MWHUCTEPCTBO OBPA30OBAHUA PECIYBJIMKU BEJIAPYCb

§ YUPEXIAEHVE OBPA3OBAHNA
«BPECTCKUN TOCYOAPCTBEHHbIM TEXHUYECKUUN YHUBEPCUTET»

Kadenpa Bbicluen maTteMaTUKKU

DIFFERENTIAL EQUATIONS
MULTIPLE INTEGRALS
INFINITE SEQUENCES,AND SERIES

y4yeOHO-MeTOoAMYeCcKasa pa3paboTKa Ha aHINMIMUCKOM f3blKe
no auncumnnuHe «MaTemaTuka»

bpect 2014



YOK[517.91+517.37+517.52](076)=111

Hactoswas meToguyeckas paspaboTka npefHasHayeHa AN MHOCTPaHHbIX CTYAEHTOB
TEXHUYECKNX CcreymanbHocTen. [laHHas paspaboTka cogepxuT Heobxoaumblid maTtepuan no
pasgenam «[uddepeHumnancHble ypaBHeHUs», «KpaTHble WHTerpanbl», «KpuBonuHenHble
WHTerpanbl» n «Psagbl» n3yvyaembin B 06LLEM Kypce AMcUMninHbl «MaTemaTkay U3foXeHHbIN
Ha aHrIMNCKOM A3blke. 13noxeHne TeOpeTMYECKOro Matepuasna no BCeM TeMam COnpPoBOXa-

eTCs PacCMOTPEHMEM BOMbLLOMO KONMYECTBa NPUMEPOB W 3a[1ay, HEKOTOpbIE MOHSTUS M Npy-
MepbI NPOUNIOCTPUPOBAHI.

Cocrasutenu: MNaakun U.W., noueHt
[BopHuueHko A.B., cTapwimmn npenofasarens

Hepaumu H.A., ctapwum npenogasarers
KapumoBa T.U., K.(p.-M.H., AOLEHT,

Lunwko T.B., npenogasatesnb kadeapkl MHOCTPAHHbIX A3bIKOB MO
TEXHUYECKUM CRELNANbHOCTAM

PeueHseHT: Mupckas E.WU., poueHT kadenpbl MateMaTMyeckoro MoLenMpoBaHus yupexae-

HUS obpa3oBaHus «bpectckui rOCy[apCTBEHHbIN YHUBEPCUTET
um. A.C. MNyLukuHam, K.A0.-M.H., JOLEHT.

YupexaeHue 0bpa3oBaHus
© «bpecTckun rocy4apCTBEHHbIN TEXHUYECKUM YHMBEpCUTETY, 2014

2



| DIFFERENTIAL EQUATIONS
Perhaps the most important of all the applications of calculus is to differential equations.
When physical scientists or social scientists use calculus, more often than not it is to analyze a
differential equation that has arisen in the process of modeling some phenomenon that they
are studying. Although it is often impossible to find an explicit formula for the solution of a diffe-
rential equation, we will see that graphical and numerical approaches provide the needed in-
formation.

1.1 Modeling with Differential Equations

In describing the process of modeling, we talked about formulating a mathematical model of
a real-world problem either through intuitive reasoning about the phenomenon or fram a physi-
cal law based on evidence from experiments. The mathematical model.often takes the form of
a differential equation, that is, an equation that contains an unknown function and some of its
derivatives. This is not surprising because in a realworld problem we often notice that changes
occur and we want to predict future behavior on the basis ofhow current/values change. Let's
begin by examining several examples of how differential equations arise Wwhen we model phys-
ical phenomena.

Models of Population Growth

One model for the growth of a population is based on‘the assumption that the population
grows at a rate proportional to the size of the populationyThat is a reasonable assumption for a
population of bacteria or animals under ideal conditions (unlimited environment, adequate nu-
trition, absence of predators, immunity from disease).

Let's identify and name the variables in this'model: t=time (the independent variable);
P =the number of individuals in the population(the dependent variable).

The rate of growth of the population is. the derivative Z—T So our assumption that the rate of

growth of the population is proportionalito the population size is written as the equation

dP
~ —kP 1
m (1)

where k is the proportionality constant. Equation 1 is our first model for population growth; it is

: : : : : : : .. dP
a differential equation because it contains an unknown function P and its derivative e

Having formulatedia model, let's look at its consequences. If we rule out a population of 0,
then P(t) > O.forall t. So, if k >0, then Equation 1 shows that P'(t) >0 for all t.

This means that the population is always increasing. In fact, as P(t) increases, Equation 1
P : :
shows that C(ij_t becomes larger. In other words, the growth rate increases as the population

increases.
Equation 1 asks us to find a function whose derivative is a constant multiple of itself. We

know that exponential functions have that property. In fact, if we let P(t) = Ce" then
P'(t) = (Ce"Y = CkeX =k(Ce"') =kP(t).
Thus any exponential function of thee form P(t) = Ce* is a solution of Equation 1.
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Allowing C to vary through all the real numbers, we get the family of solutions P(t) = CeX

whose graphs are shown in Figure 1. But populations have only positive values and so we are
interested only in the solutions with C > 0. And we are probably concerned only with values of
t greater than the initial time t = 0. Figure 2 shows the physically meaningful solutions. Putting

t=0, we get P(0) = Ce% =C, so the constant C turns out to be the initial population P(0).
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Figure 1 Figure 2

General Differential Equations

In general, a differential equation is an equation that contains‘an unknown function and
one or more of its derivatives. The order of a differeptial equation is the order of the highest
derivative that occurs in the equation. Thus, Equations 1 are first-order equation. In this equa-
tion the independent variable is called t and represents time, but in general the independent
variable doesn't have to represent time. For example,\when we consider the differential equa-
tion

Y =Xy

it is understood that y is an unknown function of,x".

A function f is called a solution of a differential equation if the equation is satisfied when
y =f(x) and its derivatives are substitutedinto the equation.

When we are asked to solve a differential equation we are expected to find all possible solu-
tions of the equation. We have already solved some particularly simple differential equations,
namely, those of the form

y' =f(x)

But, in general, solving,a‘differential equation is not an easy matter. There is no systematic
technique that enables us fo solve all differential equations.

When applying differential equations, we are usually not as interested in finding a family of
solutions (the general solution) as we are in finding a solution that satisfies some additional re-
quirement/In_many physical problems we need to find the particular solution that satisfies a
condition of the form y(x,) =Y,. This is called an initial condition, and the problem of finding

a‘solution of the differential equation that satisfies the initial condition is called an initial-value
problem.

Geometrically, when we impose an initial condition, we look at the family of solution curves
and pick the one that passes through the point (X,,Y,). Physically, this corresponds to mea-
suring the state of a system at time t, and using the solution of the initial-value problem to

predict the future behavior of the system.



Direction Fields

Unfortunately, it's impossible to solve most differential equations in the sense of obtaining
an explicit formula for the solution. In this section we show that, despite the absence of an ex-
plicit solution, we can still learn a lot about the solution through a graphical approach (direction
fields).

Suppose we are asked to sketch the graph of the solution of the initial-value problem

y'=x+y, y(0)=1.

We don't know a formula for the solution, so how can we possibly sketch its‘graph? Let’s

think about what the differential equation means. The equation y' = x+Yy tells us that the slope

at any point (x,y) on the graph (called the solution curve) is equal to the.sum ofithe x - and y -

coordinates of the point (see Figure 3). In particular, because the curve passes through the
point (0,1), its slope there must be 0+1=1. So a small portion of the Selution curve near the

point (0,1) looks like a short line segment through (0,1) with slope 1 (see Eigure 4.).
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As a guide to sketching the rest of the curve, let's draw short line segments at a number of
points (x,y) with slope x+Yy . The resultis'called a direction field and is shown in Figure 5. For
instance, the line segment at the point (4,2) has slope 1+ 2 =3. The direction field allows us to
visualize the general shape of the“solution curves by indicating the direction in which the

curves proceed at each point.
Now we can sketch the solution curve through the point (0,1) by following the direction field

as in Figure 6. Notice that we have drawn the curve so that it is parallel to nearby line seg-

ments.
o ¥
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Figure 5 Figure 6

In general, suppose we have a first-order differential equation of the form
y' =F(xy)
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where F(x,y) is some expression in x and y . The differential equation says that the slope of a
solution curve at a point (x,y) on the curve is F(x,y). If we draw short line segments with
slope F(x,y) at several points (x,y), the result is called a direction field (or slope field).
These line segments indicate the direction in which a solution curve is heading, so the direction
field helps us visualize the general shape of these curves.

1.2 Separable Equations

We have looked at first-order differential equations from a geometric point of view-(direction
fields). What about the symbolic point of view? It would be nice to have an explicit formula for a
solution of a differential equation. Unfortunately, that is not always possible. But'in this section
we examine a certain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the,expression for j—y
X

can be factored as a function of x times a function of y. In other words, it'can be written in the
form

SX=WWW) ()
X

the name separable comes from the fact that the expression on the right side can be “sepa-
rated” into a function of x and a function of y. Equivalently, if ¢(y) =0, we could solve this

equation we rewrite it in the differential form
dy = fx)p(y)dx ,
dy _ dx

o) “Hx)
Then we integrate both sides of the equation:
d dx
[ = [ @
oy) Jfx)
Equation 2 defines y implicitly as a function of x. In some cases we may be able to solve
for y interms of x.
Note 1. If

f(x) x, (y)dx + @, (X) X 9, (y)dy = 0,
then

fy (%) 0oY) 4 _
Imdﬁjfz(—y)dy—c, 0,020, f(y)=0.
Note 2. Thedifferential equation of form
M(x,y)dx +N(x,y)dy =0 (3)
is calledshomogeneous differential first order equation. If function M(x,y);N(x,y) - the uni-
form functions of one and the same measurement. Equation (3) it is possible to lead to the

form

d

DoY) @
X X

With the aid of the substitution



y = Xu(x)
of equation (3) or (4) are converted to the separable equation.
Example 1. Solve the differential equation

sin?3x xdy + 3y dx = 0.
Solution. We write the equation in terms of differentials and integrate both sides:
dy 3dx or dy d(3x) _
sm 23x sin?3x -

oo

|n|y| = ctg3x+C
where C is an arbitrary constant. (We could have used a constant C;uon the left side and
another constant C, on the right side. But then we could combine these,constants by writing
C=C,—-C,) Solving for y, we get

y = C ectg’o’x

Example 2. Solve the differential equation
(Y2 +xy2) -y + X% =yx2 0.
Solution. We write the equation in terms of differentials and integrate both sides:
y2(1+ X)dy =x?(y —~8)dx.
If x=0,y=#0, x=-1, y=1, then

Yooy =X g
y—-1 X1
I(y+1+—g—)dy:I(x—1+—i—)mu
y=1 X+1
y2 2

7+y+|n|y—1|:x7—x+ln|x+1|+C

where C is an arbitrarysconstant.
Example 3. Find the solution of the initial-value problem

(x2 —3y2)dx+2xydy =0, y(2) =
Solution, et uswrite down equation in the form
dy _3y°-x*.
a2y

dy _1fy X
dx 2 x y)

Let us introduce the replacement of the unknown function of y = xu(x), then

y' =u(x) + x-U'(x).
Substituting these expressions into the initial equation, we will obtain the separable equa-
tion.




2 2
x-u’(x)+u:1[3u—1j; xu’=1[u—1); xu =2 1; xdu =" 1dx;

2 u 2 u 2U 2U
2udu _ dx, J’zfd”: X 2 —1j=|x|+I[C|. W -1=Cx:
u-1 X u- -1 X

2
(xj —-1=Cx.
X

Since y(2)=1, we have 1-4=28C; Cz—% Therefore the solution to the initial-value

2
y 3 3
G 8 y \" 8

1.3 Linear Equations

problem is

A first-order linear differential equation is one that can be putdnto the form
y'+p(x)y =a(x) (or A(x)y"+B(x)y,+C(x) =0) (1)
where p(x) and g(x) are continuous functions on a giveniinterval. This type of equation occurs

frequently in various sciences, as we will see.
It turns out that every first-order linear differential equation can be solved in a similar fashion
by multiplying both sides of Equation 1 by a suitable function called an integrating factor

1(x) £ elR0I

Thus a formula for the general solution-te.Equation 1 is provided by solution

y(x) :ﬁ( [1coaasec).

where 1(x) = e/P% |nstead of memorizing this formula, however, we just remember the form

of the integrating factor.
Note 1. It turns out that every first-order linear differential equation can be solved with the
aid of the substitution=y.= u(x)v(x), where u(x),v(x) -the unknown functions. This equation

we reduce to the form
wV+uv' +p(x)uv = q(x), u'v+u(v' +p(x)v) = q(x).
Since one of the unknown functions can be selected arbitrarily, then as v(x) is taken any
particular solution of the equation
V'+p(x)v=0,
funetion u(x) will be determined from the equation
U(x)v(x) = q(x).
Thus, the solution of linear equation is reduced to the sequential solution of two equations

with the divided variables relative to each of the auxiliary functions.

Example 1. Solve the differential equation
y+Y oy
X
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Solution. We use the substitution y =uv, y"=u'v+uv’. We obtain the following equation
' ’ 3uv 2.
Uv+uv' +—=x";

X

3V
u’v+u(v’+— =X,
X

We solve the consecutively two equations

3V
V+22=0and uv=x

X
dv. 3v_dv  3dx (dv 3dx _ 1
—=——;, —=——, | —=—|—; In|v|==-3In|x]; V=—.
dx X Vv X Vv X X
6
u'-%—xz;%:xs; du = x°dx; u:IXde:X—+C.
X dx 6

Multiplying u(x) on v(x), we obtain the general solution ofithis equation

1(x® x* C
=—|—+C|or y=—+—, C=const.
7 [ 6 J SR
Note 2. A first-order linear differential equation is‘one that can be put into the form
X"+ p(y)x = q(¥)
This linear differential equation can be solved with the aid of the substitution
X(y) = U(Y)W(Y)-
Note 3. The Bernoulli equations take the form
y'+p(x)y = a(x)y*or, X'Ep(y)x =q(y)x", neR.
These equations can be reduced to. the ‘appropriate linear equations, but them they are
usually solved with the aid of the substitution
y = u(x)v(x) or x =u(y)v(y).
Example 2. Find the solutien of the initial-value problem
2ydx+(y2 —6x)dy =0, y(6) =2.
Solution. It is easytosee‘that this equation is not linear relative to y . Let us write it down in
the form

2yd—X+y2—6x=O; %—Ex:—x; X=Uv; u’v+uv’—§uv=—x;
dy vy 2 y 2
u’v+u(v’—§vj:—1; d—V:3—V; d_v:ﬂ; In[vl=3In|y[; v=y°
y 2. dy y v oy
Thenfrom the equation u'v = —% we determine the function u(y)
uy?=-7. u’:—iz; du:—d—yz; i=Loc
2 2y 2y 2y

Let us extract the general solution of the initial equation



2
X=UV, X= L.c y3: x:Cy3+y—.
2y 2

Since y(6) =2, we have 6=8C+2, C= 1 . Therefore the solution to the initial-value prob-

lemis x = 0,5(y3 +y2).

Exercise Set 1
In Exercise 1 to 10, solve the differential equation.

1. tgxdy-ydx=0. 6. ctgxdy+ydx=0.
2. 16+ x%dy-ydx=0. 7. x*-25dy-ydx=0.
3. dey+de:0. 8. xy'= yz-le
4. (ex+2)dy-yexdx:0. 9. (x2+y2)dx:2xydy.
5, (4+x2)dy-ydx:0. 10.  (x*=3y%)dx+2xydy = 0.
In Exercise 11 to 15, solve the initial-value problem.
11. y’-éy:3e3x'6x2, y(2)=8
12, y-2y=3e%08, y(-2)=32
X
13. y'-§y=6x5sin(6x+6), y(-l):2.
14, y-Syz2e2%, y(3)=>54
X
w.yuﬂuzﬁ“&{ y(-2)=32

1.4 Second-Order Linear Equations

A second-order linear.differential equation has the form
P(x)y"+Q(x)y" +R(x)y = G(x) (1)
where P(x),Q(x),R(x),G(x) are continuous functions.
In this section‘we study the case where G(x) =0, for all x, in Equation 1. Such equations

are called'homogeneous linear equations. Thus the form of a second-order linear homogene-
ous differential'equation is

P(x)y" +Q(x)y’ +R(x)y =0. (2)

If G(x)%,0 for some x, Equation 1 is nonhomogeneous and is discussed in Section 1.5.
Theorem 1. If y,(x) and y,(x) are both solutions of the linear homogeneous equation (2)
and C, and C, are any constants, then the function y =C,y, +C,y, is also a solution of Equ-

ation 2.
The other fact we need is given by the following theorem, which is proved in more advanced
courses. It says that the general solution is a linear combination of two linearly independent
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solutions y,(x) and y,(x). This means that neither y,(x) nor y,(X) is a constant multiple of

the other.
Theorem 2. If y,(x) and y,(x) are linearly independent solutions of Equation 2, and

P(x) =0, then the general solution is given by y =C,y, +C,y,, where C; and C, are arbi-

trary constants.
In general, it is not easy to discover particular solutions to a second-order linear equation.
But it is always possible to do so if the coefficient functions P(x),Q(x),R(x) are.constant func-

tions, that is, if the differential equation has the form
y"+py'+ay =0 (3)
where p,q are constants.

It's not hard to think of some likely candidates for particular solutions of Equation 3 if we
state the equation verbally. We are looking for a functiony such that asconstant times its

second derivative y” plus another constant times y’ plus a thirdiconstant times y is equal
to 0. We know that the exponential function y =e** (wherek is/aconstant) has the property
that its derivative is a constant multiple of itself: y' =ke**. Furthermore, y" = k%" If we subs-
titute these expressions into Equation 3, we see that.y = is a solution if
e (k? + pk +q) =0.
Thus y = e** is a solution of Equation 3 if k is.a rootef the equation
k? +pk+g=0 (4)
Equation 4 is called the auxiliary equation (or characteristic equation) of the differential
equation (3).
The general solution of initial equation,takes the form:
1. y=Ce™4Ce", if k #k,, kyk,eR;
2. y=e™C,+C,x), if ky =k,
3. #yi=e%%(C,cosPx+C,sinBx), if ky, =a+i3.
Example 1. Solve the equations
a) y'—5y'+6y=0; b) y"+8y'+16y=0; c) y'—6y +13y =0.
Solution. For each case we compile characteristic equation, we find its roots, we extract the
appropriate linearly independent solutions of differential equation and their general solution:

a) k* —5k #620 =k, =2, k, =3 =y, =e*, y, =e¥* =y=Ce*+C,e*;
b) K*+F8k+16=0 =k, =4, k,=—4 =y, =e ¥ y,=xe™ =y=e""(C,+Cyx);
0) k& #6k+13=0 =k, =3+2i=>a=33=2 =y, =ecos2x, y, =e* sin2x=

y =€e¥(C,cos2x+C, sin2x).

Example 2. Solve the initial-value problem

y'-5y'+6y=0;  y(0)=1  y(0)=0.
Solution. From Example 1 we know that the general solution of the differential equation is
y=Ce? +Ce*.

11



Differentiating this solution, we get
y'=2C,e™ +3C.e*.
To satisfy the initial conditions we require that
y(0)=C;+C, =1 (@)
y'(0)=2C,+3C, =0 (b)

From (b), we have C, = —%Cl and so (a) gives

2 1 2 2
c,--C,=1,=-C;=1,C,=3;C,=—=C;=—=-3=-2.
1 3 1 3 1 1 2 3 1 3
Thus the required solution of the initial-value problem is
y =3e** —2e%,

1.5 Nonhomogeneous Linear Equations
In this section we learn how to solve second-order nonhomogeneous linear differential eg-
uations with constant coefficients, that is, equations of the form
y"+py'+ay =f(x) (1)
where p,q are constants and f(x) are continuous{unction. The related homogeneous equa-
tion
y'+py"+ay.=0 (2)
is called the complementary equation and plays an important role in the solution of the origi-
nal nonhomogeneous equation (1).

Theorem. The general solution of the nenhemoegeneous differential equation (1) can be writ-
ten as

Y=y +y"
where y is a particular solution of Equation 1 and y* is the general solution of the comple-

mentary Equation 2.
Therefore Theorem says;that.\we know the general solution of the nonhomogeneous equa-
tion as soon as we know'a particular solution y. There are two methods for finding a particular

solution: The method of undetermined coefficients is straightforward but works only for a re-
stricted class of functions f(x). The method of variation of parameters works for every function

f(x) but is usually mere difficult to apply in practice.
The Method of Undetermined Coefficients
LX) =P, (x)-e™, where P.(x) is a polynomial of degree n, then try
y* — XI’Qn(X) . ecxx ’

where Q. (x) is an n th-degree polynomial (whose coefficients are determined by substituting
in the differential equation).

2. If f(x)=e*(P,(x)coshx +Q,,(x)sinbx), where P (x) is an n th-degree polynomial
(Q,(x) isan m th-degree polynomial), then try

y* = x'e®(Sy(x) coshx + Ty (x) sinbx),

12



where Sy (x),Ty(x) and are N th-degree polynomials ( N =max{n,m} ).

Modification: r number is equal to the multiplicity of the number with respect to the roots of
the characteristic equation.

Example 1. Solve the equation y" + 3y’ - 4y = -4x - 6x + 19.

Solution. The auxiliary equation of y”+3y’-4y =0 is k®+ 3k-4 =0 with roots

_ 3+4/32-4.1.(-4) _ 3+./9+16 _ 3+4/25 _-3%5

K ,
12 2.1 2 2 2

So the solution of the complementary equation is y = Cle““‘ +C,eX,

Since f(x) = -4x°-6x +19 is a polynomial of degree 2, we seek asparticular solution of the
form y*=Ax®+Bx+C. Then (y*) =2Ax+B and (y*)"=2A" so, substituting into the given
differential equation, we have

2A+3(2Ax+B)-4( A +Bx+ C) = -4 26x+ 19
-AAX + (6A - 4B)x+ (2A+ 3B4C) 2udx” - 6x+ 19.

Polynomials are equal when their coefficients are.equal. Thus

-4A = -4, A=1,

6A - 4B =-6; or<B=3,

2A+3B-4C=19, |C=-2
A particular solution is therefore y* = Ax? +Bx +C = x? + 3x - 2.
The general solution is y = y +y*=Ce™ + C,e* + x* + 3x-2.
Example 2. Solve the equationy” —y' — 2y = 4xe*.
Solution. The auxiliary. equation of y"—y'—2y=0 is k®*—k—2=0 with roots

k, =—1, k, = 2. So the soldtion of the complementary equationis y =C.e ™ +C,e’*.
For a particular solution we try y* = (Ax+B)e*.
Then (y*) =Ae*s+ (AX+B)e* = (Ax+A+B)e* and (y*)" = (Ax+2A+B)e* so, substitut-
ing into the given-differential equation, we have
2Ae” + (Ax+B)e* — Ae* —(Ax+B)e* —2(Ax +B)e* = 4xe*,
A—2Ax—2B =4x.
Polynomials are equal when their coefficients are equal. Thus
—2A=4, A-2B=0; A=-2, B=-1
A particular solution is therefore
Yy =—(2x+1)e*.
The general solution is
y=Ce ™ +C,e2* —(2x+1)e*.

13



Example 3. Solve the equation y”+y = xsinx.

Solution. The auxiliary equation of y"+y =0 is k* +1=0 with roots
k=+i=0+1i(a=0,3=1).
So the solution of the complementary equation is
y =C,cosx+C,sinx.
For a particular solution we try
y* = X((Ax +B)cosx + (Cx +D)sinx).

We find derivatives (y*)', (y*)" and substitute them in the assigned equation:
y* = (AX? + Bx)cosx + (Cx? + DX)sinx ;
(y*) = (2Ax+B)cosx - (Ax? + Bx)sinx + (2Cx + D)sinx + (Cx® + DX)cosX
(y*) = 2Acosx - 2(2Ax+ B)sinx - (Ax? + Bx)cosx + 2Csinx + 2(2Cx + D)co8x - (Cx? + Dx)sinx .

2Acosx - 2(2Ax + B)sinx + 2Csinx + 2(2Cx +D)coSx =xSinx .

This expressions are equal when their coefficients beforeysinx, €osx; xsinx, xcosx are
equal

ol
2A+2D=0, AT
4C =0, <D=£
-2B+2C=0, 4
AA=1 B=C=0.

2
: - X X .
A particular solution is therefore y* = 'y COSX + Zsmx :

2
- X X .
The general solution is y =.C,08%+ C,sinx - 7 COSK+ 7rsinx.

The Method of Variation of Parameters
Suppose we havg already solved the homogeneous equation
y"+a)y +ay =0.
and written the solution as y =C,y,(x)+C,y,(x), where C;,C, —Vconst, y,(x),Y,(x) are

linearly independent solutions. We look for a particular solution of the nonhomogeneous equa-
tion ofithe form

y* =Cy(x)y1(x) + C,(X)y,(X) .
(Thisymethod is called variation of parameters because we have varied the parameters
C,,C, tormake them functions.)

Functions C;(x),C,(x) are determined from the system of equations:
Cy (¥)y1(x)+C, (X)y,(x) =0,
Cy (X)y1 (x)+C; (X)y, (x) =F(x).
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Example 4. Solve the equation y" +4y = i
Sin2x

Solution. The auxiliary equation of y”+4y =0 is k?+4 =0 with roots k =+2i.

So the solution of the complementary equation is
y =C,cos2x+C, sin2x.

For a particular solution we try
y* =C(x)cos2x + C,(x)sin2x.
y(X) =cos2x, yi(x)=-2sin2x,
Y,(X) =sin2X,  Yy5(X) =2c0S2x.
Functions C,(x),C,(x) are determined from the system of equations:
C1(x)cos2x + C5(x)sin2x =0,
—2C}(x)sin2x 4 2C5(x)cos2x = ﬁ
We solve this system according to Cramars’ Rules.
C0S2X  Sin2x

—2SIn2X  2c0S2X

—2008° 2%+ 2sin°2x = 2.

Then
1 0 Sin 2x 1
Ci(x)== =—-,
1) 2 _1 2c0s2x| 2
Sin2x
COS 2% 0 1
CL(x) == = —Ctg2x.
2 20-2sin2x — 29
Sin2x
Integrating last two equalities, we have:
1
Ci(X) =—=Xx,
19=-3

C,(x) = %In | sin2x .
The general selution is

y£y+y =C,cos2x+C, sin2x—%xc052x+%sin2xln | sin2x .

1.6 Systems of the differential equations
Method of the exception. Solution of the normal system of two differential first order equa-
tions, i.e., the system of the form
dy =f(x,y,2),
dx

dz
— = X1 aZ’
™ a(x,y,2)

15



by that permitted relative to derivatives of two unknown functions y(x) and z(x) (or x(t),y(t)),

it is reduced to the solution of one differential equation of the second order relative to one of
the functions. Let us examine the process of information based on example.

=X(t , . : i
X th; of the system of the differential equations
y=YyU.

X'=X-Y,
{y’ =-4x+y.
Solution. We differentiate the first equation of the system x" =x"-y’. Let'us replace'in the
last equation y" with its expression from the second equation of the system x" = X’- (-4x + y) :

X" = X"+ 4x-y. Let us replace in the last equation y with its expressionfrom the second equa-
tion of the system X" =x'+ 4x-(x-x'), x"-2x"-3x=0.

Example 1. Find the general solution {

The auxiliary equation of x"-2x"-3x =0 is k% -2k-3=0 with roots k, = —1, k, =3.
So the solution of the complementary equation is
x(t)=Ce™ +Cpe’.
Differentiating this equation for variablet , we will obtainzx’ = -C,e™ + 3C.e™.
Then we find y from the equation y = x-x":
y(1)=Ce" +Ce™ - (-Ciet 43C,e%) = 2C,e" - 2C,6%
x(t)=Ce'+Cpe®,
y(t)=2Ce"-2C,e™.
Euler's method of the solution of.the linear uniform systems of differential equations with the
constant coefficients.
Assume that the system of three,equations with three unknown functions is assigned:
X(t) = ayXx +apy +a5,2,
y'(t) = ayX +ayy +ayz,
Z'(t) = ag X +as,y +assz.

Answer: {

X =X(t)

Find 4y =y(1).

z=2(1)

We will search for unknown functions in the form
x(t)= o-e,
y(t)=8-€",
Z(t) = ’\{-ekt.

Substituting these expressions into the system and converting it, we will obtain the system
of linear homogeneous algebraic equations relatively o,(3,~ :

16



(ay; —K)au+ag,B+a3y =0,
g0+ 85,0 +(agg —k)y=0.

System (1) has non-trivial solutions, if its determinant is equal to zero. We will obtain cubic
equation for determining the number k:

a—k  ap TR
A=l ay ap-k ay |=0 (2)
dzg ap Ak —Kk

Equation (2) is called the characteristic equation of reference system. We solve, it, we find
values Kk, for each value from system (1) find «,3,~, write the linearly.independent solutions

for each unknown function, we compose the general solution of the system:.
Example 2. Find the general solution of the system of the differential equations
X'=Xx-y+12,
Yy =X+y-2z,
Z'=2X—Yy.
Solution. The characteristic equation of this system takesithe form
1-k -1 4
1 1-ke —1=0,
2 ALk
(1—K)*(—k) —L+2—2(1=k) — (1—k) -k =0,
(k=Dk=2)(k+1) =0,
k, =1k, =2,k; =-1.
The appropriate values o, 3,(.for each k let us find from the system of equations

(1-K)a—B+~=0,
a+(1-kjB-~=0, (3)
20— —k~=0.
If k=1, then
[ =0, B=ry  [a=l |Xu=¢€

a-NEl =2ia=y,=>B8=L=> y1=et,
20-8-v=0, [0=0, [~y=1 z,=¢".

If'k=2, then

—a—B+~=0, 23=0, a=1 X, =e”,
T a=PB-v=0, =>qa=y, =18=0, =1VY,=0,
20—-3-2y=0, | 0=0, V=1 |z,=e®

17
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11.
12.
13.
14.
15.

16.
17.

18.

If k=-1, then
200—3+~ =0,
a=P+y 200—B+~=0,
a+28-~=0 =

3a+P3=0,
200 -3+~ =0,

y(t)=Cy,+Cpy, +Cays,  =4y(t)=Ce'—3Cse™,

B=-3 a=1 Xg=e,
TN S B=13 =y, =3¢
N =-ba ’

We extract the general solution of the system of the differential equations

X(t)=Ce' +Cre” +Coe

z(t)=Ce' +C,e¥=5Ce".

Exercise Set 2

In Exercise 1 to 10, solve the differential equation.

a) y"+4y'-12y =0, b) y"-4y'+4y =0, )y +6y"+13y=0.
a) y"-2y'-15y = 0, b) y"+8y'+16y =0, Chy*-10y"+29y =0.
a) y"+2y'-8y =0, b) y"-14y’ + 49y =0, C) y"+6y'+34y=0.
a) y"-3y'-10y =0, b) y"+ 10y’ + 25y = 0} c) y"-8y'+25y=0.
a) y"+6y'-16y=0, b) y"-6y'+9y 30, C) y"+4y'+20y=0.
a) y"-5y'-14y = 0, b) y"+22y' +121y=0,  c) y"-8y'+41ly=0.
a) y"+y'-12y =0, b) y”-18y"4 81y = 0, c) y"+4y'+40y =0.
a) y"-y'-20y=0, b) y" +42y4+ 36y =0, c) y"-14y"+53y =0.
a)y"+4y'-21y=0,  b)y’-20y'+100y=0, c) y"+8y'+20y=0.
a) y"-3y'-18y =0, b) ¥+ 16y + 64y =0, c) y"-10y"+34y =0.

In Exercise 11 to 15, solve,the differential equation.
a) y"+2y' -8y = -16x2+16x - 22. b) y"+ 4y’ + 4y = 6e**.

14

a)y
a) y
a) y
a) y’

14

"

-y - By =24x% «2X -9 .

-4y’ «5y'= -15%% + 6x + 10.
SBY- Ty =-14x% + 4x+ 7.
+y -6y = -24x% - 4x+16..

b) y"-2y'-8y =18e¥.
b) y"-8y’+16y =6e*.
b) y"+3y’-10y = 14e?*.
b) y"- 6y’ + 9y =10e¥.

In Exercise™16 to 18, solve the differential equation.

y"+y =2C0SX.

y"+ 4y = 4(cos2x + sin2x).

y"+y =4sinx - 6COSX .

In Exercise 19, solve the initial-value problem.

19. y"+ 9y = 2cos4x - 3sindx, y(0)=0, y'(0) =12.

18
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In Exercise 20 to 22, solve the differential equation.

X

”_2 !+ - i
20. YA YIS

21, Y2y +2y=———.
e*sinx

22.  y"-y' =e*cose”.

In Exercise 23 to 32, find the general solution of the system of the differential.equations.

X' =2X+Y, X' =3x+Yy,
23. , : 24, , :
y'=3x+4y. y'=x+3y.
X" = 4x - 8y, X' = 4x + 2y,
25. , e 26. , '§
y'=-8x+4y. y' =4x + 6y.
X' =3x+y, X =2X+ Y,
27. , 3 28, , 4
y'=8x+y. y' =-6x-3y.
X' =4x-y, X"=6X-Y,
20, T 30, N0
y'=-x+4y. y' = 3X+2y.
X' = x+2y, X'=-2x+vy,
a0 g\ T
y' = 4x+3y. y'=-3x+2y.
In Exercise 33 to 36, find the general'solution-of the system of the differential equations.
X" =5x+ 2y -3z, X'(t) =-3x+ 4y -2z,
33. y'=4x+5y-4z, 34, y'(t)=x+z,
Z'=6x+4y-4z. Z'(t)=6x-6y+5z
X'(t)=3x-y+2z X'(t)=x-4y-z,
35. y'(t)=x+y+z, 36. y'(®)=x+y,
Z'(t) = 4x -yt 4z, Z'(t)=3x+z
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Il MULTIPLE INTEGRALS

In this chapter we extend the idea of a definite integral to double and triple integrals of func-
tions of two or three variables. We also use double integrals to calculate probabilities when two

random variables are involved.

We will see that polar coordinates are useful in computing double integrals over some types
of regions. In a similar way, we will introduce two new coordinate systems in three-dimensional
space — cylindrical coordinates and spherical coordinates — that greatly simplify the compu-
tation of triple integrals over certain commonly occurring solid regions.

2.1 Double Integrals Over Rectangles
We consider a function f of two variables defined on a closed rectangle
Rzgxweaﬁ|asxsucsys®

and we first suppose that f(x,y) > 0. The graph of f is a surface with equation z = f(x,y).
Let S be the solid that lies above R and under the graph of¢f, that is;

S={(xy.2) e ®* |0z <f(xy),(oy)E R]
(See Figure 1). Our goal is to find the volume of S.

R (x5 ¥
db— . f i
- NN )
= flx, ¥ . [
- < ________l_ |I 7 -
r _\\ -‘. S N @ . * * _‘| . -_'___._"__,__'—'— '-1-_-‘,5-."_-}'
I .jl._‘. I }_.I | e OB | - - - - - T . -
| e = /,"L *
{ NS
o i T, ¥5.)
| ~—— S T T T T (O B
¥ [
R AN I I O Y I B B |
0 a X X X1 Xi b X
i
Figure 1 Figure 2

The first step is to divide theyrectangle R into subrectangles. We accomplish this by dividing

the interval [a,b] into m“subintervals [x;_;,x;] of equal width szb;ma and dividing [c,d]

into n subintervals [yj_l,yj] of equal width Ay :d;c. By drawing lines parallel to the coor-
n

dinate axes through the endpoints of these subintervals, as in Figure 2, we form the subrec-
tangles

R; = {(X,Y) | Xig SX<X,Y Sy < Yj}
each with area AS = AxAy.
If we choose a sample point (xi’]-‘ ,yi’;-‘) in each Ry, then we can approximate the part of S
that lies above each Ry by a thin rectangular box (or “column”) with base R; and height
f(xi’]-‘ ,yi’;-‘) as shown in Figure 3.The volume of this box is the height of the box times the area of

the base rectangle:
20



f(xj,y;j)AS.

If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of S:

m n
Vv zZZf(x;,yi}k)AS (1)
i=1 j=1
(See Figure 4.) This double sum means that for each subrectangle we evaluate_f at'the cho-
sen point and multiply by the area of the subrectangle, and then we add the resuilts.

.

Figure 3 Figure 4

Our intuition tells us that the approximation given in»(1) becomes better as m and n be-
come larger and so we would expect that

m n
V= m,'n'TwZ,Zlf‘X"‘ YpAS. @
=l j=
We use the expression in Equation 2 to define the volume of the solid S that lies under the
graph of f and above the rectangle R
Limits of the type that appear in Equation 2 occur frequently, not just in finding volumes but
in a variety of other situations as well even when f is not a positive function. So we make the
following definition.
Definition. The double.integral of f over the rectangle R is

m n
[[onas=_im 3> t0¢.7)a8
R =l =1
if this limit exists:

A'function.f.is called integrable if the limit in Definition exists. It is shown in courses on ad-
vanced/calculus that all continuous functions are integrable. In fact, the double integral of f
exists provided that f is “not too discontinuous.” In particular, if f is bounded, and f is conti-
nuous there, except on a finite number of smooth curves, then f is integrable over R .

The sample point (xi’}‘ ,yi’}‘) can be chosen to be any point in the subrectangle R; but if we
choose it to be the upper right-hand corner of R; [namely (x;y;), see Figure 2], then the ex-
pression for the double integral looks simpler:
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m n

I fxyds_mmmZZf X,y)A 3)

R i=l =1

> DA

i=l j=1
is called a double Riemann sum and is used as an approximation to the value of'the double
integral. If f happens to be a positive function, then the double Riemann sum represents the
sum of volumes of columns, as in Figure 4, and is an approximation to the volume under the
graph of f and above the rectangle R.

The sum in Definition,

Properties of Double Integrals

1. ” (afy(x,y) £ B (X,Y) dxdy:aﬂf xydxdy+6”f (X,y)dxdy.

2. If D=D,;uD,, where D, and D2 don’t overlap except perhaps,on their boundaries
(see Figure 5), then

n

j [ f(x,y)dxdy = Z“ ey )dxdy.
R. i=1 Ri
,

L%

h
D D,
-

0 X

Figure 5

3.1 f(x,y) > g(x,y) forall (x,y) in R, then ”f(x,y)dxdyzj g(x,y)dxdy.

4. If we integrate the constant function f(x,y) =1 over a reglon D, we get the area of D:

SD—HldS

5. lf#f(x,y) > 0, then the volume V of the SO|Id that lies above the rectangle R and below

the surface z =f(x,y) is
V= j _[ f(x.y)dS
R

6. Midpoint rule for double integrals. If function z =f(x,y) is continuous in the closed
domain R, then there is a point Py(X,,Y,) in this region such, that

22



[[touns =tey)-s. [ty =ttgyo)-s.  feo) =< [[ s
R R R
is the average value of function z =f(x,y) in the region R.

For single integrals, the region over which we integrate is always an interval. But for double
integrals, we want to be able to integrate a functionf not just over rectangles but also over re-
gions D of more general shape, such as the one illustrated in Figure 6. We suppose'that D is
a bounded region, which means that it can be enclosed in a rectangular regionR-.as in Fig-
ure 7. Then we define a new function F with domain by

Fxy) = f(x,y);(x,y) €D
’ 0:(x,y) €R,(x,y) €D

¥

D / D

Figure 6 Figure 7

If F is integrable over R, then we define the double integral of f over D by
j J' f(x,y)dS = j j F(x,y)dS .
D R

In the case where f(x,y) >0, we can still interpret j j f(x,y)dS as the volume of the solid

D
that lies above D and-under.the surface z =f(x,y) (the graph of f). You can see that this is

reasonable by comparing the graphs of f and F in Figures 8 and 9 and remembering that
J- J- F(x,y)dS isthe velume under the graph of F.
R

Figure 9 alsoishows that F is likely to have discontinuities at the boundary points of D.
Nonetheless, if T is continuous on D and the boundary curve of D is “well behaved” (in a

sense outside the scope of this book), then it can be shown that ij(x,y)dS exists and there-
R

fore ”f(x,y)ds exists. In particular, this is the case for the following types of regions.
D
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Figure 8 Figure 9

A plane region D is said to be of type I if it lies between the graphs ofitwo continuous func-
tions of x, that is

D={(x,y)[a<x<b,g,(x) <y < gs(x)},
where g,(x) and g,(x) are continuous on [a,b]. Some examples of:type,! regions are shown
in Figure 10.

y ¥ ¥
Y=gl Y=g} y=glx)
|
D
. D | | LW | I
I I | I I
I I | - I y=alx) I
I y=g,lx) I [ y=gq1) | I I
I I I I . I I
0 a b X O a b t 0 a b

Figure 10

We also consider plane regions:of type Il, which can be expressed as
D={(xy)|c<y<dh(y) <x<h,(y)},
where hy(y) and h,(y) are eontinuous. Two such regions are illustrated in Figure 11.

¥4

i ————

¥a

id—————

Figure 11
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2.2 lterated Integrals

Recall that it is usually difficult to evaluate single integrals directly from the definition of an
integral, but the Fundamental Theorem of Calculus provides a much easier method. The eval-
uation of double integrals from first principles is even more difficult, but in this section we see
how to express a double integral as an iterated integral, which can then be evaluated by calcu-
lating two single integrals.

Suppose that f is a function of two variables that is integrable on the rectangle

R:{(x,y)eil%2 |a£x£b,cgy£d}.
d
We use the notation J.f(x,y)dy to mean that x is held fixed and f(x,y) is integrated with

C
respectto y from y=c to y=d. This procedure is called partial integration:with respectto y .
d

(Notice its similarity to partial differentiation.) Now If(x,y)dy is a’number. that depends on the

C
value of x, so it defines a function of x:

d
S(x) = j F(x,y) e

If we now integrate the function S(x) with respectito x from x=a to x=b, we get

b b{ d
J' SR = J' { J f(x,y)dy}dx. (1)

The integral on the right side of Equation 1 is called an iterated integral. Usually the brack-

ets are omitted. Thus
bd b{ d
I _[ f(x.y)dydx = j [ _[ f(x,y)dy]dx )
ac alpLc

means that we first integrate with respect to y from y =c to y =d and then with respect to x

from x=a to x=D-.
Similarly, the iterated integral

db d|{ b
I j f(x.y)dydx = j [ j f(x,y)dx]dy 3)

means that we first integrate with respect to x (holding y fixed) from x=a to x=b and then
we integrate the resulting function of y with respect to y from y=c to y=d. Notice that in

both Equations 2 and 3 we work from the inside out.
Fubini’'s Theorem. If f is continuous on the rectangle

R:{(x,y)eiRz|aSX§b,CSy§d},
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then

d b b d
_[R j f(x,y)dS = ! dy ! f(xy)dx = _! ix ! fxy)dy

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on
a finite number of smooth curves, and the iterated integrals exist.
Example 1. Evaluate the double integral

a2
jR [ ix-3yhonay,

where R:{(x,y)eiﬁz|0§x£2,1§y§2}.

Solution 1. Fubini's Theorem gives
2

_U(x —3y?)dxdy = j)'dxj(x —3y?)dy —j:[xy —yﬂij dx = j(x —T)dx = {é— 7XI =-12.

R 1 0
Solution 2. Again applying Fubini's Theorem, but this time integrating with respect to x first,
we have

2 2 2 2 X=2 2
[J oy = ay [oe-3y2yan= B—sxyz} dy= i@y =[2v-2° ] =12
0 x=0 1

R 1 1
If f is continuous on a type | region D such, that D:{(x,y) la<x<bg(X)<y< gz(x)}

then

{] f(x,y)ds:idxgzj(X)f<x.y)dy. (4
D a  g(x)

The integral on the right side'0f(4) is an iterated integral that is similar to the ones we con-
sidered in the preceding section, except that in the inner integral we regard x as being con-
stant not only in f(x,y) but alse.in'the limits of integration, g;(x) and g,(x).

We also consider plane.regions of type Il, which can be expressed as
D={(xy)[c<y<dh(y) <x<hy(y)} (5)
where hy(y) and h,(y) are continuous. Two such regions are illustrated in Figure 11.
Using the.sameumethods that were used in establishing (4), we can show that

d  haty)
ijf(x,y)ds - !dyh 1(_[ )f(x,y)dx (6)

where Diis a type Il region given by Equation 5.
Example 2. Evaluate

J.D I(x + 2y)dxdy,

where D is the region bounded by the parabolas y = 2x* and y =1+ x.

26



Solution. The parabolas intersect when 2x% =1+x?, that is, x* =1, so x =+1. We note
that the region D, sketched in Figure 12, is a type | region but not a type Il region and we can

write D :{(x,y) |-1<x<12x*<y<1+ xz}.

D ’ ,
y=2x"

Figure 12

Since the lower boundary is y = 2x? and the upper bouridary/s y = 1+%?, Equation 4
gives

2
1 I4x 1 . y:1+x2 1 . ; .
H(x+2y)dxdy=J‘de (x+2y)dy:j[xy+y] 22 dx=j(—3x X"+ 2X“+X+1)dx =
=ZX
D 1 2x2 -1 ! -1
1

x> xtoxd X 32
=|3———4+2—+—+X| =—.

5 4 3 2 ) 15

Example 3. Evaluate

H xydxdy ,
D

where D is the region boundethby the line y = x—1 and the parabola y? = 2x +6.

Solution. The region D' is'shown in Figure 13. Again it is both type | and type II, but the de-
scription of D as a typeslregion is more complicated because the lower boundary consists of
two parts. Therefore'we prefer to express D as a type Il region:

D:{(x,y)|—2§y§4,%y2—3£x§y+1}

L

Figure 13
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Then (6) gives

14y X2 X=1+y 1 4 y5
nydxdy Idy .[ Xydx = J[ > y:l dy:E.“(—T+4y3 +2y% —8y)dy =
3

he) 12 2 =%y2— he)
1 y° y? ‘
==L qytyol —ay?| =36,
2[ 6 T3

2.3 Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral ”f(x,y)ds, where D is one of the re-

D
gions shown in Figure 14. In either case the description of D_in terms of rectangular coordi-
nates is rather complicated but D is easily described using polar coordinates.

¥ ¥i

R’ &

-y
B,

0

Figure'14"
Recall from Figure 15 that the polar coordinates of a point are related to the rectangular
coordinates by the equations
X =rcos0,
y =rsin0.

! r=h
é
Pir, 3 = Pix,¥) :
' R
r. !
/
fr=a A=
-~ { !
Y H / - -
' L] > ziﬂ}f{"rﬂ
e x X 7] ]
Figure 15 Figure 16

The regions in Figure 14 are special cases of a polar rectangle which is shown in Fig-
ure 16.
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Change to Polar Coordinates in a Double Integral. If f is continuous on a polar rectangle
D given by r(0)<r <r,(0), <0<, then
()

ﬂf X,y)dxdy = ”f (rcosO,rsinB)rdrdo = jdd) I f(rcos0,rsinG)rdr. (1)

a i)
The formula (1) says that we convert from rectangular to polar coordinates in‘a double
integral by writing x =rcos6 and y =rsin6, using the appropriate limits of integration for r

and 0, and replacing dS by drd0. Be careful not to forget the additional factor r on the right

side of Formula 1.
Example 1. Evaluate
X
— dxdy ,
o[ o o
D
2
where D {(xy)|— yi=1 = —=}
Solution. x =2rcos6, y = rsme, |=2r.
2
XT+y2:1:>r200329+r25in26:1:>r=1.
2 2 2
X—+y—:1:>E(rzcoszeﬂzsinze):1:>r—:1:>r:2, 0<0<2m.
16 4 4 4

In polar coordinates it is given by 1<r <2,0<6 < 2x. Therefore, by Formula 1:
27

Hsmq{—+y jdxdy ”sm i’ 2rdrd9 jd@fsm wr 2rdr—

0

sin(r2 ﬁ)d(r2 ’JT) _ —ZCos(r2 w)E = —2(cos4m —cosT) =—2(1+1) = 4.

=2

l—\'—'l\)

Exercise Set 3
In Exercise 1 10'6, evaluate the iterated integral.

2 1 8§ 5 2 X 2
1. dx (x2 3+ 2y)ay. 2 J. dy J. (X + 2y)dx. 3. dx j X—dy.
) A - ¥ y
y 43 2 X Lol
4 . dX. (x :jtyy)2 ' > J.de.(ZX—y)dy. 6. . dxj 1X+(i/yz '
3 1 X 0 0
In Exercise 7 to 12, sketch the region of integration and change the order of integration.
1 x 1 3x e Inx
J dx J f(x,y)dy. 8. j dx j f(xy)dy 9. j dx J' f(x,y)dy
0 3 0 2x 1 0
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1 1ly?
10. I dy J' fooy)de 1L,
0 y

Iy

e 2 2—X 1
o Joc [ ey, Jor | toepex

2_ —1

In Exercise 13 to 16, evaluate the double integral ”f(x,y) dxdy, if f(x,y)=1and D:
D

13, {(xy)I ¥ =2y,5x-2y-6=0}. 14 {(x,y)ly:\/4—x2,y=x/3_x,x20}.

{(x,y)| y=—X,y?= x+2}. 6. {(xY)ly=logysx y<1y==1x>0}.

15.

In Exercise 17 to 18, evaluate the double integral

17 ”(x3 +3y)dxdy , where D:{(x,y)| X+y=1y=x*-1 xzo}.
D

18 nydxdy,where D:{(x,y)| y=~/X,y=0, x+y:2},
D

19.

20.

21.

22.

23.

24,

25,

26.

In Exe

Q
()

D

D

D

D

rcise 19 to 26, evaluate the given integral by.changing to polar coordinates.

. 2
Ll—i—zldxdy, where D: {(x,y)| X%+ < Wz} .

.6dxdy,where D: {(x,y)| X% +y2 =Ux/x2 +y° =6X,y =X, yzo}.

(x2 +y2)dxdy, where D {(x,y)| X% +y% < 4x} .

* Xy dxdy,WhereD:{(x,y)|1£x2+y2£4,y=x,y=0,x<0,y<0}.
X2 +y?

.e‘xz‘yzdxdy , where D {(x,y)| X% +y% < RZ}.

(x2 +y2)dxdy, where D: {(x,y)| X2 +y2 = A X2 +y2 =6,y =X,y =/3X(y > O)}.
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2.4 Applications of Double Integrals

We have already seen one application of double integrals: computing volumes. Another
geometric application is finding areas of surfaces. In this section we explore physical applica-
tions such as computing mass, center of mass, and moment of inertia. We will see that these
physical ideas are also important when applied to probability density functions of two random
variables.

Areas of Figures and Volumes of Bodies
1. If we integrate the constant function f(x,y) =1 over a region D, we get the'areaof D

sD_Hlds jds

2. If region D is determined in the poIar coordlnates, we see that the area of the region D
bounded by <O <3, 1 (0)<r<r,(9),is

B n(b)
S =”rdrd6 = jd@ I rdr.
D )

3. If f(x,y) >0, then the volume V of the solid that lies above the region D and below the

surface z =1(x,y) is
V= j J' f(x.y)ds
D

Example 1. Find the volume of the solid that lies under the paraboloid z = x? +y?, above
the xy -plane, and inside the cylinder x>4y2 =2x .

Solution. The solid lies above the/disk.D.whose boundary circle has equation x? +y? = 2x
or, after completing the square, (X —1)%+y? =1 (See Figures 17 and 18). In polar coordinates

we have x*+y?=r? and «x=rcosf, so the boundary circle becomes r®>=2rcosf, or
r=2c0s0.

1—1|'— =1
for r= 2cos #)

/

D

Figure 17 Figure 18

Thus the disk D is given by D = {(r 0) | —g <0<
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T

2cos0 % 4 2cos0 2
do j rzrdrz_‘[%} d9:4-fcos49d9=

0
2 2

— |2

V= J.J‘(x2 +y2)dS =

0 T

(W)
|
N3

(1+ 2c0s20 +%(1+ cos46)}d6 =

A

2
(1+c;)sze) 40 —2.

0 | 2

|
N

|
N

= 2-F9+sin29+lsin49}2 =3—ﬂ.
2 8 o~ 2

Example 2. Find the volume of the tetrahedron bounded by the planes x+2y+z=2,

x=2y,x=0and z=0.

Solution. In a question such as this, it's wise to draw two diagrams: one of the three dimen-
sional solid and another of the plane region D over which it lies. Figure 19 shows the tetrahe-
dron T bounded by the coordinate planes x =0, z=0,"the vertical plane x =2y, and the

plane x+2y+z=2. Since the plane x + 2y + z =2, intersects the xy -plane (whose equation
is z=0) in the line x+2y =2, we see that T Jies'above the triangular region D in the xy -

plane bounded by the lines x =2y, x+2y =2, and x=0 (See Figure 20).

¥

T + 2.1. |

x=2y 11 (ory=1-—2x/2)
D (1,1

¥y=x/2
} o
0 1 X

Figure 19 Figure 20

The plane x+2y+z =2 can be written as z=2-x—2y, so the required volume lies un-
der the graph of the function z=2-x-2y and above D= {(x,y) |0<x< Lg <y< 1—%} :

Therefore
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1 1‘% 1 X
V:IJ(Z—X—Zy)dS:Idxj(2—x—2y)dy j[Zy Xy — yz]y_Xde
D

0

x 0 &
2
1

2 2 2 1 3 .
:I 2—x—x(1—§J—(1—iJ Cxi X dx:j(x2—2x+l)dx= Xy
) 2 2 2 4 d

——X"+X| =
3

0
Example 3. Use a double integral to find the area enclosed by one loopof.the fourJeaved
rose r =co0s26.

Solution. From the sketch of the curve in Figure 21, we see that a loop is given by the region
D :{(r,e) | —Eg 0 s%,o <r< cosze}.

s 8=—%
Figure:21
So the area is
4 cos20 4 1 €0s20 1 4 1 4
S= Hrdrde jde I J‘[—rz} d9=—jcosZZOdG:—j(1+cos49)d9:
s s 2 0 2 s 4 s
4 4 4 4

_Lgidaingplt —E
4 4 T8
4
Moments and Centers of Mass

Consider-aslamina with variable density. Suppose the lamina occupies a region D of the

Xy=plane and its density (in units of mass per unit area) at a point (x,y) in D is given by
p(X,y)where is a continuous function on D.

To find the total mass m of the lamina, we divide a rectangle R containing D into subrec-
tangles Ry of equal size (as in Figure 22) and consider p(x,y) to be 0 outside. If we choose a

point (X IJ,y”) in Ry, then the mass of the part of the lamina that occupies Ry is approximately
p(Xj,Yj)AS, where AS is the area of R;.
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k

0 X

Figure 22
If we add all such masses, we get an approximation to the total mass:

k I
mx )" p(y7)AS

=1 j=1
If we now increase the number of subrectangles, we obtain.the total mass m of the lamina
as the limiting value of the approximations

m—ﬁl}i}ZpuyuAS ”bxy
=

Suppose the lamina occupies a reglon D andthas den3|ty function p(x,y). The moment of
the entire lamina about the x-axis IS

kllin ZZyu Ij’ylj JAS = ijp x,y)d

i=14"j=1
Similarly, the moment about the y- aX|s IS

kt@wzz up Ij’ylj )JAS = ‘”-pry

=l j=1
As before, we definesthe center of mass (X,y) so that mx =M, and my =M, :
x=y g M
m m
The physical significance is that the lamina behaves as if its entire mass is concentrated at
its center of mass. Thus the lamina balances horizontally when supported at its center of mass
(see'Figure 23):

Figure 23
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The moment of inertia (also called the second moment) of a particle of mass m about an

axis is defined to be mr?, where r is the distance from the particle to the axis. We extend this
concept to a lamina with density function p(x,y) and occupying a region D by proceeding as

we did for ordinary moments. We divide D into small rectangles, approximate the moment of
inertia of each subrectangle about the x-axis, and take the limit of the sum as the number of
subrectangles becomes large. The result is the moment of inertia of the lamina about the x-

axis:
kl@wzz ylj XIJ ylj )JAS = J.J‘y p(x,y)d

i=l =1
Similarly, the moment of mertla about the y-axis is

k'ﬂloZZ )P0 ¥j)AS = ”pry ™t

=l j=1
It is also of interest to consider the moment of inertia about the'origin, also called the po-

lar moment of inertia:
o= [[ 0 +y2oiyies
D

Exercise Set'4
In Exercise 1 to 11, use a double integral to findithe area of the region.

1. y=x, y:%xz. 2. y?=44%x x+3y=0. 3. x=Vy?, x=4+/2-y?.
4, r=asin26,a>0. 5, .rcosf=1 r=2. 6. r=4(1+cosH).
7. y=2-x Yy =4x+4. 8 wx=y> -2y, x+y=0. 9. r=acos50,a>0.
10. r=asin36,a>0. 11, y=4x—x°, y=2x*-5x.
In Exercise 12 to 20, usepolar coordinates to find the volume of the given solid.
12. x*+y?=R® x4z’ =R’ 13. z=x*+Yy?, z=x+y+10, z=0.
14. x*+y?=4x, 2z2= x*+y?, z=0. 15. 6z= x*+y?, X*+y*+2°=27, z>0.
16. z=x*+y?, y=x’y=1 z=0. 17. X*+y*=9, x*+y*—7>=-9.

18. z=42%%2%+y=4,x=0,y=0,z=0. 19. 2(x*+y?)-2>=0, x> +y>—z*=-16.
20 /72142 +y2, x=0,y=0,z=0,x=4,y=4.

In,Exercise 21 to 23, find the mass and center of mass of the lamina that occupies the re-
gion D and has the given density function p(x,y).

21.  p(xy)=1; D:{(x,y)|x+y:2,x:2,y:2}.
22, p(xy)=35; D:{(x,y)| x2+y2—2x=0}.
23, p(xy)=x; D:{(x,y)|y:x2,y:1}.
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2.5 Triple Integrals

Just as we defined single integrals for functions of one variable and double integrals for
functions of two variables, so we can define triple integrals for functions of three variables.
Let's first deal with the simplest case wheref is defined on a rectangular box:

B:{(x,y,z)em3|asxsb,csysd,rszss} (1)
The first step is to divide B into sub-boxes. We do this by dividing the interval [a b] into |
subintervals [x;_;,x;] of equal width Ax, [c,d] dividing into m subintervals [yJ LY ] of width

Ay, and dividing [r,s] into n subintervals [z,;,z,] of width Az. Thefplanes through the

endpoints of these subintervals parallel to the coordinate planes divide the box B into Imn
sub-boxes which are shown in Figure 24. Each sub-box has volume AVi= AXAyAz.

A

| | i | | .';-':'
1
¥ 4 i 4 i i
¥ ¥ ! ! § i
T
—

T
-
!
|
|
Ut o
"y
i

I TN

| Lol |

| e S R R G
TR

Figure 24
Then we form the triple-Riemann sum

Il m n
PR CBTEAINT 2)

i=l =1 k=l
Definition. The triple integral of f over the box B is
| m n
” f(xy,z)dV _lmlmooZZZf(xijk,yijk,zijk)AV (3)
i=l =1 k=l
ifthis limit exists.

Again, the triple integral always exists if f is continuous. We can choose the sample point to
be any point in the sub-box, but if we choose it to be the point (x;,y;,z,) we get a simpler-

looking expression for the triple integral:

” f(x,y,z)dV = mILrEOOZZZf xl,yJ,zk

i=l j=1 k=1
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Just as for double integrals, the practical method for evaluating triple integrals is to express
them as iterated integrals as follows.

Fubini’s Theorem for triple integrals. If f is continuous on the rectangular box B, then
sdb

j J' J' f(x,y,2)dV = J' I j f(x,y,2)dxdydz . (%)
B

rca
The iterated integral on the right side of Fubini’'s Theorem means that we integrate first with
respect to x (keeping y and z fixed), then we integrate with respect to y (keeping=z fixed),

and finally we integrate with respect to z. There are five other possible orders.in which-we can
integrate, all of which give the same value. For instance, if we integrate with respect to y, then

z, and then x, we have

j ”f(x,y,z)dv =ﬁjf(x,y,z)dydzdx . (5)
B arec

Now we define the triple integral over a general boundedsegion Euin three dimensional
space (a solid) by much the same procedure that we used for deuble integrals. We enclose E
in a box B of the type given by Equation 1. Then we define a function F so that it agrees
withf on E but is 0 for points in that are outside E . By definition,

_[ ”f(x,y,z)dv - j j j E(xV.z)dV .
B B

This integral exists if f is continuous and thesboundary of E is “reasonably smooth”. The
triple integral has essentially the same properties as the double integral.

We restrict our attention to continuous functions f and to certain simple types of regions. A
solid region E is said to be of type Lif itlies between the graphs of two continuous functions of
x and y, that s,

E={(xy,2) [(xy) € D,uy(x,y) Sz <up(x,Y)} (6)
where D is the projection of E“ento the xy -plane as shown in Figure 25. Notice that the upper
boundary of the solid E s the surface with equation z =u,(X,y), while the lower boundary is
the surface z =u,(xy).

I = Malx,¥)
& P
B Nz =u,lx,¥)
M -._,f’J
ol!l I
/ P SR
[
X [ | !
Figure 25
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If E is atype 1 region given by Equation 6, then

”.[fxyzdv _U J.fxyzdz ds. 7)

ur(xy)
In particular, if the projectlon D of E onto the Xy -plane is a type | plane region (as in Fig-
ure 26), then
E={(x,y,2)|a<x<b,gy(x) <y < gy(X),uy(X,y) <Z <Uy(x,Y)}
and Equation 7 becomes

b g (X)u(xy)
j j f(x.y,2)dV = j j j f(x,y,2)dzdydK ®)
E a gr(x)u(x.y)
z N & H,lx, v
/__ I 51X - ,,L o
i E 1y (x, )
. P
! n o | I} x=hly)
] I =l y) 0 _|___L‘£ I .
{ __|_| _: / | | o |_ﬁ___——|':-
a — ] 3
g// T o a
I .1' ) | f.:l I i) : LN ,
- X = k|
Figure 26 Figure 27

If, on the other hand, D is a type [I'plane region (as in Figure 27), then
={(xy.2)[c Sy dhy(y) S x<hy(y)uy(xy) Sz <uy(xY)}

and Equation 7 becomes
d hy(y)ug(xy)

j”fxyde J‘J. foyzdzdxdy (9)

¢ hy(y)up(xy)

Example 1. Evaluate j ”zdv, where E is the solid tetrahedron bounded by the four

planes x=0, y=0,z=0and x+y+z=1.

Solution. When we set up a triple integral it's wise to draw two diagrams: one of the solid re-
gion E,(see Figure 28) and one of its projection D on the xy -plane (see Figure 29). The low-

er boundary of the tetrahedron is the plane z=0 and the upper boundary is the plane
X+y+z=1(or z=1-x-y), sowe use U (x,y)=0 and u,(x,y) =1-x—-y n Formula 8. No-

tice that the planes x+y+z=1 and z =0 intersect in the line x+y=1 (or y=1-x) in the
Xy -plane. So the projection of E is the triangular region shown in Figure 29, and we have
E={(xy,z)|0<x<10<y<1-x,0<z<1-x-y}.
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i ¥i
.lﬂ_[] 1) ol
A z=1—x—) y=1—x
A BN
F | b . D
- %‘——-—----“:.IE'J 0
_..’J..-r" ¢ __:F . .
fJ-':]-'D'-'-:"--""..\M,_-_-:U - 0 y=10 1 *
X
igure 28 Figure 29
This description of E as a type 1 region enables us to evaluate the integral as follows:
11-x1-x-y 11-x 2 1-x-y 11-x
(=[] [l [15] o=3] Juny
E 00 O 0 -

0
A solid region E s of type 2 if it is of the form E= {(%,Y,2) | (y.2) € D,uy(y,z) < X < uy(y,z)}
where, this time, D is the projection of onto the 4z -plane (see Figure 30). The back surface is
X =Uy(y,z), the front surface is x =u,(y,z) ,@nthwe have

f(x,y,2)dV f(x,y,z)dx (dS. (10)
JJfrocr 07| I

D | u(y.z)

1]« 3T 1f [ a-x*T ‘4
:_I o PR (R C PN B ot A (.
2O 3 0 6. 6 40, 2

.Il - L T _—
x=uy(y,2) T
] \, —_—
¥ = iyix, z) v
x

Figure 30 Figure 31
Finally, a type 3 region is of the form E = {(x,y,z) | (x,z) € D,u;(x,z) <y <u,(x,z)} where D
is the projection of onto the xz-plane, y =u,(x,z) is the left surface, and y =u,(x,z) is the

right surface (see Figure 31). For this type of region we have
Uy (x,2)

I”fxyde ” I f(x,y,z)dy |dS. (11)

U (x,2)

39



In each of Equations 10 and 11 there may be two possible expressions for the integral de-
pending on whetherD is a type | or type Il plane region (and corresponding to Equations 8
and 9).

Applications of Triple Integrals

1. Let's begin with the special case where f(x,y,z) =1 for all points in E. Then the triple
integral does represent the volume of E:

_[! 4V =V .

2. All the applications of double integrals in Section 2.4 can be immediately.extended to
triple integrals. For example, if the density function of a solid object that occupies the region E
IS p(x,Y,2), in units of mass per unit volume, at any given point (x,y,z), then its mass is

m= p(x,y,z)dV

E
and its moments about the three coordinate planes are

MXy = ”.J.Zp(x,y,z)dv; MyZ :. | ..Xp(X,y,Z)dV; M,, = ” yp(X,y,z)dV .
E E

E

The center of mass is located at the point (X,yz), where
M M M
X=—2, V=a2B07=—".
m m m

If the density is constant, the center of mass of the solid is called the centroid of E. The
moments of inertia about the three coordinate axes are

|, = ”j(zz +y )p(xy,2)dV; 1, 2 Hj(xz +29)p(xy,2)dV; |, = ”j(yz +x%)p(x,y,z)dV.
E E E

2.6 Triple Integrals in Cylindrical Coordinates

In the cylindrical coordinate system, a point P in three-dimensional space is represented
by the ordered triple(r,0,z) "where r and 6 are polar coordinates of the projection of P onto

the xy -plane and,z"is the directed distance from the xy -plane to P (See Figure 32).

B - [ - r
» Pr,8,1) e :

I
e
0 z B gn"T_T“__T‘.-iﬂ:;f]_'{_;{h
T 00T~ | ¥
2N - --___"--—+ =y L L) I
. ¥ x T
X s F, 8, 0) L
Figure 32 Figure 33
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To convert from cylindrical to rectangular coordinates, we use the equations
Xx=rcosh, y=rsing, z=z, r>0, 0<0<2x, zeR.

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and the
Z -axis is chosen to coincide with this axis of symmetry. For instance, the axis of the circular
cylinder with Cartesian equation x* +y? =c¢? is the z-axis. In cylindrical coordinates this cy-
linder has the very simple equation r = . (See Figure 33.) This is the reason for the name “cy-
lindrical” coordinates.

Suppose that E is a type 1 region whose projection D on the xy -plane is.€onveniently de-
scribed in polar coordinates (see Figure 34). In particular, suppose that fiseontinuous and
E={(x,y,2)|(x,y) €D,uy(X,y) Sz <u,(x,y)} where D is given in polar coordinates by
D={(r,0)|a<0<B,h(6) <r<h,(6)}.

We also know how to evaluate double integrals in polar coordinates:"\We obtain

B M) <z(rH)
“‘J‘f(x,y,z)dxdydz :Jjjf(rcose,rsine,z)rdrdedz:jd¢ I rdr I f(rcos,rsin,z)dz .
E E a hy(0) z1(r.0)
The last formula is the formula for triple integration in cylindrical coordinates. It says

that we convert a triple integral from rectangular to “eylindrical coordinates by writing
x=rcos6, y=rsin, leaving z as it is, using the appropriate limits of integration for z, r,

and 6, and replacing dV by rdrdfdz.

I = ,lx, 1 z=4 -
N oo
\ | . T--"] R S |:
| |
arsg |
[\ o A0, [
" | -
| o ’| |
Bare s |
. ] b =il x. ¥l | oo
r=h8)_o| | A7 | ) [
Sy & e by
-} =51 — =7 7
8=y ) I l — e U_'_'-'_-_-i__—____"
X i : /(L{:_m ¥
r=h(d) x
Figure 34 Figure 35

Example:d. A'solid E lies within the cylinder x* +y? =1, below the plane z =4, and above

the.paraboloid z=1-x*—y?. (See Figure 35.) The density at any point is proportional to its
distance.from the axis of the cylinder. Find the mass of E.
Solution. In cylindrical coordinates the cylinder is r =1 and the paraboloid is z=1—r?, so

we can write E = {(r,e,z) |0<0<2r,0<r<11-r*<z< 4} . Since the density at (x,y,z) is
proportional to the distance from the z -axis, the density function is
f(x,y,2) =Ky X2 +y2 =Kr
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where K is the proportionality constant. Therefore, the mass of E is

2nl 4 21 1
'm (xy,2)dV = _[HK X2 +y2dV = H_[ (Kr)rdzdrdd = ”Kr ) Jardo =
0 012

5 1
:Kjdej 3r +r )dr:ZﬂK +r_ :121TK.
5 5
0 0 0
Example 2. Evaluate

2n Na—x2 2

J' j- I (x? +y?)dzdydx.
2 _\J4-x2 \/y2+x2

Solution. This iterated integral is a triple integral over the solid region

:{(x,y,z)|—2§x§2,—\/4—x2 Sygx/4—x2,\/x2+y2 SZSZ}

and the projection of E onto the xy -plane is the disk x* +y*< 44The lower surface of E is

the cone z = 4/x? +y2 and its upper surface is the‘plane 'z = 2. (See Figure 36.)

This region has a much simpler description in cylindrical coordinates:
E={(r0,2)|0<6<2n,0<r<2r<z<2}.

Figure 36
Therefore, we have

21 VA=A 2 212 2 2r 2

j J. j (x? +y?)dzdydx = J.”rzrdzdrde :J.de.[r3(2—r)dr =
2152 20 00r 0 0

2
:ZﬁFr“—irS} =ET(
2 5 |, 5
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2.7 Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the spherical coordinate system. It
simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

The spherical coordinates (r,0,0) of a point P in space are shown in Figure 37, where
p= |OP| is the distance from the origin to P, 6 is the same angle as in cylindrical coordinates,

and « is the angle between the positive z-axis and the line segment OP .

L

e P, 8, )

Figure 37 Figure 38

The spherical coordinate system is especially useful'in problems where there is symmetry
about a point, and the origin is placed at this point

The relationship between rectangular and“spherical coordinates can be seen from Fig-
ure 38. From triangles OQP and OPP’ we‘have r=psiny, z=pCosy.

But x=rcos6 and y=rsinf, so to convert.from,spherical to rectangular coordinates, we use

the equations
X =pSingCosh, y=psinpsinb, z=pcosy.
We have arrived at the following,formula for triple integration in spherical coordinates.

j“f(x,y,z)dxdydz . Ijjf(p sinpcos6,psingd sing,pcos e )p? sing dpdode.
E E

Example 1. Use spherical coordinates to find the volume of the solid that lies above the
cone z = /x’ +y%.andibélow the sphere x* +y? +z2 < z. (See Figure 39.)

Il{L[L 1)

| _J___.l _}':_:_ZZ
/ -
] | 1
I. | .I
.nll‘ﬁ'"'——_ - | il _——"",.-:ffl
N\ I = f'.l
4 — I =s/x" T+ v
N
/ 3
X
Figure 39
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Solution. Notice that the sphere passes through the origin and has center (00%) We

write the equation of the sphere in spherical coordinates as p® = pcosy or p = Ccos.
The equation of the cone can be written as this gives singp =cosyp, or ¢ :E. Therefore
the description of the solid E in spherical coordinates is

E:{(p,e,@)|0S9£2ﬂ,0S@SE,OSpSCOSLp}.

/ . \ _ ) %~ 1. \ —
o — M [l | I
e D e T e T
I X ¥ X v
o vanes from 0 to cos o ¢ vares from 0 o # varies from 0 to 2.
while ¢ and & are constant. while # is constani
Figure:40

Figure 40 shows how E is swept out if we integrate first with respect to p, then ¢, and
then 0. The volume of Eis

2‘rr4COS&p % 3 7|cose
V- mdv ” jps.n@d@dpde j j.m{ } doo
0 3 0
2T COS&pZ T
=27 | sinpcos® pdp == =—.
I T R 3{ 4 L 8

Exercise Set 5
In Exercise 110 5, evaluate the triple integral.

) [[[ y22dxdydz, Vi{(xy,2)l0<x<L0<y<x0<z<xy}.

) .:V:.xzyzdxdydz, V: {(x,y,z)|z =x>4+y? x4y’ =1z= 0},

3 .\/“(2x—y+4z)dV, Vi{(xy.z) x+2y+2=2,x>0,y>0,2>0}.
4. .:V.:(ZX—Y)dV, V:{(x,y,z)| Z=X+y+4,y :4x,x:4,z=0,y>0}.
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j”(x—yﬂ)dv, V:{(x,y,z)| yi=4x,z=4-x,1 =O}.

In Exercise 6 to 11, use a triple integral to find the volume of the given solid.

6. V:{(x,y,z)| X% +y2 =10, x> +y2 =13x, 2= /x> + Y2, z=0,y20}.

7. V{(xyz)|x +y2+72°=17" =x +y}
8. V: {(xyz)lz +y,y:x,y:],z:0}.
9. V: {(xyz)|22—x +y?, 2= 6}

10. V: {(xyz)|x +z°=4,y=-1y= 3}

11. V:{(x,y,z)| z=%4y% x=y ,x:4,z:0}.
In Exercise 12 to 14, find the mass and center of mass of'the selid V- with the given density
function p(x,y,z) =

12. V: {(xyz)|z_ (x2+y2),z:32}.
13. Vi {(x,y,z)|z \/x2+y2,z:36}.
14. V: {(x,y,z)|y WX +2%,y= 9}

2.8.Lineilntegrals
In this section we define an integral that is similar to a single integral except that instead of
integrating over an interval [a,b], we integrate over a curve C. Such integrals are called line
integrals, although “curve integrals” would be better terminology. They were invented in the
early 19th century to solve preblemsiinvolving fluid flow, forces, electricity, and magnetism.
We start with a plane curve<C given by the parametric equations
=x(t)y=y()a<t<b (1)
If we divide the parameter |nterval [a,b] into n subintervals [t;_;,t;] of equal width and we
let x, =Xx(t;) anday; =Wy(t), then the corresponding points P(x;,y;) divide C into n subarcs
with lengths Asy, As,3AS,,...,As, . (See Figure 41.)

e E :-;.I
¥ F; : ,.:Pl. Wi ¥y
= e '4‘ .."'- 'P
Co { P
> { f 3
b
WA .
MO
0 \ I x
I x [
T Fa *l. b1
iy I;
Figure 41
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We choose any point P*(x.",y;") in the i-th subarc. (This corresponds to a point t in
[ti.t;].) Now if f is any function of two variables whose domain includes the curve C, we

evaluate f at the point P*(x.",y; ),multlply by the length As; of the subarc, and form the sum

Zf X YDA

which is similar to a Riemann sum. Then we take the limit of these sums and make.the follow-
ing definition by analogy with a single integral.

Definition. If f is defined on a smooth curve C given by Equations 1, then the line integral
of falong Cis

_[ f(x,y)ds = fim f(xl YA )

i=1
if this limit exists.
We found that the length of C is

(%%

A similar type of argument can be used to show that'if f is a continuous function, then the
limit in Definition always exists and the following formula can be used to evaluate the line

integral:
jfxyds If \/@t‘j (‘;O dt. 3)

The value of the line integral does not depend on the parameterization of the curve, pro-
vided that the curve is traversed‘exactly‘once as t increases from a to b.
Just as for an ordinary single Integral, we can interpret the line integral of a positive function

as an area. In fact, if f(xjy) =0, j f(x,y)ds represents the area of one side of the “fence” or
C

“curtain” in Figure 42; whose base is C and whose height above the point (x,y) is f(x,y).

i

gl
N

Figure 42
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Example 1. Evaluate j (2+x%y)ds, where C is the upper half of the unit circle x* +y? =1.
C

Solution. In order to use Formula 3, we first need parametric equations to represent C. Re-
call that the unit circle can be parameterized by means of the equations x =cost,y = sint and
the upper half of the circle is described by the parameter interval 0 <t <. (See Figure 43.)

¥

0 I X

Figure 43
Therefore Formula 3 gives

T

2 2 b
j(2+x2y)ds—j(2+cosztsint)\/(z—fj +(3—¥j dt:j(2+cosztsint) sin®t +cos® tdt =
C
0 0

™ 3 ™
:j(2+cosztsint)dt: 7 ALY P
) 3 0 3

Suppose now that C is a piecewise-smooth.curve; that is, C is a union of a finite number
of smooth curves C,;,C,,C,,...,C, Where, asiillustrated in Figure 44, the initial point of C,; is
the terminal point of C;. Then we define the'integral of f along C as the sum of the integrals
of f along each of the smooth pieces of,C :

Lf(x,y)ds= j fx.y)ds + L F(x,y)ds+...+ _[C f(x,y)ds.

G
¥i
Vi _ * (1,2)
C, .
{'--1._“ - - .____..._ i_‘ f
- o
v - | :_J.- L, |
L C /
s . X
0 I :':]. []l X
Figure 44 Figure 45
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Example 2. Evaluate j 2xds, where C consists of the arc C, of the parabola y = x? from

(0,0) to (1,2) followed by the vertical line segment C, from (11) to (1,2) C,.
Solution. The curve C is shown in Figure 45. C, is the graph of a function of x, so we can

choose x as the parameter and the equations for C; become x =x,y = x>,0<x<1,
Therefore

J.CZXdS:jJ‘ZX\/(%J (dyj dx = IZXMdX— (1 4x) 1=5€_1.

On C, we choose y as the parameter, so the equations of C, are x=1y=y,1<y<2

j2xds _[2 \/{d’(] [g—ﬂzdy:jmy:&

55 <1
5 72

I 2xds=| 2xds+ | 2xds=
C C C,

Any physical interpretation of a line integral j f(x,y)ds depends on the physical interpreta-
C

tion of the function f. Suppose that p(x,y) represents the linear density at a point (x,y) of a
thin wire shaped like a curve C. Then the mass m, of C is

= ecyas.

The center of mass of the wire withndensity function p(x,y) is located at the point (X,y),
where

1
X = EjXp(x,y)ds; = —Jyp x,y)d

Two other line integrals are obtained by replacing As by either Ax;=X;—x,_; or
Ay, =Y, —Y, , in Definition. They are called the line integrals of f along C with respect to

xandy:
n

j f(x,y)dx = lim f(xI YO)AX j f(x,y)dy = I|m f(x,yh)AY;. (4)

N—o0
i=1 i=1
When we want to distinguish the original line integral j f(x,y)ds from those in Equation 4,
C

we call'itthe line integral with respect to arc length.
The following formulas say that line integrals with respect to x and y can also be evaluated

by expressing everything in terms of t:x = x(t),y = y(t),dx = x'(t),dy =y'(t).

b
j F(x,y)dx = J' F(X(0), y(O)X ()t
¢ a



b
jcf<x,y)dx= j F(x()y(D)yx()dt ©)

It frequently happens that line integrals with respect to x and y occur together. When this
happens, it's customary to abbreviate by writing

| Pocyyoc [ ey = [ Pouyioc+Qounsy. | @
Example 3. Evaluate j y2dx + xdy, where (a) C =C, is the line segment from (-5,-3) to
C

(0,2) and (b) C=C, is the arc of the parabola x=4—y? from (-5,-8) to (0,2) (See Fig-
ure 46.)

¥ B
.-"’FH-'__ I
C
(0,2) B /’/
e, 7
r:' -5
/./ '\\} \\\_‘H‘H
v Py a b !
i B
) x=4 > -
& - - - .
(—5,—3) my
Figure 46 Figure 47

Solution.
(a) A parametric representation for the line. segment is x =5t -5,y =5t—-3,0<t<1. Then

dx = 5dt,dy = 5dt ,and Formula 6 give

1 1
J' y2dx + xdy = I (5t — 3)%(50lt) +(5t =5)(5¢lt) = 5_[(25t2 _ 25t + 4)dt =
C
0

0

1
5

3 2
5| 202U | €23
3 2 n 6
(b) Since the parabola is given as a function o y, let's take as the parameter and write C,
as x=4—y? yi=y,~8<y<2.Then dx=—2ydy and by Formulas 6 we have

2 2
[ oo = v 2ny + (4—yAoy = [ (25 -y 4y =
-3 -3

2

4 3
Yo ¥
= -Zw)l 4g

In general, a given parameterization x = x(t),y =y(t),a<t<b, determines an orientation
of a curve C, with the positive direction corresponding to increasing values of the parameter t .
(See Figure 47, where the initial point A corresponds to the parameter valuea and the terminal
point B corresponds to b .)

402
6
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If —C denotes the curve consisting of the same points as C but with the opposite orienta-
tion (from initial point B to terminal point A in Figure 47), then we have

I f(x,y)dx = jfxydx I f(x,y)dy = jfxy (7)

But if we integrate with respect to arc length, the value of the line integral does not change
when we reverse the orientation of the curve:

J._Cf(x,y)ds - Lf(x,y)ds.

We now suppose that is a smooth space curve given by the parametric equations
=x(t).y=y(t).z=z(t)a<t<b.
If f is a function of three varlables that is continuous on some region containing C, then we

define the line integral of f along C (with respect to arc length) in a manner similar to that for

plane curves:
n

J f(x,y,z)ds = lim » f(x"y’,z"As

N—c0
i=1

We evaluate it using a formula similar to Formula 3:

b 2
j f(x,y,2)ds = I f(x(t),y(t),z(t))\/(z—)t(j {%ﬂ (‘;fj dt 8)
C a

Therefore, as with line integrals in the plane, we\evaluate integrals of the form
[ Pouy.2)scaloiyz)dy +Rixy ez ©)
C

by expressing everything (x,y,z,dx,dy,dz) interms of the parameter t.

Example 4. Evaluate J- ysinzds, where C is the circular helix given by the equations
C

X =cost,y =sint,z =1,0 <t < 2w.(See Figure 48.)

o
—1 H/ —1
(1] (1]
¥ x
1

Figure 48
Solution. Formula 8 gives

B iV (dy¥ (dzV., f
Iysinzds:j(sint)sint (—j +(—y) +(—j dt:J‘sinzt\/sin2t+coszt+1dt=
C g dt dt dt )
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27 o

- ﬁj%(l—cosZt)dt = g[t —%sinZt} =+/2m.

0 0

Green’s Theorem
Green's Theorem gives the relationship between a line integral around a simple closed
curve C and a double integral over the plane region D bounded by C. (See Figure 49. We
assume that D consists of all points inside C as well as all points on C.) In stating'Green’s
Theorem we use the convention that the positive orientation of a simple closed curve C re-
fers to a single counterclockwise traversal of C. Thus if C is given by.theyvector function

r(t),a<t<b, then the region D is always on the left as the point T (t) tfaverses €. (See Fig-
ure 50.)

¥

D |

c
0 X
. Figure 49 "
C
D n
C
0 3 0 x
(a) Positivesasientalion (b) Negative orientation
Figure 50

Green’s Theorem. Let.C be a positively oriented, piecewise-smooth, simple closed curve
in the plane and let Dube the region bounded by C. IfP andQ have continuous partial deriva-

tives on an open region that contains D, then

J.nydx+Qxydy Ij[@—S—de : (10)

Then Green’s Theorem gives the following formulas for the area of D:

S :cj}xdy :—(j‘)ydx:%q‘)xdy—ydx. (11)
C

C C
Example 5. Find the area enclosed by the ellipse —+g—2 1.
a’

Solution. The ellipse has parametric equations x =acost,y =bsint, where 0<t<2x. Us-

ol



ing the third Formula 11, we have

27 2T
S :% j xdy — ydx :% j (acost)(bcost)dt — (bsint)(-asint)dt :a?bfdt —
C 0] 0

Exercise Set 6
In Exercise 1 to 11, evaluate the line integral, where L is the given curve.

1 xdl, if L is line segment from A(0;0) to B(12).

L
: o il_l Jif L is line segment, y:x+2, from A(2,4) to B(:L3)
© ) x+y
L
( x=a(t—sint),
J2ydlif L a>0).
> | ! {y:a(l—cost), @>0)

4 .(X+Y)d|,ifL p? =a’cos?0.
1
5 (X2 —2xy)dx+(y2 —2xy)dy, if L is y=x? from A(=L1) to B(L1).

L
6 [2xydx—xtay,if L 0AB: 0(0,0), BRO) AR

.L
- =2c0s°t,
7 [xdy—ydx,ifL flom A(2,00'to B(0,2).
1 y = 2sin’t;
X = COSt,
8. 12xydx+y2dy+22dz,if Lag 1y =sint, from A(1,0,0) to B(1,0,4x).
Lag Z=2t,
='acost,
9 (]Sydx—xdy,ifL {X acFJs
' 1 y =bsint.

10. (J‘)xdy, if. L"is triangle bounded by y=x, x=2, y=0.
L

X <'[>(x2 +y2)o|x+(x2 —yz)dy, if L is triangle with vertices A(0,0), B(L0), C(0,1).
L

92



I INFINITE SEQUENCES AND SERIES
3.1 Series
If we try to add the terms of an infinite sequence {an} we get an expression of the form
q+a,+ag+..+a, +.. (1)
which is called an infinite series (or just a series) and is denoted, for short, by the symbol

o0
Sa, o Ya.
n=1

We use a similar idea to determine whether or not a general series (1)+has a sum. We
consider the partial sums
Sy=ay,
S, =a;+a,,
S;=a,+a,+as,

and, in general,
n

Sn=a1+a2+a3+...+an=2an. (2)

i=1
These partial sums form a new sequence {Sn}, which,may or may not have a limit. If
lim S, =S exists (as a finite number), then, as in the preceding example, we call it the sum of

N—o0

the infinite series Zan :

o0
Definition. Given a series a; +a, +@; +u.+a, +...= Zan , let S, denote its n-th partial
n=1

n
sum: S, =a;+a, +a; +...+4a, =Z:an :
=1
If the sequence {Sn} is'convergent and lim S, =S exists as a real number, then the se-

N—o0

ries Zan is called convergent and we write a; +a, +a; +...+a,+...=S.

The number Shis called the sum of the series. Otherwise, the series is called divergent.
Thus the sum‘of a Series is the limit of the sequence of partial sums. So when we write

Zan =$§, we mean that by adding sufficiently many terms of the series we can get as close
n=1
as we like to the number S. Notice that

00 n

E a,=1m » a.
N—>o0 &
n=1 i=1

Example 1. An important example of an infinite series is the geometric series

0
a+aq+aq®+aq’ +aq’ +...+aq" +...= Zaq”‘l.
n=1
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Solution. Each term is obtained from the preceding one by multiplying it by the common ra-
tio q.
If =1, then S, =a+a+a+..+a=na— *o. Since lim S, doesn't exist, the geometric

N—0

series diverges in this case.
If g+#1, we have

S,=a+aq+aq’+aq> +aq” +..+aq""
qS, =aq+aq’ +aq’ +aq* +...+aq".
Subtracting these equations, we get
Sn—aS, :a_aqn,
. Gl
1-q
If —1<q<1, we know from that q" — 0 as n— o, S0
all-q') _ a

lim S, = lim = :
n—oo n—o 1—q 1—q

Thus when |q| <1 the geometric series is convergent andiits sumis S = 11.
—q

If |q| >1 or q=-1, the sequence {q”} is divergentiand so, by Equation 3, lim S, does not
N—00

exist. Therefore the geometric series diverges inthose cases.
We summarize the results of Example 1 asfollows.
The geometric series

o0
a+aq+ag’+aq’ +aq +..+aq"t+...= Z:aq”‘1
=1

is convergent if |q| <1 and its Sumis S = %.
—q
If |o| > 1, the geometric series is divergent.

Example 2. Find'the sum of the geometric series Z@j :
n=1

Solution. Theffirst term is a, :g and the common ratio is q= g Since ¢ :%<1, the se-

‘cnoo

o . . a 3
ries is convergent and its sumis S=——= = >

1-q9 4_

ol w

0

Example 3. Show that the series Z

n=1

Solution. This is not a geometric series, so we go back to the definition of a convergent se-
54

is convergent, and find its sum.
n(n+1)



ries and compute the partial sums.
n

Snzz__l _ 1 + = + L +..+ L :
— ii+) 1.2 2-3 34 n(n+1)
We can simplify this expression if we use the partial fraction decomposition
1 1 1

i+ i+1
Thus we have

Sn:Z..l :(1_1)4_(1_1}4_(1_1]4_+(i_1j+(1_ij’
— i(i+1) 2 2 3 3 4 n-1 n n n+l

and so

lim S, = lim (1—ij=1.

n—»co N—»c0 n+1

Therefore the given series is convergent and

o0

1
Zn(n+1) N

n=1
Example 4. Show that the harmonic series

1 1 1 1
E — i Nt ...+—+ ...
n 2 3 n
is divergent.

Solution. For this particular” Series it's convenient to consider the partial sums
S2:54:Sg,.:S,0,.- and show thatthey become large.

1
S, =1+—
2770

84:1+£+ 1+1 >1+1+ 1+1J:1+E
2 \3 4 2 \4 4 2

141 1 1 1 11 1 (11 1111 3
Sg=l+—+lst+—|+|—F+=F+=+= >+ =+ = [+]| ==+ =+ = [=1+=
29\ 3% 4 5 6 7 8 2

4

S >1+=
16 >
5

Sy >1+—
32 5

6
Sga >1+§

Sn>1+ﬂ.
2 2
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This shows that S2n — 00 @S N—» oo and so is divergent. Therefore the harmonic series di-
verges.

0

Theorem 1. If the series » a, is convergent, then lim a, =0,

n—o
n=1

Note 1. The converse of Theorem 1 is not true in general. If lim a, =0, we cannot con-

nN—0

, : : 1 :
clude that is convergent. Observe that for the harmonic series » — we haveslim a, =0, but
n n—o0

we showed in Example 4 that is divergent.

o0

The test for divergence. If lim a, does not exist or if lim a, 0 then the series » a,
n—o0 n—o0
n=1

is divergent.

n?+3
> diverges.
+

Example 5. Show that the series Z
n
=1

2 2
Solution. lim a, = lim o +3 :(f): lim ZL=2;«t0. So the series diverges by the

N—00 N—00 n2 +5 o0 N—o0 n2

Test for Divergence.

o0 o0 o0
Theorem 2. If Zan and an are convergent series, then so are the series ann

n=1 n= n=1

0

1
(wherec is a constant), Z:(an +b,),'and Z:(an —-b,), and
=1

n=1
Z.O:can =cian,
n=1 n=1
D (@ tb) = a,+ > by,

n=1

o0 n
Example 6. Find thessum of the series E [ 3 +(§j J
o nn+1) \5

0

Solution. The series Z(%) IS a geometric series with aﬁ% and q:3

— 5
=3\ 3
Z(Ej T

n=1

y SO

1
n(n+1)

In Example 3 we found that Z
n=1
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So, by Theorem 2, the given series is convergent and
[e'e) n n
3|2 (E} 3yt +Z(§j 314329,
= nn+1) \5 n(n+1) 5 2 2

Exercise Set 7
In Exercise 1 to 15, determine whether the series Zan Is convergent or divergent. If it is

convergent, find its sum.

— 2n+3 = 3n° -1 46
1. ) 2. . 3.
Z n+5 ;2n2+5 rZ‘Sn +5n
N +3 N 2n+3 N> #3n-1
4, ) 5. . 6.
Z:n +9 Z4n+5 Z:n +5N+9
o0 n o0 o0 n
7 3 13
7 — . — 4 — .
Z(J : Z[ZSJ 9 24(5]
n=1 n=1 n=1
5" 4 " 3" 44" 5" 15"
10. n§:1 T 11, n§:1 o 12. n§:1 o
= 1 = 3 > 5
13. . 14. : 15. .
Z:n(n+2) Z:n(n+3) n(n+4)
n=1 n=1 n=1

3.2 The Integral Test. The'Comparison Tests
In general, it is difficult to find the exact'sum of a series. We were able to accomplish this for

0

geometric series and the series Z
- n(n+1)

because in each of those cases we could find a

simple formula for the n-th partial'sum S, . But usually it isn’t easy to compute lim S, . There-

N—o0

fore, in the next few/sections, we develop several tests that enable us to determine whether a
series is convergent or_divergent without explicitly finding its sum. (In some cases, however,
our methods will enable us to find good estimates of the sum.) Our first test involves improper
integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of the
positive integers:

n=
There’s no simple formula for the sum S, of the first n terms. We can confirm this impres-

. . ) . 1 .
sion with a geometric argument. Figure 1 shows the curve y =—- and rectangles that lie be-
X
low the curve. The base of each rectangle is an interval of length 1; the height is equal to the

o7



value of the function y = iz at the right endpoint of the interval. So the sum of the areas of the
X

rectangles is

Zi:1+i+i+...+i+...
n? 22 3 n?

L] | 2 l*._, _I|_ -:r, X
3
Figure 1

If we exclude the first rectangle, the total area of the remaining rectangles is smaller than

2

the area under the curve y = S for x>1, which is thewalue of the integral I d_>2< We discov-
X X
1

ered that this improper integral is convergent and has value 1. So the picture shows that all the

: 1 h X
partial sums are less than —-+ IdT =2
1 X
1

Thus the partial sums are bounded. We also know that the partial sums are increasing (be-
cause all the terms are positive). Therefore the partial sums converge (by the Monotonic Se-
quence Theorem) and so the,seriesuis convergent. The sum of the series (the limit of the partial
sums) is also less than 2:

ii—l+i+i+ +i+ <2
= n? 22 32 o

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test.

The Integral Test. Suppose f is a continuous, positive, decreasing function on [1,+oo) and

let.a, =f(n). Then the series Zan is convergent if and only if the improper integral If(x)dx
n=1 1
is convergent. In other words:

(a) If If(x)dx IS convergent, then Zan IS convergent;
1

n=1
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b) If jf(x)dx is divergent, then Zan is divergent.

Example 1. For what values of « is the series

1
Z——1+—+—+ .
= n“ n

convergent?

Solution. If «<0, then lim i:oo. If o=0, then Iim i:1. In either case
n—oo N n—o

lim i& # 0, so the given series diverges by the Test for Divergence.
n—oo N

. 1 . : ” :
If a<0, then the function y=— s clearly continuous, pesitive, and decreasing on
X

0

[], +oo). We found that I i&dx converges if o >1 and diverges.if & <1.

X
1

Q.

: 1 : : :
It follows from the Integral Test that the series —- converges if a>1 and diverges if

n=1 \

a<l.
The series in Example 1 is called the «v«Series. It is important in the rest of this chapter, so
we summarize the results of Example 1 for-futurereference as follows.

The o -series Z——1+i+i+ +i+ is convergent if a>1 and divergent if

— 2% 3 n“
a<l.
Example 2. Determine whether the series

0

Z 1 —l+1+l+
—~\n+1in‘(n+1) 2in*2 3In*3 4In‘4

converges or diverges.

Solution. The function f(x) = L IS positive and continuous for x >1 because

(x+1)In*(x+1)
the logarithm function is continuous.
So we can apply the Integral Test:

In(x+1) =t
( ( h din(x+D)=dt| ¢
J.f(x)dx:J. d>i1 dxzj‘wdx: (In(x+1) =dt _ d_::
4 A (x+D In*(x+1) A In*(x+1) x=1=t=In2 Inzt
X=0wo=t=0w
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N

N 3
. ) t
_ lim I t4dt = lim (—j
N—>o0 Noowo | —3
In2

In2

| 11 1 1
:“m T =0+ = =1,001
N%( 3N° 3|n32j 3I°2  3In°2

0

Since this improper integral is convergent, the series Z 7 s also conver-
= (n+1In"(n+1)

gent by the Integral Test.

In the comparison tests the idea is to compare a given series with a serieshat iSknown to
be convergent or divergent.

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are smaller
than those of a known convergent series, then our series is also convergent. The second part
says that if we start with a series whose terms are larger than those-ofia knoewn divergent se-
ries, then it too is divergent.

The Comparison Test. Suppose that Zan and an are.series with positive terms:
(a) If an is convergent and a, <b, for all n, then Zan is also convergent;
(b) If an is divergent and a, > b, for all n, then Zan Is,also divergent.

Example 3. Determine whether the series Z converges or diverges.

2024 4n+3
Solution. For large the dominant term inithe denominator is 2n® so we compare the given

. . . 5
series with the series 22—2 Observe that
n

o 5

<
20° +4n+3 20’
because the left side has a bigger denominator. We know that

D=
on? 2 e
IS convergent because it's'a constant times o -series with o =2 >1. Therefore

Z 5
2n° +4n+3

is convergent by part (a) of the Comparison Test.
The Limit. Comparison Test Suppose that Zan and an are series with positive

terms.Af
. a
lim 1=c
N—o0 n

where c is a finite number and ¢ > 0, then either both series converge or both diverge.
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3’ +4n+7

converges or diverges.
n°+6

Example 4. Determine whether the series Z
n=1

Solution. The dominant part of the numerator is 3n® and the dominant part of the denomina-
tor is n°. This suggests taking

3n° +4n+7 n>
anzs—, bn:—5:—3
n° +6 n> n
3+ 4 + !
? 3 2t 3
I|m _im (3n +54n+7)n _ Im”—6n:3.
n—>oobn N—o0 n°+6 e g 0O

5

>

Since Z— IS convergent (o -series with o =3 >1), the given series converges by the

n=1

Limit Comparlson Test.
Notice that in testing many series we find a suitable comparisonsSeries by keeping only the

highest powers in the numerator and denominator.

Exercise Set 8
In Exercise 1 to 20, determine whether the series Zan IS convergent or divergent,

where a, is
2 1
L o4n 5 4£+1. 3 a — r13+2 |
n*+1 n°+2 (n+1)In“(n+12 nd+3
1
5+ 6. 1 L 8 13 |
Vn®+2n (n+2)Infn+2) N3 +2 (n+1)In(n+1)
3n+2 2N+ 5n+1 3n+2
9. , 10. . 11, > 12.
n®+6 %3 n*<n nn+1
2 1 2n+1 n
n 14, . 15. . 16. .
B 4n+n 3 (2n+1)(3n+2)
1
17 2 N gL 10. ) —
n® 45 In®+8 (n+5)In“(n+5) (n+5)In°(n+5)

3.3 The Ratio and Root Tests
The following test is very useful in determining whether a given series is convergent.
The Ratio Test.

(@) If lim = Gt = A <1, then the series Za IS convergent.

n—o0 an

(b) If lim = sl A 1or lim 2o A= , then the series Za is divergent.

N—o0 an N—o0 an
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a,,
(c) If lim 22 =A=1, the Ratio Test is inconclusive; that is, no conclusion can be drawn
n—o0 an

about the convergence or divergence of Zan :

Example 1. Determine whether the series 223—1 converges or diverges.
n=1 '
Solution. We use the Ratio Test with
3n
a,=——,
" (% +1)-n!
3n+1 3n+1
a, = = ,
(D2 +D-(n+D)! (N2 +2n+2)-(n+D)!
a,, 3™ (n® +1)-n! . 3-(n® +4)
lim == = lim — = lim — =
n->o0 an Cow (P +20+2)-ni(n+1)-3" o (0% + 2n+2) (N4 D)
1 1
N
=3- lim =3-0=0.

iae (1 2+12j(1+ 1)
n n n

Since A =0<1, the given series is convergent by the Ratio Test.

The following test is convenient to apply, when:n-th powers occur. Its proof is similar to the
proof of the Ratio Test.

The Root Test.
a)If lim \/7 A <1, then the series Za IS convergent.

N—00

(b) If lim Y/a, =A>1or lim{fa, =A=oo , then the series Za is divergent.
(c) If I|m Q/a7 = A =1ythe Root Test is inconclusive.

If lim \/7 A =1, then‘part (c) of the Root Test says that the test gives no information.

N—c0

The series Zan could converge or diverge. (If A=1 in the Ratio Test, don't try the Root

Test because+A will again be 1. And if A =1 inthe Root Test, don't try the Ratio Test because
it will fail teo.)

00 n
Example 2. Test the convergence of the series Z(Zn hl 3) :

— 3n+2

n
Solution. We use the Root Test with a, = (2n+3] :
3n+2

Ilmf—llm‘n/(2n+3j Iim2n+3 lim 2n E
n—o n—o 2 n—wo3N+2 now 3n 3
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Since A= % <1, the given series is convergent by the Root Test.

Exercise Set 9
In Exercise 1 to 15, determine whether the series Zan is convergent or divergent,

where a, is

n(n+2) g 3ml
L= 2 = 3. e
7-n (n+2)!
. +2n+3) s 3 {7
P+l ) 5Nt g
; 4".n* o [30+5 " N
o - 5n+3)° ~ (n+1)!
2" n®+3 4"
0. ————. 1. — = 2 —.
5'(2n+1) 5 7'(3n+1)
4n+3 5" N
13. ==, 14, —— 15 (=1}
6 4"(6n+5) 2n+1
3.4 Alternating,. Series

The convergence tests that we have looked at'so far apply only to series with positive terms.
In this section and the next we learn how to deal with series whose terms are not necessarily
positive. Of particular importance are alternating series, whose terms alternate in sign.

An alternating series is a series'whoseterms are alternately positive and negative. Here
are two examples:

_ n
( 1) n:_1+g_§+l._+(—1)ni+...-
2 |, n+l 2 3 4 n+1

We see fromithese examples that the n-th term of an alternating series is of the form
ap = (_1)nbn or a,= (_1)n_1bn’
where,b, is a'positive number. (In fact, b, =|a,|.)

The following test says that if the terms of an alternating series decrease toward 0 in abso-
lute value, then the series converges.

The Alternating Series Test. If the alternating series

o0

a —ay+a;—a,+..+(-)"ta, +..= Z:(—l)”‘lan ,
n=1
satisfies

(@) 3y >a,>a3>...>a,>a,,>...,
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(b) lima,=0

N—o0

then the series is convergent.

. ®© _1 n-1
Example 1. Test the series Z( )
n=1 n

Solution. The alternating harmonic series

for convergence or divergence.

o0

n-1
Z( ) =1—1+1—1+---+(—1)n_11+--'
~ n 2 3 4 n

satisfies:

1.1 1 1
(@) a, >a,>ay >...>a,>a,,, >..., because 1>§>§>—>...>—>...;
n

(b) lim a_ = lim L=0.
n—c0 n—o N

So the series is convergent by the Alternating Series Test.

n

2

5 for convergence or divergence.
n° +

Example 2. Test the series Z:(—l)n_1
n=1
Solution. The given series is alternating so we try to,verify conditions (a) and (b) of the Al-
ternating Series Test.

Unlike the situation in Example 1, it is not obvigus that the sequence given by a, = — 5 IS
n° +
decreasing. However, if we consider the related function f(x) = Zio we find that
X~ +
2—x?
f'(X)=——.
¥ (X% +2)?

Since we are considering only positive x, we see that f'(x) <0if x> V2. Thus f is de-

creasing on the interval (\/§;+oo). This means that f(n+1) <f(n) and therefore a,>a,,;
when n>2. (The inequality a; > a, can be verified directly but all that really matters is that the
sequence {a,} is'eventually decreasing.)

Condition (b)is readily verified:
: n n .1
im ——=lim —=lim ==0.

N—>00 n2 +2 now n2 n—w N

Thus'the given series is convergent by the Alternating Series Test.
Estimating Sums
A partial sum S, of any convergent series can be used as an approximation to the total

sum S, but this is not of much use unless we can estimate the accuracy of the approximation.
The error involved in using S=S,, is the remainder R, =S —S,,. The next theorem says that
for series that satisfy the conditions of the Alternating Series Test, the size of the error is

smaller than a,,,, which is the absolute value of the first neglected term.
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Alternating Series Estimation Theorem

If S= Z:(—l)”‘lan is the sum of an alternating series that satisfies:
n=1

(@) ay>a,>ag>..>a,>a, > ...
and
(b) lima,=0,

N—o0

then |S—S,|=|R,|<a

n+1-

Example 3. Find the sum of the series Z:(—l)”‘1M correct to three decimalplaces.
6n

n=1
Solution. We first observe that the series is convergent by the Alternating.Series Test
(@) a,>a,>a,>..>a, >a, >.., because E>i>£>
S 3% 216"
(b) lim a_ = lim 2L 2o,

N—»00 o §" n—x 6"In6 -
To get a feel for how many terms we need to use ineur approximation, let's write out the
first few terms of the series:
5 9 13 177321725

= — A =t
6 36 216 6% 6 6°

Notice that
ag = % =0,0005358 < 0,001
and
S~S; = g —% + 21136 — 1;;6 + 75%6 =0,8333-0,2500+0,0602—-0,0131+0,0003 =

=0,6307 = 0,631.
Absolute Convergence

€0}
Given any series Zan , We can consider the corresponding series
n=1

o0
D Jao] = ey +[ag] .+ [ag |+ ..
=1

whose terms are the absolute values of the terms of the original series.

Definition. A series Zan is called absolutely convergent if the series of absolute values
n=1

o0
Z| a,| is convergent.
n=1
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o0
Notice that if Zan is a series with positive terms, then |a,| =a, and so absolute conver-
n=1
gence is the same as convergence in this case.

© n+1
Example 4. Test the series Z rE (n ) 3) for absolute convergence.
+
n=1

Solution. We use the Limit Comparison Test with a, = L

n(n+3)

numerator is 0 and the dominant part of the denominator is n?. This suggests taking

. The dominant part of the

a =—- =,

f n(n+3) "
1 1 1 n n? 1

[im —— i |= im| —— — =M — = lm ——=1.
n—o0 n(n+3) n n—oo n(n+3) 1 n—>oon2(1+3j n—>ool+§

o1 o . .
Since Z_Z Is convergent (o -series with o =2 > 1), the given series converges by the
n
n=1
Limit Comparison Test. Thus, the given series is abselutely convergent and therefore conver-
gent.

Definition. A series Zan is called conditionally convergent if it is convergent, but not
n=1
absolutely convergent.

Theorem. If a series Zan is.absolutely convergent, then it is convergent.
n=1

o0

Example 5. Determine whether the series Z(—l)"_l

n=.

5 is absolutely convergent, con-

n“+2
ditionally convergent,.or divergent.

Solution. We use the Limit Comparison Test with a,, = -y
n° +
The.dominant part of the numerator is n and the dominant part of the denominator is n®.

This suggests-taking

a, = " and bn:%.

n“+2
2 2
- R n 1 . n : n : 1
ol n>on°4+1 N noeon 41 n—>oon2(1+2j n_>001+7
n n
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Since Zl is convergent (o -series with o =1> 1), the given series diverges by the Limit
n=1
Comparison Test.
We try to verify conditions (a) and (b) of the Alternating Series Test:
(@) ay=a, >a;>a, >a; >a; >

(b) lim a_ = lim —"— = lim ——— jm —2__—0.

n—o0 n—>oon2+2 N—0 2(1 2) n—>oon‘(1+2j
n? n?

Thus the given series is conditionally convergent by the Alternating Series Test.

Exercise Set 10
In Exercise 1 to 20, determine whether the series is absolutely convergent, conditionally
convergent, or divergent.

L {3
4 - -
o o il © = (—)™
* nzll(an)—l > ;(3?—2 > nz_;((nl)uz
o N+l °° g - e
7 Z(z_n?_l 8. Zr({nlll) ’ Z(_':“‘
=t o "~ ey T B
© o Mg = (-1)™
o nzlln(z(?u)' \ Z_:((rj)ﬂ;; " ;(21”)—1'
o nl © Ml - m
o SHNT o TG

i (02 (1" o ()™
21, Z(—l) iy 2 Zzn.nz' B Y e

24 Z 12n+1 o 2. Z _1n+3'

67



3.5 Power Series
A power series is a series of the form

Zanx”:a0+a1x+a2x2+...+anx”+... (1)
n=0
where X is a variable and the a, 's are constants called the coefficients of the series. For

each fixed x, the series (1) is a series of constants that we can test for convergence or diver-
gence. A power series may converge for some values of x and diverge for othérvalues of x.
The sum of the series is a function

f(X) = @ + X +a,X* +...+a, X" +...
whose domain is the set of all x for which the series converges. Notice that f resembles a po-

lynomial. The only difference is that f has infinitely many terms.
More generally, a series of the form

D ay(x=xg)" =g+ ay(x = ) + 85 (X Ao e K (K= X)" s (2
n=0
is called a power series in (Xx—X,) or a power series centered at x, or a power series

about x,. Notice that in writing out the term corresponding to n=0 in Equations 1 and 2 we

have adopted the convention that (x—x,)" =1 evenswhen x=x,. Notice also that when
X =X, all of the terms are 0 for n>1 and so«he power series (2) always converges when
X= XO .

Example 1. For what values of x is the seriesz n+2, (x+4)" convergent?
) n+1

Solution. We use the Ratio Test.If we let a,, as usual, denote the n-th term of the series,

then Ju, (4] = — 2 [x-+4["
(n+1)-7
3n+5 n+l,

If x -4, we have_|u,,(X)]=———— 012 T x+4
im |Uaea ()] _ s (3n.+5) |x+4|n+1 (n+1).-7" |x+4| im (3N5)(N+1)
o Up(X) | 00 (n%2)- 7" (3n+2)-[x+4[" T 0o (N+2)(3n+2)

V+4 V+4
— m —

7 N—c0 3n 7

By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
X+ 4] _ [x+4]
when T<1 and divergent when — >1 . Now

|x+4|

-
so the series converges when x € (—11;3) and diverges when x € (—o0;—11) U (3;+ ).

<le |x+4|<7<:> —T<x+4<7 < —11<x<3,
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. . . . X+4 .
The Ratio Test gives no information when g =1 so we must consider x=-11 and
X = 3 separately.
If we put x =3 in the series, it becomes

o0

(3n+2)-(3+4)" N 3n+2
Z (n+1)-7" _Z n+l’

which is divergent by the test for divergence.
If x=-11, the series is

O (3n+2)-(-11+4) B+ T N0, 8N +2
nzzl: (n+1)-7" _nzzl: (n+1) ( 7) _HZ:;( ) n+l’

which diverges by the Alternating Series Test ( lim a, = lim Sn+ 4
N—o0 n—ot N+

=3% 0). Thus the given

power series converges for —11<x < 3.

For the power series that we have looked at so far, the set.of values of x for which the se-
ries is convergent has always turned out to be an interval [a finite'interval, the infinite interval or
a collapsed interval]. The following theorem says that-thiS'is true in general.

Theorem. For a given power series Zan(x —Xp)", there are only three possibilities:
n=0
(a) The series converges only when X = X;
(b) The series converges for all x;
(c) There is a positive number R such that the series converges if | x—X, | <R and diverges if
|Xx=%o|>R.

The number in case (c) is called the,radius of convergence of the power series. By con-
vention, the radius of convergence'is R =0 in case (a) and R = in case (b). The interval of
convergence of a power series,is the interval that consists of all values of x for which the se-
ries converges. In case (&) thetinterval consists of just a single point X, . In case (b) the interval

IS (—o0;400). In case “(c)“note that the inequality |x—x0 |< R can be rewritten as
Xo —R <X <X, +R."When x is an endpoint of the interval, that is, X=X, =R, anything can

happen—the series might converge at one or both endpoints or it might diverge at both end-
points. The situation, is illustrated in Figure 2.
convergence for [x —a|< R

i & I I

a— R i a+ R

divergence for [x —a|> R f

Figure 2

We summarize here the radius and interval of convergence for each of the examples al-
ready considered in this section.
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Series Radius of convergence Interval of convergence
Z X" R=1 (-11)
n=0
Zn!x“ R=0 {0}
n=0
— 3n+2
> L (xrd)y R=7 ~11<X<3.
= n+
(=3 .
Zn!(2n+3) R=e0 (To0it=0)
n=0

In general, the Ratio Test (or sometimes the Root Test) should be used to determine the ra-
dius of convergence R . The Ratio and Root Tests always fail when. x“is‘an endpoint of the in-
terval of convergence, so the endpoints must be checked with.some other test.

Example 2. Find the radius of convergence and interval of convergence of the series

© n

D
2 An-1¢
—n -3
. 1
Solution. Leta, ———.Thena, , ———=:
2.3t n+1_(n+1)2-3”
2 n 2
. n+1) -3 safn+L
R = lim = | %:Swlm%:&
n—wold, | Nl N .3 N> N

So it converges if [x| < 3 and diverges if [x|> 3. Thus the radius of convergence is R =3.
The inequality |X| <3 canbeWwritten as —3 < x <3, so we test the series at the endpoints

x=-3 and x=3. When x=3, the series is Z —32— Since Z— IS convergent
n=1 n=1
(o -series with a,.=2>1), the glven serles converges by the Limit Companson Test.

When x = —3the series is Z
n=1

= 32 , Which is absolutely convergent and

therefore convergent.
Thus' the series converges only when —3<x<3, so the interval of convergence is

xe[=3;3].
Exercise Set 11
In Exercise 1 to 15, find the radius of convergence and interval of convergence of the series.

© (on_1)" i ks —1)" 0
> BTy, 2 Z (). 3 ;%““”

n=1

n+1
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0

4, Z(n+2)(x+3)n. 5, in(TlJFB)(X_A')n' 6. ig—:(x—G)zn
7 in—n(xu)” 8. i(;]l)n; (x-3)". 9 Z‘j:gn%nn (x-1)"
(1" (x-1)". 12 z

- n(n+1)(x_1)n'

2" n i (_1)n_1 (x +1)”

(+2) 15 Zugn (nyg)

3.6 Representations of Functions as Power Series
In this section we learn how to represent certain types of functions as sums of power series
by manipulating geometric series or by differentiating or integrating such a series. You might
wonder why we would ever want to express a knownsfunction as a sum of infinitely many
terms. (Scientists do this to simplify the expressions they deal with; computer scientists do this
to represent functions on calculators and computerss)
We start with an equation that we have seen hefore:

o0

1 2 n—1 n
=l xS =) X, —lex<l 1
1-x nZo: W

We now regard Equation 1 as expressing the function as a sum of a power series.

Example 1. Express > as'the sum of a power series and find the interval of conver-

1+ X
gence.

Solution. Replacing x bys—x2:in Equation 1, we have

0

T P S,
1+X2_1—(—x2)_1+( X2)+ (=X 4+ (—x%)* +.. Z( X?) Z( 1"

n=0 n=0
Because this is a_geometric series, it converges when ‘—x2‘<1, that is, x°><1, or

—1< x <1 Therefore the interval of convergence is (—L1). (Of course, we could have deter-

mined-the ‘radius of convergence by applying the Ratio Test, but that much work is unneces-
sary here.)
Example 2. Find a power series representation for iz
X+
Solution. In order to put this function in the form of the left side of Equation 1 we first factor
a 2 from the denominator:

] RN e,
X+2 2(1+/) 2 1 (/) ZZ( 2) Z oMl

n=0 n=0
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X

This series converges when > <1, that is, |x|<2. So the interval of convergence

s (=2;2).
Taylor and Maclaurin Series
In the preceding section we were able to find power series representations for a certain re-
stricted class of functions. Here we investigate more general problems: Which functions have
power series representations? How can we find such representations?
We start by supposing that f is any function that can be represented by a power series

Zan(x—xo)” =2y +ay(X—Xg) + (X —Xg)* ...+ 3, (X —X) .., [XEX|<R. (2)
n=0
Let's try to determine what the coefficients a, must be in terms of f .

Theorem. If f has a power series representation (expansion) at X, , that Is; if
f(x) = Zan(x —Xo)"X—Xo| <R
n=0

i (xq)
nl

Substituting this formula for a, back into the series, we see that if f has a power series ex-
pansion at X, then it must be of the following form;

then its coefficients are given by the formula a, =

F(x) =1 (%g) +f(Xq) - (X—Xq) + f”(;‘)) (X—Xg)? +.ot f(n)n(:(‘)) (x=%)"+.. (3

The series in Equation 3 is called the Taylor series of the function f at x, (or about X, or
centered at X,). For the special case,the Taylor series becomes
" (n)
f(x)=f(0)+f'(0)-x+fz(lo)x2+...+f 9
! n!
This case arises frequently enough that it is given the special name Maclaurin series.
Note 1. We havesshown that if f can be represented as a power series about X, then is

equal to the sum of its. Taylor series. But there exist functions that are not equal to the sum of
their Taylor series.
Theorem.If f(x) =T (x)+R,(x), where T (x) is the n th-degree Taylor polynomial of f

at xp.andlim R,(x) =0 for |x—x0| <R, then f is equal to the sum of its Taylor series on the
N—o0

X" +... (4)

intervalx —xo| <R.

We collect in the following table, for future reference, some important Maclaurin series that
we have derived in this section and the preceding one.
Table 1

" x2 X3 X" —00 < X <0
e =1+ X+—+—+..+—+..
2! 3l n!
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X ot —00 < X < 00
sinx=x——+ X _ 4yt
CI-1 (2n-1)!
X o2 —00 < X <0
cosx=1- X _ ppmt o
21 4l (2n—2)!
%:1+x+x2+...+x”‘1+... —1l<x<1
—X
P " ~1<x=l
I(L4+X) =X~ 2 ()
2 3 n
(1+x)°‘:1+ux+a(u_l)xz+...+u(a_l)"'(a_n+1)x”+... —Tx<1
n!

One reason that Taylor series are important is that they enable us to integrate functions that
we couldn’t previously handle. In fact, in the introduction to‘this chapter we mentioned that
Newton often integrated functions by first expressing themdas power.series and then integrat-

2
ing the series term by term. The function f(X)=e™™ can't benintegrated by techniques dis-

cussed so far because its antiderivative is not an elementary function. In the following example

we use Newton’s idea to integrate this function.
1

Example 3. Evaluate je‘xzdx correct to within,an error of 0.001.
0
2
Solution. First we find the Maclaurin serigs forf(x) =e ™ . Although it's possible to use the

direct method, let's find it simply by replacing’ x with x* in the series for e* given in Table 1.
Thus, for all values of x,

Now we integrate term by'term:

1 1 1
2 x2 x* 8 X x> x X
.[e dx:J. l-——4———+... dX=| X— + - + | =
20 3l 3-1 5.21 7.3 9.4l 0

0 0
3 5 7
oLty oy L s,
3. 107 4 21677 3 10 42

2
(This'series converges for all because the original series for e converges for all x.)
The Alternating Series Estimation Theorem shows that the error involved in this approxima-
tion is less than
P 1
- =<
9-41 216
Example 4. Use power series to solve the initial-value problem
y' =4xy® —x3, y(0)=2.

0,01.
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Solution. We assume there is a solution of the form

! 0 /4 O m O (4) O
y(x):y(0)+y§! )-x+y2(! )-x2+—y 3(! )-x3+—y 4!( )-x4+....

y'(0)=4-0-2°~0°=0.

We can differentiate power series term by term, so
y'(X) =(4xy2 —x3)' =(4xy2)’ —(x?’)' = 4y%.(x) +4x-(y2)' —3x% =

= 4y? 1+ 4x-2y -y —3x% = 4y? + 8xyy —3x°.

Let x=0,y=2, y'(0)=0 then
y"(0)=4-2*+8-0-2-0-3-0° =16.
y"'(x):(4y2+8xyy'—3x2) =(4y2)’+(8xyy') —(3x2)l =

:8y-y’+8yy'+8x(yy') —6x:16yy’+8xyy"+8x(y’)2—6x.

Let x=0,y=2,y'(0)=0, y"(0) =16 then

y"(0)=16-2-0+8-0-2-16+8-0-(0)° —6-0=0,

y(4)(x):(16yy'+8xyy"+8x(y')2—6x) :(16yy')'+(8xyy") +(8x(y’)2) —(6x)' _
:16y’y'+16yy”+8yy"+8x(yy") +8(y’)2+8x-2y'-y”—6:

= 24(y')2 +24yy" +24xy'y" + 8Xyy" —6.
Let x=0,y=2,y'(0)=0,(y"(0)=16, y"(0)=0 then
y*)(0)=24-02+24.2.16 +°24-0-0-16+8-0-2-0— 6 = 768 — 6 = 762.

Substituting the obtained"coefficients in the Maclaurin series, we will obtain the solution of
the initial differential equation

y(x):2+9-x+E-x2+E-x3+E-x4+...:2+ﬁ-x2+7—62-x4+...:
1 2! 3! 41 2 24
= 248%°+3L75x" +....

Exercise Set 12
In Exercise 1 to 8, find a power series representation for the function and determine the in-
terval of convergence.

1 2 2x3
1 f(x)=——. 2. f(x) = . —cosZ Cf(x)=e*.
(X) Ty (X) Y 3. f(x) =cos 3 4. f(x)=¢e
G X2 23
5. f(X) = —. 6. f(x) =In(1-4x). 7. f(X) = sin=—. 8. f(x)=e™2*,
1+ x 3

4



In Exercise 9 to 12, use a power series to approximate the definite integral to three decimal
places.

1 05 g 05 1 0.1 n(l
X e" — nl+x
9. J.cos\/;dx. 10. J- 5 11. J. dx. 12. I ( )dx.
1+ X X X
0 0 0.1 0.01
In Exercise 13 to 20, use power series to solve the initial-value problem.
13. y'=3cosx+y?, Y(0)=L. 14. y'=3xy—e*+4, y(0)=0.
15. y'=2y+y°, y(0)=3. 16. y'=2sinx—x¥y4 y(0)=1.
17. y'=4sinx+y®,  y(0)=L. 18. y=xy-2xi Wy(0)=2
Literature
1 Stewart James Calculus Early Transcendental. 2008. pp. 1038.
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