Филонович С.А.

АНТИ-СТОКСОВА ЛЮМИНЕСЦЕНЦИЯ НАНОКРИСТАЛЛОВ CdSe ПОКРЫТЫХ ОБОЛОЧКОЙ ZnS

Нанокристаллы CdSe покрытые оболочкой (CdSe/ZnS) были приготовлены из металлоорганических соединений в смеси с гексадециламином - триоктилфосфин оксидом - триоктилфосфином [1]. Для спектроскопических исследований использовался образец с нанокристаллами CdSe размера 4.5 нм, толщиной оболочки ZnS ~ 0.3 нм. Квантовый выход фотолюминесценции (ФЛ) нанокристаллов CdSe/ZnS составляет 55%. На рисунке 1 представлены спектры поглощеня, ФЛ и спектр возбуждения ФЛ (ВФЛ) данного образца. Для измерения спектров поглощения был использован спектрометр Shimadzu UV-3101 PC. Спектры ФЛ регестрировались с помощью спектрометра Spex Fluorolog, оснащенного монохроматором 1680-В (линейная дисперсия 1.7 нм/мм) и охлаждаемым фотоумножителем R943 Hamamatsu. Для возбуждения спектров ФЛ использовалась ксеноновая лампа (выходная мощность 0.1 - 2 мВт, в зависимости от длины волны). Спектры анти-стоксовой ФЛ (АСФЛ) возбуждались как ксеноновой лампой, так и Не-Ne лазером с λ =632.8 нм и мошностью **P**= 3 мВт.

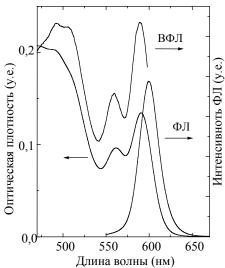


Рисунок 1. Спектры поглощения, ФЛ и спектр возбуждения ФЛ (ВФЛ) образца CdSe/ZnS с нанокристаллами CdSe 4,5 мм.

Стоксов сдвиг между спектрами поглощения и $\Phi \Pi$ для нанокристаллов CdSe/ZnS составляет 31 мэВ, а ширина полосы $\Phi \Pi$ на середине ее высоты (полуширина) ~ 90 мэВ. Хорошее соответствие между спектральной позицией пиков поглощения и В $\Phi \Pi$ говорит о том, что в основе происхождения стоксовой $\Phi \Pi$ лежит излучательная рекомбинация замкнутого в нанокристалле электрона.

При облучении нанокристаллов CdSe/ZnS He-Ne лазером наблюдалась четко выраженная полоса ACФЛ со стороны энергий, выше энергии возбуждения (рисунок 2). Максимум этой полосы находится на 47 мэВ выше энергии возбуждения. Максимальное значение ΔE_{UC}^{max} определялось как разница между энергией возбуждения и энергией, при которой крыло полосы ACФЛ пересекает средний уровень шума сигнала, регистрируемого в высокоэнергетической области спектра

[2]. Для нанокристаллов CdSe/ZnS ΔE_{UC}^{max} составляет 335 мзВ

Также была определена зависимость АСФЛ от интенсивности возбуждения He-Ne лазера при комнатной температуре. Как показано на вставке рисунка 2, интенсивность АСФЛ возрастает практически линейно с увеличением интенсивности возбуждения. Максимальная эффективность переноса энергии относительно энергии поглощенного излучения He-Ne лазера для нанокристаллов CdSe/ZnS составляет $2.7x10^{-2}$ %. При облучении образца с нанокристаллами ксеноновой лампой длиной волны более 610 нм также наблюдалась полоса АСФЛ.

Были проведены измерения интенсивности ФЛ и АСФЛ в зависимости от температуры. При этом обнаружено, что при повышении температуры интенсивность АСФЛ увеличивается, в то время как интенсивность стоксовой ФЛ уменьшается. На рис. З изображено изменение интенсивности ФЛ и АСФЛ нанокристаллов CdSe/ZnS в зависимости от обратной температуры. Данные температурной зависимости фитировались прямыми линиями с использованием логарифмического масштаба и модуль энергии активации $E_{aкm}$ рассчитан по наклону этих лини. На рисунке 3 видно, что энергия активации рекомбинационных процессов в случае АСФЛ значительно ниже, чем для случая стоксовой ФЛ, тогда как вероятность безызлучательных переходов уменьшается с ростом температуры.

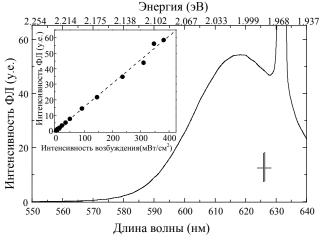


Рисунок 2. Антистоксова люминесценция нанокристаллов CdSe/ZnS.

Сравнивая спектры стоксовой ФЛ и АСФЛ (рисунок 1 и рисунок 2) можно заключить, что в мехнизмы наблюдаемых процессов вовлечены различные излучательные переходы. Как видно из рисунков пик АСФЛ шире пика обычной ФЛ и сдвинут в область меньших энергий относительно него. АСФЛ наблюдалась даже при возбуждении нанокристаллов фотонами с энергией 1.9075 эВ, не смотря на то, что в этой области возбуждение очень слабо, а уширение и спектральный сдвиг велики. Из анализа вышеперечисленных результатов можно сделать предположение о механизме переноса энергии фотонов в нанокристаллах на более высокие уровни.

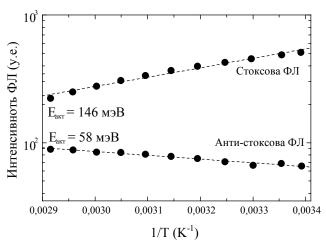


Рисунок 3. Температурная зависимость интенсивности ФЛ и ACФЛ нанокристаллов CdSe/ZnS.

Наблюдаемая разница в форме полос АСФЛ и стоксовой ФЛ, а также их различное спектральное положение позволяет предположить, что в процессах переноса энергии на более высокие уровни принимают участие ловушечные состояния. Уровни энергий этих состояний расположены ниже зоны проводимости (3 Π). Их природа может быть объяснена наличием поверхностных дефектов, дефектов укладки, ненасыщенных (свободных) связей [3].

Таким образом, наиболее правдоподобным объяснением температурной зависимости интенсивности АСФЛ представляется тепловое возбуждение носителей заряда из валентной зоны (ВЗ) на ловушечные подуровни (${\it B3}_{\it ловушки}$) или уровни ненасыщенных связей, которые могут выполнять роль начальных состояний для излучательных процессов [2,3]. Наблюдаемое явление переноса энергии фотона может являться результатом трехступенчатого процесса с участием ловушек, расположенных вблизи зоны проводимости ($3\Pi_{\textit{ловушки}}$). На первом этапе происходит переход носителей заряда из ВЗ на уровни мелких ловушек $B3_{nовушки}$ за счет термической энергии ($B3+\Delta E_{mерм}=B3_{ловушки}$). Второй шаг – это фотовозбуждение ($B3_{nosyuuku} + hv = 3\Pi_{nosyuuku}$), а на третьем этапе происходит излучательная рекомбинация из ЗПловушки в ВЗ. Эксперименты по изучению динамики спада ФЛ позволяют сравнивать время жизни АСФЛ и ФЛ поэтому в настоящее время рассматриваются дополнительные предположения о возможных рекомбинационных механизмах.

Автор благодарит А.Л. Рогача и Д.В. Талапина за приготовление образцов и А.А. Гладыщука и Ю.П. Раковича за полезные дискуссии и замечания.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett. 1, 207 (2001).
- [2] E. Poles, D.C. Selmarten, O.I. Micic, A.J. Nozik. Appl. Phys. Lett., 75 (1999) 971
- [3] J. Pérez-Conde, A.K. Bhattacharjee, Sol. State Commun. 110, 259 (1999).

УДК 530.1

Шведов А.А.

ФИГУРЫ СТАТИЧЕСКОГО РАВНОВЕСИЯ АБСОЛЮТНО ГИБКОЙ СТРУНЫ

Целью настоящей работы является изучение фигур статического равновесия абсолютно гибкой струны в различных конфигурациях силовых полей. Данная проблема не является столь простой, как может показаться при поверхностном её рассмотрении. В процессе изучения возникали такие вопросы, как вообще решить поставленную задачу, так и вопросы, связанные с построением форм и решением дифференциальных уравнений описывающих эти же формы. Был составлен целый алгоритм вычисления форм, которого мы и придерживались на протяжении всех вычислений. Так же возникло множество проблем с решением дифференциальных уравнений, которые требовали глубоко анализа, однако с помощью прикладного пакета компьютерной алгебры Mathematica затраты времени на решение были минимальны. Так же Mathematica позволила построить все формы, необходимые для полного понимания проблемы.

ПОСТАНОВКА ЗАДАЧИ

Будем рассматривать абсолютно гибкую струну, концы которой закреплены в двух неподвижных относительно друг друга точках. Под действием определённых взаимодействий струна переходит в некоторые статические формы, расчетом и описание которых мы и займёмся.

1. ФИГУРА РАВНОВЕСИЯ АБСОЛЮТНО ГИБКОЙ СТРУНЫ В ПОЛЕ ТЯЖЕСТИ ЗЕМЛИ (G)

Рассмотрим струну длины \boldsymbol{l} , закреплённую в двух точках (рисунок 1.1). Вертикальное расстояния между точками равно \boldsymbol{b} , горизонтальное – \boldsymbol{a} . Разобьём струну на кусочки длины \boldsymbol{dl} , введём дополнительную величину $\boldsymbol{\alpha}$, которая будет показывать угол наклона струны в текущей точке к горизонтали.

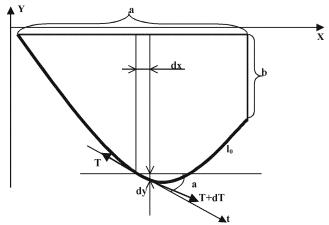


Рисунок 1.1. Расчет формы струны в поле тяжести. Из этого вытекает сразу же два равенства:

$$dy = dl \, Sin(\alpha) \tag{1}$$

Шведов Артур. Студент 3-го курса электронно-механического факультета Брестского государственного технического университета.