatives can be found at all
points inside C .
Example 1 Evaluate

@ <J‘>sin 7wz’ +cosmz’ s ) CI) e d
! (z-1)(z-2) C(z+1)
where C 1is the circle ‘z‘ =
1 1 1
Solution (a) Since = - , we have
(z—-1)(z-2) z-2 z-1
sinzz’ +cosmz’ | q') sinzz* + cos rz* Y CJS sinzz® + coszz? s
(z-1D(z-2) (z-2) (z-1) '

By Cauchy’s integral formula with @ =2 and a =1, respectively, we have

. 2 2
sinzzz” +coszmz dz o .
Cﬁ =27i (sm 72° +cos 7z22) =27i,

(z-2)

C

C_‘S sinzz® + cosrz’dz
: (z-1)

since z=1 and z=2 are inside C and sinzz’ +coszz’ is analytic inside C .
Then, the required integral has the value 27i — (—27i) =47i .

(b) Let f(z)=e* anda=-1 in the Cauchy integral formula

(n) n! f(2) .

= 27ri(sin 71> + cos 7r12) = 27i,
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If n=3, then f'(z)=2¢e*, f"(z)=4¢e”, f"(z)=8e> and f"(-1)=8e . Hence

the Cauchy integral formula becomes
2z

86_223!(} © -dz
27i C(Z+1)

from which we see that the required integral has the value

. 2
rie

Exercise Set 2.5
In Exercises 1 to 16, evaluate
P zdz
V4 : 3
]. ¢ de ‘2—3‘:6(2_2) (Z+4)
|z-1]=3
5 SB 2 4. (j‘)( 5 +3) ~dz, }/Z‘Z—l—i‘Z%
. Z V4
e (z> +9)(z+9)
» p 324—223+5dz
idz .
> Cﬁ (2> +1) A
‘z+i‘:1 z )
1 *z+1
; Cﬁ 2dz ‘ _1_1,‘_2 8 gy cos 2 dz
2z-1 "4 5, 2@
T
: COS—z
9 SZIB—szZ 10. —tdz
‘2—3‘:1Z (2_7[) ‘Z—l ‘:1 (Z _1)
. 17 2+sinz
11. © ;ldz 2 z(z+2i)
V4
‘z‘zl
sinz-sin(z —1)
2 14.
3 L 3z°+2z+4 & ks 2 5
27”\z+1\=3 (Zz+4)-sinE
2
hz
s 16, (JSLdz
5. =z, RGN

|z[=1/3
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Individual Tasks 2.5

1-4. Evaluate the following integrals.

I. II.
2z+1 dz 1. 23 dz
S (z-3)(z+4) | ‘=4(z+5)(z—6)
z°=2z-3 z°-2z-8
‘Z‘ZZ ‘z‘=3
/4 2
3 Cj) %dz 3 Mdz
iy 271 | 241,51 22 +nz
4 CcoSz s 4 sin zdz
' z=1+3i)(z=7+3i) ' z—1-2i)(z—1-10i
C C
C:|z—-1+3i| C:|lz-1-2i|=4

2.6 Series of Functions. Power Series. Taylor’s Theorem

Definition The sequence {Sn (z)} symbolized by

0

,(2) + 1, (2) + 0y (2) + ot 0, (2) = D 1, (2) (1)

n=1
and is called an infinite series.
If lim S, (z) =S(z), the series is called convergent and S(z) is its sum; other-

wise, the series is called divergent. We sometimes write i” (z) as Z”n(z) or Z”"
n=1

for brevity.
Definition 1f a series converges for all values of z (points) in a region R, we

call R the region of convergence of the series.

Definition A series Zu (z) 1s called absolutely convergent if the series of abso-

n=1

lute values, 1.€., Z|” (z)|» converges.
=1

Definition If i” (z) converges but i|“n(z)| does not converge, we call iu”(z)
n=1 n=l1 n=1

conditionally convergent.
Definition A series having the form

Zan(z —a)' =a,+a(z-a)+a,(z-a)’ +..+a (z—a)" +.. (2)
n=0
is called a power series in z—a.
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Geometrically, if I' is a circle of radius R with the center at z=a, then the se-
ries (2) converges at all points inside I' and diverges at all points outside I", while it
may or may not converge on the circle I'. We can consider the special cases R =0
and R =, respectively, to be the cases where (2) converges only at z=a or con-
verges for all (finite) values of z . Because of this geometrical interpretation, R is of-

ten called the radius of convergence of (2) and the corresponding circle is called the
circle of convergence.

n—1
Example 1 Find the region of convergence of the series Zi
4" (n+1)°
Solution
+2)" "
Ifu = (HZ—) then u , ﬂ Hence, excluding z =—-2 for which
4" (n+1y 4" (n+2)°

the given series converges, we have
(z+2) (n+1)’| |z+2]
4  (n+2)| 4

‘z+2‘
4

=lim

n—»0

. |u
lim |1

n—>0
u}’l

Then the series converges (absolutely) for <1, 1.e.,

<4. The point

z=-2 1s included in ‘z + 2‘ <4.

f m =1, 1.e =4, the ratio test fails. However, it is seen that in this
case
+2)" | 1 1
‘4” (n+1 ‘ 4n+1° o
and since Z% converges [ a series with a = 3], the given series converges (ab-
solutely).

It follows that the given series converges (absolutely) for ‘z + 2‘ <4. Geometri-
cally, this is the set of all points inside and on the circle of radius 4 with the center at
z=-2, called the circle of convergence (shown shaded in Figure 21). The radius of
convergence is equal to 4.

Let f(z) be analytic inside and on a simple closed curve C. Then

f(Z) f(a)+f(a) (Z a)+f”( ) f(n)( )

(z—a) +..+2—~2

(z=a)"+.. 3)

is called Taylor’s theorem and the series (3) is called a Taylor series or expan-
sion for f(z).
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Figure 21

Figure 22

The region of convergence of the series (3) is given by |z—a| < R, where the
radius of convergence R is the distance from a to the nearest singularity of the
function f(z). On |z—a| = R, the series may or may not converge. For |z—a| >R,

the series diverges.
If the nearest singularity of f(z) is at infinity, the radius of convergence is infi-

nite, i.e., the series converges for all z. If a=0 in (3), the resulting series is often

called a Maclaurin series.

The following list shows some special series together with their regions of
convergence. In the case of multiple-valued functions, the principal branch is
used.

2 3 n
=zttt |Z|<OO
2! 3! n!
3 5 2n—1
sinz=z——+——..4+ (- )”1 |Z|<OO
3! 5! (2n— 1)'
ZZ Z4 2n—2
cosz=l-"—+"——_ +(-1)""'—=— |z < o0
21 4! (2n— 2)'
11 —l4z4+22 4.+ 2| <1
—Z
ZZ Z3 n_lzn 1
ln(1+z)=z—7+?—...+(—1) —e 2| <
-1 —D..(a-n+1
(1+Z)“=1+az+%')zz+ +a(a ) ('a " )z"+ |z|<1
n!

Laurent Series. Classification of Singularities
Let C, and C, be concentric circles of radii R, and R, , respectively, and the cen-

ter at a (Figure 22). Suppose that f(z) is single-valued and analytic on C, and C, in
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the ring-shaped region R (also called the annulus or annular region) between C, and
C,, is shown shaded in Figure 22. Let a 4+ & be any point in R . Then we have

f(@)=a,+a(z—a)+a,(z—a)’ +...+ oD —+..., (4)
z—a (z—a)
where
. S (@)
a,= 3 C}[} oy dt, neZ (5)

This is called Laurent’s theorem and (1) or (4) with coefficients (5) is called a
Laurent series or expansion.

The part a, + a,(z — a) + a,(z —a)’ +... is called the analytic part of the Laurent
series, while the remainder of the series, which consists of inverse powers of z —a, is

called the principal part. If the principal part is zero, the Laurent series reduces to a
Taylor series.
It is possible to classify the singularities of a function f(z) by examination of its

Laurent series. For this purpose, we assume that in Figure 21, R, =0, so that f(z) 1s
analytic mside and on C, except at z =a, which is an isolated singularity. In the fol-

lowing, all singularities are assumed isolated unless otherwise indicated.
1. Poles. 1f f(z) has the form (4) in which the principal part has only a finite
number of terms given by
a, a, a,
+ —+..+ -,
z—a (z—a) (z—a)
where a_, # 0, then z=a 1s called a pole of order n.1f n=1, then it is called a
simple pole.
If f(z) has apole at z=a, then lim f(z) = 0.

z—a

2. Removable singularities. 1If a single-valued function f(z) is not defined at
z=a but lim f(z)exists, then z =a is called a removable singularity. In such case,

z—a

we define f(z) at z=a as equal to lim f(z), and f(z) will then be analytic at a.

sin z

Example 2 1f f(z)=

, then z=0 1s a removable singularity since f(0) is

not defined but lirr(} SN2 _ 1. We define f(0)= lirr(} SN2 _ . Note that in this case
= z z—>
: 3 5 2n-1 2 4
sinz _1 PP S T P P S
z oz 3! 5! 2n-1)! 3! 5!

3. Essential singularities. If f(z) is single-valued, then any singularity that is not a
pole or removable singularity is called an essential singularity. If z=a 1is an essential sin-

gularity of f'(z), then the principal part of the Laurent expansion has infinitely many terms.
1

Example 3 Since e =1+—+ -+ —
z 2z7 3z

+..., z=0 1s an essential singularity.
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4. Branch points. A pomnt z =z, 1s called a branch point of a multiple-valued
function f(z) if the branches of f(z) are interchanged, when z describes a closed
path about z,. A branch point is a non-isolated singularity. Since each of the branches

of a multiple-valued function is analytic, all of the theorems for analytic functions, in

a particular Taylor’s theorem, can be applied.
1

Example 4 The branch of f(z)=z?, which has the value 1 for z=1, has a Tay-
lor series of the form a, + a,(z —1) + a,(z —1)* +...and the radius of convergence R =1
(the distance from z =1 to the nearest singularity, namely the branch point z=0).

Example 5 Find Laurent series about the indicated singularity for each of the
following functions:

(a) (b) (c)
2z

e z—sinz 1
’ :19 ’ ZO) —’Z:3
(z—1)’ : z’ - 2 (z-3)°

Name the singularity in each case and give the region of convergence of each series.

Solution
(a) Let z—1=u.Then z=u+1 and

2z 2u+2 2 2 2 3 4
¢ ¢ iyl :6—3(1 +2u + (2;) CLR C), +j =
u .

= =—e
-1y & o 31 4l
e’ 2¢° 2¢° 4 2e
- + =+ +
=1} (=17 (z=1) 3
z=1 is a pole of order 3, or a triple pole.

(b)

(Z 1)+...

7

Z3+ZS z',
z—|z-" 4 2 4.
z—sinz 3151 7! 1(2 22 727 1 z2 2
- = e
z

2 2 315 71 3151 7!

z=0 1s a removable singularity. The series converges for all values of z.
(c) Let z—3 =u. Then, by the binomial theorem,
1 1 1

2(z-3) = W (u+3)° = 9u2(1 ujz

1o o ) R 4] DY,
Ou 3 2! 3 3! 3

12 1 4 ] 2L 4,
out 27u 27 243 T 9(z=3)> 27(z-3) 27 243

z =3 is apole of order 2 or a double pole.
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Example 6 Expand f'(z) = ! in a Laurent series valid for:

(z+1)(z+3)
(a) 1<|z|<3 (b) |2|>3 () O<|z+1<2 (@) |¢|<L.
Solution
(a) Resolving into partial fractions, we have
ot 11
(z+1)(z+3) 2 z+1 2 z+3
If‘z‘>1,then
1 1 1 1 1 1 1 1 1 1
2 1 - 1 :2— 1——+—2——3+—4+... :2——2—24'?—....
(z+1) 22(1_'_} z z z° z z z 2z z
z
If‘z‘ <3, then
1 1 1 z ¢ 1 z 2 2
= = l- =+ ———+. ==t ———+..
2(z+3) z) 6 3 9 27 6 18 54 162
61+5

Then, the required Laurent expansion valid for both ‘z‘>1 and ‘z‘<3, 1.e.,

1<|z[<3,is
3

1 1 1 1 1 z z¢ z

+ — —_

+ - — ..
2z 2720 227 2z 6 18 54 162
(b) 1If ‘z‘ >1, we have the result such as in the part (a),
1 1 1 1

2z+1) 2z 220 22 7

If‘z‘>3,then
1 1 1 3 9 27 81 1 3 9
20z+3) 7] G i el ye iy R
22(1—%)
z
Then, the required Laurent expansion valid for both ‘z‘ >1 and ‘z‘ >3, 1.e., z‘ >3,18
1 4 13 40
T2 T3t 4T T s

z z z z
(c) Let z+1=u.Then

1 1 1 1 [ u u o j
= = =—|l-=4+———+...|=
(z+D(z+3) uu+2) 2u(1+”j 2ul 2 4 8

1 _l+l(z+1)—%(z+l)2 +..., valid for 0 <[z +1]|<2.

T2(z+1) 48
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(d) If 2| <1,
1 1 1

= :—(1—Z+22—23+Z4+...)=l—lz+lzz—lz3+...
2(z+1) 2(+z) 2 2 2 2 2
If ‘z‘<3,we have the result such as in the part (a),
1 1 z 22 2
——t—

2z+3) 6 18 54 162
Then the required Laurent expansion, valid for both ‘z‘ <1 and ‘z‘ <3, 1.e.,

z‘ <1,
is obtained by subtraction
1 4 13 , 40 , N

—_—— _Z —_——

39 27 81
This is a Taylor series.
Exercise Set 2.6
In Exercises 1 to 3, investigate the convergence of:

(D" n C (cos3n sindn j Z‘” ( 1 .2n_1j
]. +l_ 2. + -l 3' +l
Z( n 3" ; n n n* 3n+1

n=l1 n=l1

In Exercises 4 to 7, find the region of the convergence of:

4 UL PP 5 S (n+1)! (4+30)
25 (zm2) T Qnly
6  3n+2 A\ = (2n+1) ]
. —n(z+2—l) 7. —n(z—3+i)
21+ 145) Z5(4+1)
In Exercises 8 to 17, expand f(z) in a Laurent series valid for the given K :
1
8. z)= , K:2<|z|<3;
A (z—-2)(z-3) ‘ ‘
2z-3
9. z2)=——, K:0<|z-2|<];
/(@ z°—-3z+2 ‘ ‘
10. f(z)= 2 , K:3<‘z—1‘<+oo;
(z-1(z-3)
z+2
11. Z)=———, K: 2<|z+2|<4;
/@) z°+2z-8 ‘ ‘
2z+3
12. Z)=—, K:1<|z|<2;
/) 22 +3z+2 ‘ ‘
2z-3
13. Z)=—, K:|z—-1|<2
/) 25 =3z+2 ‘ ‘
4. f(2)= 221, K:1<|z+2]|<3;
72 _
15 f(@)=5—, K:0<|z-i|<2;
z7+1
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16.

17.

-8
e (Z+1)( 3)’

f@)=(+2)",

K: 3<‘Z‘<OO;

K:0<|z|<l.

In Exercises 18 to 25, expand each of the following functions in a Laurent series
at a given point z;:

18.

20.

22.

24.

f(z):an_3

’ Z():OO
f(2)= cos—+ 7 =0

f(2) =—sin2%, z,=0
z z

f(z)=zeﬁ, z,=4

19, f(z)=sin—, z,=1
z—1

z

21, f(z)=e>3, z,=3
23. f(z)=

’ Z():OO

25. f(z):cos—z_, Zy =1
z—1i

In Exercises 26 to 35, determine and classify all the singularities of the functions

26.

28.

30.

32.

34.

1+ z+z
f(z2)= COSZ, z, =7 27, f()=——, z, =i
Z+l
sin 4z -4z sin z
=, :O 29 Z)=——, Z, :27[
S e—1-z 0 /) z>(1-cosz) 0
zt -1
Z)=cos Z,=—T 31 = , zo =—1
/@) r+z " /@) 125120 0
f(2)= Z-1 g 33 f=""L . _0
22 +22°+2* ' sm7rz’ 0
f@)=2"E, 2,=0 35 f(z)=2sint, z, =0
sin’z’ z
Individual Tasks 2.6

1-2. Expand f(z) in a Laurent series valid for a given K .
3. Expand f(z) in a Laurent series at a given point z,.
4. Determine and classify all the singularities of the functions.

I.
f(z)— ,K:0<|z-1|<1
Z+2
2. ——,K: z—1|>2
/) —4z+3 ‘ ‘
3. f(z2)=zcos ! Zy =2
.
ez—Zi
4. f(2)= -, 2o =21
z—=20

I1.

L f(z)=—

(z-D(z-2)’
2z-3
HOTE
3. f(z)=sin—
=

1+cosz

K:0<|z-2|<1

K:l<|z|<2

Zy=3

4. f(2)=

N ZO:_”
z+ 7w
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2.7 Residues

Let f(z) be single-valued and analytic inside and on a circle C, except at the
point z=a chosen as the center of C. Then f(z) has a Laurent series about z =a
given by

- a a
— )\ _ )\ —1 i) 1
1(2) ;an(z a)' =a, +a,(z—a)+a,(z—a) bt o (1)
where
1 f(2)
n 27_[1 ?(Z_a)nﬂ dZ’ n EZ (2)

In the special case n = —1, we have the following formula
Cﬁf(z) dz=2ria_, (3)
C

Formally, we can obtain (3) from (1) by integrating term by term and using the re-
sults

(4)

V(z-ay

dz B 2ri,n=1
0, n=#l

Because of the fact that (3) involves only the coefficient a , in (1), we call a_|
the residue of f(z) at z=a.
Res f(Z) =a_, (5)
To obtain the residue of a function f(z) at z = a, it may appear from (1) that the
Laurent expansion of f(z) about z =a must be obtained. However, in the case where
z=a 1s apole of order k, there is a simple formula for a_ , given by

1 ) r (k=1)
D E((z—a) f(@) 7, k=l 6)

Res f(2)=

If k =1 (a simple pole), then the result is especially simple and is given by
Res /(z)=a, =lim(z=a)f(2) 7

which is a special case of (6) with £ =1 if we define 0!=1.

Example 1 Find the residues of = z )
P T =Gy

Solution
4
&= 6

two, respectively. We have, using (7) and (6) with k =2,
74

—, then z=1 and z=-1 are the poles of orders one and



z . z 1
= lim
(z=D(z+1)" =1

z+1)7° 4

Res f(z)=lim(z -1)f(z) =lim(z - 1)

1 . 2 z | — 1 z | =
R SO zlfﬂ[(zm (2_1)(z+1)2j _ZIEEL(Z‘D] .

. z—1-2z 1
= lim =——.

z—>—1 (Z - 1)2 4

If z=a is an essential singularity, then the residue can sometimes be found by

using known series expansions.
1

Example 2 Let f(z)= e -. Then, z=0 is an essential singularity and from the

: : 1
known expansion for ¢ with u = ——, we find
z

= 1 1 1
e‘=1—-—+ PR
z 2z= 3z

from which we see that the residue at z =0 is the coefficient of 1/ z and equals —1 .

¥

Figure 23

Theorem (residue theorem) Let f(z) be single-valued and analytic inside and
on a simple closed curve C except at the singularities a,b,c,... inside C, which have
the residues given by a ,,b ,c ,... (see Figure 23). Then, the residue theorem states
that

CJ‘)f(z)dz = 27zi(a_l +b_1 +cC +) (8)

1.e., the integral of f(z) around C is 27i times the sum of the residues of f(z)
at the singularities enclosed by C . Note that (8) is a generalization of (3). Cauchy’s

theorem and integral formulas are special cases of this theorem.
1

Example 3 Evaluate
2rxi

(JS e d- around the circle C with equation ‘z‘ =3.

) (22 +22+2)
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Solution

zt

The integrand has a double pole at z=0 and two simple poles at

(22 +2z+2)
z=—1%i (roots of z* +2z+2=0). All these poles are inside C .
Residue at z=0 is

lim| 2 ——— -
2-D! 5o\ z(z°+2z+2)
~ lim (22 +2z+2)te” —e”(2z+2) _t-1
250 (2> +2z+2) 2

Residue at z=—1+1 is

Res f(z)= lim [(z—(—1+i)) e J:

z=—1+i z>—1+i 22 (22 +2z+ 2)

z4+1—1 e
= lim 5 lim > =
21+ Z z-1+i Z + 22 + 2 4

Residue at z=—-1—1 is

Res f(z)= lim ((z—(—l—i)) e j:

PR PN 22 (2° +2z+2)

Res f(z)=

zt

et z+1+4i et
= lim > lim > =
z—1-i Z 21— Z + 2Z + 2 4

Then, by the residue theorem

1 e” 1 R P S A N I |
CJ.) — dz = 2 + + = +—e'cost.
27i I 22 (22 +22+2) 27 2 4 4 2 2

C
The evaluation of definite integrals is often achieved by using the residue theo-

rem together with a suitable function f(z) and a suitable closed path or contour C,

the choice of which may require great ingenuity. The following types are most com-
mon in practice.

1. I F(x)dx , where F(x) 1s a rational function.

—00

Consider(ﬁF (z)dz along a contour C consisting of a line along the x axis

C
from — R to + R and the semicircle I above the x axis having this line as a diameter

(Figure 24). Let R > . If F(x) is an even function, this can be used to evaluate

TF(x)dx.

76



R
Figure 24 Figure 25 Figure 26
2r
2. I G(sing,cos@)dg, where G(sin@,cos@) is a rational function of sing
0
and cos@.
i : z—z" z+z" o dz
Let z=¢”. Thensing=———, cos@p= 5 and dz=ie"dp ordp=—.
i iz

The given integral is equivalent to CJSF (z)dz where C is the unit circle with the cen-
C

ter at the origin (Figure 25).

3. I F(x) cosmx dx , where F'(x) is a rational function.
. Sin mx

Here, we consider CﬁF (z)e'"* dz , where C is the same contour as that in Type 1.
C

+0o0

Example 4 Evaluate [_%_.
' 1+ x°

Solution

: dz : : .
Consider Cﬁl =, where C is the closed contour of Figure 26, consisting of the
+z
C
line from — R to + R and the semicircle I', traversed in the positive (counterclock-
wise) sense.

i 37i Srmi i E 117xi

. 6 = N T T
Since z° +1=0, when z, =e¢,z,=e® ,z,=e ¢ ,z,=e ¢ ,z,=e ¢ ,z,=¢ © ,

i 37i Smi

these are simple poles of 61 1.Only the poles z, = e®, z,=e®,z, = e ¢ lie within
z°+

C . Then, using L’Hospital’s rule,

: i - A I B .
Res f(z)= lim z—ef f(z)=lim z—e’ |— = lim —=—¢ o
5 et et z’+1 76z 6
zZ=e E @ 1 1 _&
Res f(z)=lim [ z—e ¢ Z)= lim | z—¢ ® = lim —=—¢ 2,
% f( ) z»eS?( jf( ) 24)6367”( jz6 +1 Z%e% 625 6

Smi Smi 1 1 1 257
Res f(z)= lim (2—66 jf(z)— linsim[z—GGJ lim —=—¢ ¢

i 6 = i 5
Sz 5 z0+1 6z 6
zZ—>€ zZ—>¢

6
z=¢ 6 z—e
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Thus,

that 1s,

ji dx J' dz 27
+ =—
1+ x° F26+1 3

-R

Taking the limit of both sides as R — o

+00

) 27
lim I =—
1+

R—

Since

the required integral has the Valueg :

Exercise Set 2.7

In Exercises 1 to 18, evaluate

1. ¢ze—dz 2. 4} %
\z\=2z (z+1) \z—i\=1z +2z° +1
sinzdz e dz
3' @ 2 2 4 4 ¢ 2 2
‘2‘232 (z"—4) M:zz (z7-9)
e —1 COS—
5. @ dz
2z 6. Cﬁ 2
|23 |2-1|=2
S R
J 13 —5cost ' (3 +sint)’
0 0
2z ©
3 dt c xT 42
‘ cost) dx+xT+
o] g
1. T dx 12. =
:Oo(x +4) J(xT+1)




0 . © ,
)Y ix 2 2ix

13. = 14, I = i
Jx —8x+20 Jx +10x"+9
I d ( d
15. 3 zx 2 16. _[ 2 2x 2
J(x*+4)°(x" +16) _w(x +1)°(x" +4)
© 2ix < 2 2ix
17, i 18, j L —
Jx —10x+ 26 x +13x"+36
Individual Tasks 2.7
1-4. Evaluate the given integrals.
I. II.
1 2 +22° —i 2z -3z+6
1. _ q.) —— 4z 1. CJ.)—de
27[1‘2‘=2 (z+i)'z g z(1+z7%)
2 z
5 45 22+Z 4dz 5 1. CJS : ezdz
Lz (z-]) 2ri z°(z” +16)
|1l |2]=5
- r d
3 dx 3 J.%
’ o (x2+4)2 —oo(x +9)
2 f d
4 dx 4. J. 2 zx 2
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APENDIX

Individual Tests 1.1

Variant 1

5D)

nln n+2

5"+ 2"
)23 10"

n=l1

b);J n 1

1. F ind the sum of the series:

2. Investigate the series for conver-

Variant 2

)z n+2 n+3)’
3"+4"
)25 12"

n=l1

gence:

o0

Z s1n3

0

n=l1

Individual Tests 1.2

Variant 1

Investigate the series
for convergence:

L in(n—kl),
n=l1 3"
“( 3n Y
2. ;;(n+1j'
22
3> ;3+n2’
= 3n Y\
+ ;(371—%1) ’
5. ine_”z
n=l

Variant 2

Investigate the series
for convergence:

n
L2 n+1)!’

’ = n
3.9
25
= 5nm
4. ;3n+1’

82

1. Find the sum of the series:

2. Investigate the series for conver-




Individual Tests 1.3

Variant 1

Find the domain of convergence of the
series:
4n 1

L. Z
IR (x2 +x—6)n
2y
Determine whether the series i1s absolute-

ly convergent, conditionally convergent,
or divergent

(2n+3)(x+1)"

Variant 2

Find the domain of convergence of
the series:

Ly b
n=1 nn(.x+2)n

7. x+4 n+l
nz n+3

Determine whether the series is abso-
lutely convergent, conditionally con-
Vergent or divergent:

+1 n+l
” 3n+ 2)

3. 3. (
; n + 1 ,,21:

» n+l 3 " 2) © ”+1 n!

4.
; n+1 Z:':
Individual Tests 1.4
Variant 1 Variant 2

Investigate the series for convergence:

1. y ,
;\/2n+1

Investigate the series for convergence:

1. Z‘O: (_1)n+1 |

N2 +1
5 i(—l) n!,
n=1 5”

- n!

3
;5"(n+3)"

= 3(3n-1)'
N 23?;51;1
k Z;?:in
8. 2”4*; Lo
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Individual Tests 1.5

Variant 1 Variant 2
Find a power series representation for | Find a power series representation for
the function and determine the interval | the function and determine the interval
of convergence: of convergence:
1 1
1. X)= , 1. X)=——,
S @) 7+2x S @) 3+4x
3x-5 4x -5
2 f)=5 2 f)=mid
S @) x> =3x+2 S @) x4+ 6x+5
3. f(x)=cos’5x, 3. f(x)=sin’3x7,
4. f(x)=¢>. 4. f(x)=xe .
Individual Tests 1.6
Variant 1 Variant 2

Use a power series to approximate the

definite integral to three decimal places:
1

1. sinx/;dx,
.0
0,.1 d

2. | =,
L 1+x
0
3 3
cIn(1+x

3. de.
o X

1
Use power series to solve the initial-

value problem.
y'=4y-)", y(0)=1.

Use a power series to approximate the

definite integral to three decimal places:
1

1. cos%/;dx,
.0
0,.2 d
2. | —,
o 1+x
0
03
3. VI+x* dx-

k)
Use power series to solve the initial-
value problem.

¥y =2sinx+y’, y(0)=1.

Individual Tests 1.7

Variant 1

Determine the Fourier coefficients of the
given functions on the given intervals:

N f(x):{l’ if —m<x<0,

. M
x, if 0<x<um.

2. f(x)=1-x, if xe(-11).

Variant 2

Determine the Fourier coefficients of
the given functions on the given inter-

vals:
—x, if —7<x<0,
L. f(X)={ .
z, if O0<x<m.
2. f(x)=x+2, if xe(-3;3).
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Individual Tests 1.8

Variant 1

Determine the Fourier sine series of the
given functions on the given intervals:

1. f(x):x—37r,xe(37r;47r).

3,if O<x<xm/2
2. f(x)= _
0,if n/2<x<m.

Variant 2

Determine the Fourier cosine series of
the given functions on the given in-

tervals:
-x, if —7m<x<0,
Lo f(x)=4
x, if 0<x<u.
2. f(x):sinx,xe(O;ﬂ)

Individual Tests 2.1

Variant 1

Perform each of the indicated operations:
(1-3i)(i+2)
1-i
Describe and graph the locus represented
by the following expression:

|z—i+3]=2

Describe graphically the region represent-
ed by the following expression:

—r/6Larg(z+i)<x/4

Solve the following equations, obtaining
all roots:

z'+81=0

Variant 2

Perform each of the indicated opera-
tions:

(2-3i)(2i -3)
241

Describe and graph the locus repre-
sented by the following expression:

z—2-3i]=2

Describe graphically the region repre-
sented by the following expression:

I<|z=2+i<3

Solve the following equations, obtain-
ing all roots:

7 —64=0

Individual Tests 2.2

Variant 1

Separate each of the following expres-
sions into real and imaginary parts:

1. w=Q2-i)z"—iz" +4i+1,
2. w=z"-Re(z—-2iz).
Find the value of the given numbers.
Ln(2,3 +2i).

Variant 2

Separate each of the following ex-
pressions into real and imaginary
parts:

1. w=QB-i)z—iz"~7-2i,
2. w=z"-Im(z-2iz).
Find the value of the given numbers.

(V3 —i)zi.
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Individual Tests 2.3

Variant 1

Differentiate the following functions:

1. w=cos*(3z+7i),

2. (2z-4i)".
Find out which of the following functions
are analytic at least at one point:

w=Q2-i)z’—iz+4i+1
Prove that the given function is harmon-
ic. Find u(x,y) such that f(z)=u+iv
is analytic:
v=3y"x—x

Variant 2

Differentiate the following functions:
1. w=(z’ -32")sindz,

2. (3z+5i)7.
Find out which of the following func-
tions are analytic at least at one point:
w=GB-i)z—iz" =7-2i
Prove that the given function is har-
monic. Find u(x,y) such that
f(z) =u+iv is analytic:
v=x"—)"-2y+1

Individual Tests 2.4
Variant 1 Variant 2
Evaluate the following integrals: Evaluate the following integrals:
I .(3z2+c0sz)dz, 7/:|Z|:1’ Re z20. L J.(Zz_25in2)d2>
% y
o 1z|=3,Imz<0
2. zsin2zdz? 7,/ | |
) 2. ( ,
3 ; dz , J zcos3zdz
J1++z-=-2 3. [ dz ,
4 [ z'dz J3+4z-1
o [74 * ' 4 ‘ln3(3z—1)dz
3z-1
Individual Tests 2.5
Variant 1 Variant 2

Evaluate the following integrals:
1. z+1

4
RICEERE)

2. 4)
‘z—i‘zé
3. 3z2° =7z +4z-1

4
z

5z+3

=5, 1%
z-+2z-3

dz»

‘z‘zl

4, cﬁi.
(22+4)2

‘zﬂ‘ ‘:2

Evaluate the following integrals:
1. 3z+5

RREEPIERD) -
2. 3z-2

TS s,

| 1‘_52 -2z-3
3_ 2 _

3. z -z -:52 2dzﬂ

‘z‘=2 z
idz

4. 2—92

‘z—i‘:3(z + )
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Individual Tests 2.6

Variant 1

Determine and classify all the singulari-
ties of the functions:

L [t
' 2 +4z4 + 477
e —1-z
2. ) =————
/2 sin 2z -2z

Expand f(z) in a Laurent series valid for

Variant 2

Determine and classify all the singu-
larities of the functions:

L f(e)=—t?
' 1623 +92%7
2> (1-cosz
2. f(z)=2U=c082)
Sin z

Expand f(z) in a Laurent series val-

given K . ' '
47 —8 id for given K.
f()——, K:3<|Z|<oo. e Z4+2 e 2<| 2|<
— Z)=—, K: z—
z2+2z-8
Individual Tests 2.7
Variant 1 Variant 2

Evaluate the following integrals:

Cﬁ e dz

' s 22(z2* +16)°

o

sin z dz

Z(Z

x+1

3. I(x +1)

Evaluate the following integrals:

. @—2 © dz,
R (z+9)
e

|2[=1

o0

sinzdz
22(2°+2)

x—3

Xk
I @92 ™
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9.

. Determine whether the series Z

. Determine whether the series Z

. Determine whether the series Z(_l)

Attestation test “Series”

o0

1s convergent or divergent.

= 5n +1

. Determine whether the series Z Jn -1 is convergent or divergent.

3 2
— AN t+2n"—n

o0

1

is convergent or divergent.
(n + l)ln2 (n + 1)

n=l1

. . - ! . .
. Determine whether the series Z ™ __ is convergent or divergent.
n=l1

(2n+3)!

o0

ndn—4

—1s absolutely convergent, conditional-
Sne+1

n=1

ly convergent, or divergent.

. Find interval of convergence of the series i [2” HJ (x+1)"
n=1

2n

. Find a power series representation for the function and determine the interval of

3
convergence f(x)= Cosz%.

. Use a power series to approximate the definite integral to three decimal places

0.1

J- In(l+x) ,
0.01

Use power series to solve the initial-value problem y' = x> +2)°, y(()) =2.

10. Determine the Fourier sine series of the given functions on the given intervals

1.

2.

88

f(x)=1-x, xe(0;x).

Attestation test “Theory of analytic functions of one complex variable”

Describe graphically the region represented by the following |Z—2—i | >1,
1<Rez<3.
—3—i

Separate of the following into real and imaginary parts z = 3
-3




3. Find the derivative of the following
f(2) =(x3 —3xp° +3x)+z’(3x2y—y3 +3y—1) at the point z, =i —1.

4. Find the derivative of the following (22 + 3z)sin 3z

5. Find a coefficient of expansion and the rotation angle at this point when
mapping f(z) =u(x,y)+iv(x,y)
u(x,y) = —3xy2 +3x, v(x,p) =3x2y—y3 +3y—1, z,=-1-2i

6. Evaluate |z-Imzdz, C— the line from z, =0 to z, =1+i.
C
7. Evaluate Zdz .
J Z _25
z-3
8. Evaluate Cﬁ ——dz.
z7+1

‘Z—i‘=l

9. Expand f(z) in a Laurent series valid for given K :

1
(z=2)(z-3)’

K: 2<|z|<3.

f(2)=

coszdz

10. Evaluate (j.) — -
z7(z"-4)

‘2‘23
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