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GLUSHCHENKO T.A., KASYANIK V.V., PROLISKY E.E., SHUTS V.N. Infobus - a new type of intellectual transport for passenger intercity

transportation

A new type of urban public transport has been proposed - information. This type of transpott is,capable without interference from the other vehicles
to operate in a bustling street environment and to transport large numbers of passengers comparable to the metro. The proposed type of transport is a
system in which information processes (data collection, information processing, decision-making) are cartied out continuously and form the basis of the

information transport systems.
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SELECTION OF WAVELET BASIS FOR THE'EFFECTIVENESS PROCESSING OF
SIGNALS

Introduction. Currently, the wavelet theory is used to analyze,a
broad range of non-periodic, non-stationary types of signals in various
application areas of science and technology, as it allows obtaining more
comprehensive information about the signal.

The effectiveness of signal representations in wavelet domain and
their analysis essentially depend on the choice of basis functions used
during transform. The optimal choice of features enables the required
accuracy of approximation of informative signals. in'a time-frequency
domain. Wavelet transform allows compact representation of the energy
of the signal in a small number of significant non-zero: coefficients and
thus, achieves a high speed of transformation with: minimum required
memory. Optimal selection of basis-wavelet functions is important for
signal denoising, and in many cases, determines the required number of
signal decomposition levels and the thresholding methods.

1. The fundamental properties of wavelets. The theory of wavelet
transform allows usage of different types of mother wavelets for signal
processing. In most cases; during.the selection of a parent wavelet, the
following characteristics are taken into account: size of the support, the
number of zerosmoments, and'smoothness of basis functions [1]:

- compact support.it:was established that the support size affects
the approximation error of signals in the time-frequency domain, especial-
ly for finite functions. The smaller support size, the smaller error occurs
during function,decomposition. Dependence of the number of wavelet
coefficients on a'support size is also important. In order to minimize the
quantity of coefficients with large amplitude is necessary to use the func-
tion with the smallest support size [2];

- some zero moments. The size of the support of functions and the

number of zero moments are independent variables. Thus, there is trade-
off between the number of zero moments and the size of support. Given
this, while selecting the basis functions, we need to take into account the
following: if the signal has some isolated features and is smooth between
these features, you must use the basis functions of a large number of
zero moments. This allows receiving of a large number of small wavelet
coefficients on a small scale. However, if the number of features increas-
es, it is advisable to reduce the size of the support by reducing the num-
ber of zero moments [1, 2J;

- the smoothness of wavelet functions. It is known that the num-
ber of zero moments and smoothness of basis functions are interdepend-
ent, but the nature of such relationship may be different depending on the
type of wavelets considered family. For smooth functions, the best ap-
proximation of a high-frequency component is provided by a large num-
ber of zero moments, but not regularity of wavelet [2, 3]. Also, it is im-
portant to consider that the result of the approximation depends not only
on the smoothness and the number of zero moments in the basis func-
tions but also on the structure of the signal. Also, it is important to re-
member that the result of the approximation depends not only on the
smoothness and the number of zero moments in the basis functions, but
also on the structure of the signal [3];

- orthogonality. An important feature of wavelet functions is orthog-
onality. Orthogonal basis functions allow effective approximation of cer-
tain types of signals using a small number of coefficients. Each orthogo-
nal wavelet coefficient contains an information about the relevant part of
the signal and has no redundancy in this representation [4, 5].

More than one parent wavelet exists that have similar properties.
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Moreover, these properties provide only the basic mathematical descrip-
tion of wavelets, which does not always allow definition of explicit recom-
mendations on their practical application for the analysis and processing
of certain types of signals. Therefore, various approaches have been
developed to find the optimal wavelets, based on different criterions [6, 7].

2. Criteria for selection of basis functions. The main purpose of
the signal analysis is to maximize the value of useful information extract-
ed from an input signal, through its transformation and processing. More-
over, analysis of any signal involves finding the areas, in which behaviour
of a signal is characterized by regularity, or a set of features. It is known,
that the energy of the signal energy is one of the main parameters that
characterizes the real signals.

E, = TSz(t)dt , (1)

where E, —is the energy of the signal S(t) .

Since the real signals are finite, the integral expression (1) is deter-
mined and a result is a number:

.
E, = [$*(t)dt, 2)
0

where T —is the period of the signal.
Spectral energy is defined as:

x
E, () :EJ |S(w)| doo. (3)

If you limit the domain of the integral by frequency band within which
the maximum energy is transmitted signal, the integral (3) is defined in
this frequency domain [8, 9].

It is known that Parseval theorem allows linking energy signal in time
and frequency domain [3]:

1% 2
- [ 8w dw=(@1-%)E,, ()
~Wy

where & - is the a value that determines energy loss outside'the spegtral
bands for digital signals:

>s(n)f = %ZIS(k)I2 . (5)

where N - is the number of discrete signal samples; S(n) — discrete

signal, S (k) — the range of the sampled signal:

Thus, according to Parseval's theorem, the.connection signal energy
and the energy of its wavelet coefficients represented as:

E =Y [s)f” (6)
EIS(H)IZ = ZZIC

where ES — the energy of the signal in the time space, EC - energy

Coml (7)

|2

2

, (8)

signal in wavelet space, C_ . - coefficients of discrete wavelet trans-

form.

During, the decomposition of a signal using the wavelet transform,
signal power can be divided into multiple levels of decomposition in dif-
ferent ways.

Moreover, the higher the energy derived from the test signal on fewer
levels of conversion, the more effective will be the wavelet transform of
the signal. This distribution will depend both on the characteristics of the
signal, and the selected basis function. Given this, the energy distribution
of the signal can be used as a criterion for selecting the wavelet base
[10-12].

It is also important to note that a spectral energy distribution of wave-
let coefficients plays a significant role in the wavelet based signal analysis
and processing. The quantitative measure of the energy distribution is
Shannon entropy [13].

H=->p, dogp, . 9)

where p, = — is the probability distribution’of the wavelet coef-

2
[Con
EC
ficients. The lower value is Shannon entropy,.the higher.one - the con-

centration of power.

Thus, the criterion for evaluating the/effectiveness of basis wavelet
can be determined by the ratio between energy and Shannon entropy
(Energy to Shannon Entropy ratio - EER).

EER =%. (10)

In general, the wavelet transform, determines the similarity between
the analyzed signal and scalablesversion,of the wavelet base. To deter-
mine the degree of similarity of the two signals, the notion of correlation is
employed. Several‘publications [14,/15] proposed to use the correlation
coefficient as a criterion for selecting the wavelet base.

CoV,
p(sy) =—=+, (11)

os Lo,

where p(s,lp) — is the coefficient of correlation between the analyzed

signal and the wavelet base, COVSLU — mutual covariance sequences,
Oy, and 0}, - the standard deviation sequences.

Therabsolute value of p(s, l]J) can vary from 0 to 1. The greater

the similarity between the signal and basis wavelet, the greater will be
approaching to 1 correlation coefficient. Basis wavelet that provides max-
imum correlation with the analyzed signal will be most appropriate for
further processing of the signal.

If the correlation describes only a linear relationship of variables, the
information describes any relationship. The wavelet transform is mainly
used for the analysis and processing of signals that have some uncertain-
ty information so appropriate will use the entropy. The ratio of the energy
to the Shannon entropy, which is defined by (10), evaluates the energy
content of wavelet coefficients. To get their information content and com-
pare it with the information content of the signal, it is proposed to use
such information criteria as joint entropy, conditional entropy, and mutual
information.

Common entropy of the signal and its wavelet coefficients H (S,C)
allows determining the overall information content of these sequences

1
" H(S.C)=->.> p(s.c)dnp(s.c), (12)

sOS cC
where p(s,c) - is the common chance of distribution of the signal and
its wavelet coefficients.
The conditional entropy H (C | S) - is the average amount of in-

formation contained in the wavelet coefficients if the statistical correlation
of the signal [16]

H(C|S) =—Zp(s)c§p(c|s)t[hp(c|s), (13)

sOS

where p(c|s)= pp(?s(;) — the conditional probability of distribution

of wavelet coefficients relative to signal distribution, p(S) - chance of
distribution of the signal.

Mutual information | (S;C) - number of information in the wavelet
coefficients of signal [11]
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1(5) =-Y 3 p(s.c) in-PEC)_ -

55 p(s)p(c)

=-3Yp(sc)inp(sc)- (14)

2.2 p(sc)in(p(s)p(c)) =-H(S.C) -2 p(s)inp(s) -

Sp(efine(e) =-H(SC)+H(S) +H(C

where p(c) - the probability distribution of the wavelet coefficients,

H(S) - entropy signal, H(C) - entropy wavelet coefficients.

Another characteristic of the theory of information is Kullback-Leibler
divergence or relative entropy, which is a measure of the distance be-
tween two probability distributions defined on the same alphabet. In con-
trast, mutual information is a measure of the distance of two variables
within a distribution of relative entropy determines the distance between
the distributions [16]:

p(Si)
D(S|IC)= p(S ) In—=. (15)

(she)= 2 r(s) o(C)
If one distribution should be similar to another, the relative entropy al-
lows determining this similarity with fairly high accuracy. |If

p(s)=p(c).ten D(S||C)=0.

Thus, taking into account the need to ensure the maximum mutual in-
formation and the minimum relative entropy, a criterion for evaluating the
effectiveness of selected basis wavelet can be determined using the ratio
(Mutual information to relative entropy ratio - IER):

IER =€)
D(SIC)

The basis wavelet, which ensures the maximum relation of the mutu-
al information to the relative entropy test signal, would be most appropri-
ate for further processing of the signal.

Therefore, [17-19] consider the possibility of applying principlestof
the theory of information for a quantitative comparison between'different
types of dependencies such as signals and corresponding ceefficients of
the wavelet transform.

(16)

3. Analysis of the efficiency criteria for selection of basis, func-
tions for different types of signals. The following families of orthogonal
functions are selected for further studied: Daubéchies with the compact
support (db1 ... db20), Coiflets (coif1 ... coif5), Symlets (sym1 ... sym20),
and the test signals from Matlab package: bumps,.blocks, doppler, heavy
sine, trsin, wcantor [20]. Test signals are shown‘in Fig. 1.

Each test signal and selected basis functions were tested using
Matlab. Fig. 2 shows the examples of results for some of the signals as a
dependencies values for each criterion, calculated according to expres-
sion (10), (11) and (16) of the basis wavelet.

Table 1 lists the basis wavelets, which achieves the best value for
each criterion.

Table 1 - Baseline wavelets for processing of various signals

Mutual information )
. Energy to Shannon . Correlation
Test signal . to relative -
Entropy ratio . coefficient
entropy.ratio
“blocks” sym20 db19 db1, sym1
‘bumps” | all exept db1 and sym1 db20 db3
“doppler” db19, db20 sym14, coif1 coif1
‘heavy sine” sym11 coift db1
“trsin” sym20 db19 coif1
“wcantor” sym20 coif1 db1
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Figure 1 - The test signals to evaluate the effectiveness of criteria for
selection of basis wavelet

Overall, the following conclusions can be made:

- for the signals "blocks" and "wcantor" with-a stepped shape, the most
efficient wavelet basis function of the criterion Energy to Shannon
Entropy is a function of the family. Symlets order 20;

- for the signals"doppler"and., "trsin®, containing high-frequency har-
monic components, the most effective basis wavelet criterion for En-
ergy to Shannon Entropy.s functions of families Daubechies and
Symlets of order 19 and 20.

- for the signals "trsin", which has a triangular distribution, the most
efficient wavelet basis function of the criterion Correlation coefficient
is a function of the-family Coiflets, order 1.

- forthe signals "doppler" and "heavy sine", with a harmonic distribu-
tion, the most efficient wavelet basis function of the criterion Mutual
information to relative entropy ratio is a function of the family Coiflets,
order 1.

However, based on the results presented in Table 1, an observation
can be made that there is no unique correspondences between the types
of test signals and basis wavelets for each criterion studied there. There-
fore, to determine the effectiveness of each of the criteria, further re-
search of basis wavelets from Table 1 has been conducted.

Within the scope of further research, a noise has been added to each
of the test signals, followed by a noise reduction step.

For each of the recovered signals, the values of signal/noise ratio,
mean square error, and the correlation coefficient between the analyzed

signal S and its de-noised version S , have been calculated according
to the equations:

1S’
SNR =100bg |+ |. (17)
>ls. —s
i=l |
1y .
MSE =—> (s, -§,)%, (18)
N =
>(s -5)(s -9)
Cr=—12 : (19)

As a result of research, the set of values is obtained: signal/noise ra-
tio (SNR), mean square error (MSE) and the correlation coefficient for the
most effective basis functions defined by each of the of criteria for all test
signals. The results of experiments are presented in Table 2.

Based on the obtained resullts, the efficiency of application of each of
wavelet functions determined according to the corresponding criteria, can
be estimated. Fig. 3. shows the diagrams of the distribution of values
SNR, MSE and correlation coefficient Cr, as results of signal de-noising
for the wavelets, defined by a corresponding criteria.
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Figure 2 - Dependencies of criteria’s values Energy to Shannon Entropy ratio, Mutualinformation to relative entropy ratio and Correlation coefficient on
forty five basis functions orthogonal families of Daubechies, Symletsiand, Coiflets for signals: (a) "blocks" and (b) "doppler”

Table 2 - The values of SNR, MSE, and correlation coefficient Cr for thesresults of signal denoising

Test signal S(,:Ei‘siB Energy to Shannon Entropy ratio MO |nforma;)t;lopa:% relative entro- Correlation coefficient
withnoise | gona) [SNR.dB]  MSE Cr. |'SNR, dB |  MSE Cr SNR,dB | MSE Cr
“blocks” 12,2 15,23 0,076 0,9956 21,32 0,064 0,9964 15,15 0,286 0,9839
‘bumps” 74 18,16 0,0498 0,9923 20,84 0,0267 0.9960 18,9 0,042 0.9936
“doppler” 94 16,18 0,0019 0,9884 18,74 0,0011 0,9935 16,45 0,0019 | 0,9890
‘heavy sine” 12,25 26,37 0,0221 0,9988 26,98 0,0191 0,9989 24,7 0,0328 | 10,9983
“trsin” 9,9 15,85 0,0147 0,9871 16,14 0,0140 0,9878 5,05 0,1413 | 0,8693
“wcantor” 9,7 284 0,0008 0,9993 28,81 0,0007 0,9993 28,61 0,0008 | 0,9994
- 30 1
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Figure 3 - Comparison of; (a) SNR, (b) MSE and (c) the correlation coef-
ficient Cr, estimated after signal denoising for the wavelets
defined by each criterion.

Based in Fig. 3 values of statistical indicators the best results according
to SNR and MSE were obtained with the use of wavelets determined by
criterion Mutual information to relative entropy ratio. Estimation of the corre-
lation coefficient for different criteria is the same. In general for signals of
"blocks", "bumps" and "doppler" effective criterions Mutual information to
relative entropy ratio. For signals of "heavy sine", "wcantor" and "vonkoch"

all three criteria are equally effective for selecting wavelet base.

Conclusions. The article presents an analysis of the main criteria for
choosing the optimal wavelet functions that are frequently used for pro-
cessing of certain types of signals, such as biomedical signals, signals of
partial discharge, vibration signals, and others. This set of criteria is
based on the energy, entropy and correlation, named Energy to Shannon
Entropy ratio, Mutual information to relative entropy ratio, and Correlation
coefficient. The article discusses the possibility of applying these criteria
to a wide range of signals, processing of which is mainly done by discrete
wavelet transformation, and the processing efficiency of which significant-
ly depends on the choice of basis wavelets.

The experiments carried out on Matlab test signals package
("bumps", "blocks", "doppler, "heavy sine", "trsin", "weantor") with the
family of orthogonal functions Daubechies (db1 ... db20) Coiflets (coif1 ...
coif5), Symlets (sym1 ... sym20) allowed selection of the.most effective
basis wavelets that correspond to the maximum,value for the criteria:
Energy to Shannon Entropy ratio, Mutual information.to relative entropy
ratio and Correlation coefficient. In most of the .cases, the differences
between the estimated values of the criterion is'insignificant. However, it
has been observed that the choice ofithesmost.effective basis wavelets
defined based on the criterion Mutual information to relative entropy ratio
for all test signals is more clearly defined, contrary to the cases of the
correlation and energy criterias

It has been concluded/that the best results according to SNR and
MSE obtained using waveletsidetermined by the criterion of Mutual in-
formation to relative entropy.ratio.
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LAGUN LI, NAKONECHNYI A.l. Selection of wavelet Basis for The effectiveness Processing of signals

In article results of a research of the existing criteria of the choice of basic veyvlet-functions for the purpose of effective handling of signals are pro-
vided. The following criteria were researched: "Energy to Shannon Entropy ratio”, "Mutual information to relative entropy ratio”, "Correlation coefficient"
and forty five basic functions of the orthogonal Daubechies, Symlets and Coiflets families. Pilot study was conducted for the most widespread types of
the signals chosen from the database of a packet MATLAB. Basic functions which were determined by these to criteria as optimum for each type of a
signal, were used for filtering noisy signals subsequently. Results of filtering were compared for each criterion by means of estimates: ratios signal /
noise (SNR), a mean square error (MSE) and coefficient of correlation between the considered signal and the signal cleared of noise.
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