#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

## УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высшей математики

## РЯДЫ

# ТЕОРИЯ ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

## ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

Методические рекомендации и варианты контрольной работы по дисциплине *"Высшая математика"* для студентов технических специальностей заочной формы обучения

В настоящей методической разработке приведены вопросы программы и варианты контрольной работы по разделам «Ряды», «Теория функции комплексного переменного» и «Операционное исчисление» дисциплины «Высшая математика», изучаемых студентами технических специальностей заочной формы обучения в третьем семестре. Приведены некоторые методические рекомендации, полезные для успешного выполнения контрольной работы. В организационно-методических указаниях указаны правила оформления контрольной работы.

Составители: Гладкий И.И., доцент, Лизунова И.В., доцент, Тузик Т.А., доцент, Юхимук М.М., старший преподаватель

Рецензент: Савчук В.Ф., зав. кафедрой информатики и прикладной математики УО «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент.

## ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

В контрольную работу включены 8 заданий по разделам «Ряды», «Теория функции комплексного переменного» и «Операционное исчисление» дисциплины «Высшая математика».

Нумерация задач состоит из двух чисел: первое число — номер задания, второе (после точки) — номер варианта. ▲

Правила оформления контрольной работы:

- 1) контрольная работа выполняется в отдельной (тонкой) ученической тетради с отчерченными полями;
- 2) на обложке обязательно должен быть указан шифр (номер зачетной книжки);
- 3) контрольная работа выполняется студентом в соответствии со своим вариантом, который определяется по двум последним цифрам шифра;
- 4) каждое задание начинается на новой странице с обязательной записью его полного условия. Если задача имеет общую формулировку, то ее условие переписывают, заменяя общие данные конкретными, соответствующими номеру варианта;
- 5) решения всех заданий должны быть подробными и аккуратными, содержать достаточные пояснения, необходимые рисунки и таблицы;
- 6) завершает работу список используемой литературы и роспись студента;
  - 7) после рецензии исправления в тексте работы недопустимы;
- 8) исправление ошибок, указанных рецензентом, выполняют в той же тетради после росписи студента.

# КОНТРОЛЬНЫЕ ВОПРОСЫ КУРСА «ВЫСШАЯ МАТЕМАТИКА» III семестр

- 1. Числовой ряд и его сумма. Бесконечно убывающая геометрическая прогрессия.
- 2. Свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- 3. Признаки сравнения.
- 4. Признаки Даламбера и Коши. Интегральный признак Коши.
- 5. Знакопеременные ряды. Абсолютная и условная сходимость.
- 6. Знакочередующиеся ряды. Признак Лейбница.
- 7. Свойства абсолютно и условно сходящихся рядов.
- 8. Функциональный ряд и его область сходимости.
- 9. Равномерная сходимость функционального ряда. Свойства равномерно сходящихся функциональных рядов.
- 10. Степенной ряд. Теорема Абеля.
- 11. Область сходимости степенного ряда. Свойства степенных рядов.

- 12. Условия представления функции рядом Тейлора. Разложение элементарных функций в ряд Тейлора.
- 13. Приложения степенных рядов.
- 14. Ряд Фурье. Тригонометрический ряд Фурье для  $2\pi$  периодической функции.
- 15. Ряды Фурье для четных и нечетных функций.
- 16. Ряды Фурье для функций, заданных на отрезке  $[0,\pi]$ .
- 17. Ряд Фурье для функции, заданной на отрезке длины  $2\pi$ .
- 18. Ряд Фурье для функций с произвольным периодом.
- 19. Понятие функции комплексной переменной. Геометрическая интерпретация.
- 20. Предел и непрерывность функции в точке. Основные элементарные функции комплексной переменной.
- 21. Производная функции комплексной переменной. Условия Коши-Римана.
- 22. Аналитические функции. Правильные и особые точки аналитической функции.
- 23. Геометрический смысл модуля и аргумента производной аналитической функции.
- 24. Гармонические функции.
- 25. Понятие конформного отображения.
- 26. Интеграл от функции комплексной переменной, его свойства и вычисление.
- 27. Интегральная теорема Коши.
- 28. Интегральная формула Коши. Формулы для производных.
- 29. Ряд Тейлора в комплексной области.
- 30. Ряд Лорана.
- 31. Нули и изолированные особые точки аналитической функции.
- 32. Вычет аналитической функции в изолированной особой точке.
- 33. Вычет в бесконечно удаленной точке.
- 34. Основная теорема о вычетах.
- 35. Применение вычетов к вычислению интегралов.
- 36. Оригинал и изображение. Классы оригиналов и изображений.
- 37. Линейность преобразования. Теоремы подобия и запаздывания.
- 38. Изображение свертки оригиналов.
- 39. Дифференцирование и интегрирования оригиналов и изображений.
- 40. Графическое задание оригиналов.
- 41. Оригиналы от рациональных функций.
- 42. Решение дифференциальных уравнений операционным методом.
- 43. Решение систем дифференциальных уравнений операционным методом.

## КОНТРОЛЬНАЯ РАБОТА

Задание 1. Исследовать сходимость числовых рядов.

**1.1.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{2n+3}$$
;

**1.2.** a) 
$$\sum_{n=1}^{\infty} \frac{3n-1}{n^2+1}$$
;

**1.3.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{3n^2}$$
;

**1.4.** a) 
$$\sum_{n=1}^{\infty} \frac{2n+4}{(n+1)^4}$$
;

**1.5.** a) 
$$\sum_{n=1}^{\infty} \frac{3n-2}{(2n+1)^2}$$
;

**1.6.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$$
;

**1.7.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{10n+4}$$
;

**1.8.** a) 
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1)n}$$
;

**1.9.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{n(2n+8)}$$
;

**1.10.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{(n+5)^2}$$
;

**1.11.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+8n}$$
;

**1.12.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 4}$$
;

**1.13.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+2)^2}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{2^n}{n^4}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{4^n}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n \cdot 2^{n-1}}{n^2 + 4}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{3^{n-1}}{n(n+1)}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+2)^3}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{3^n}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{n \cdot 5^n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{n \cdot 5^n}{(n+1)^3};$$

6) 
$$\sum_{n=1}^{\infty} \frac{n \cdot 3^{n-1}}{(n+1)^3}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{2^{n+2}}{(n+1)(n+3)};$$

6) 
$$\sum_{n=1}^{\infty} \frac{3^n}{n(n+1)(n+2)}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^3}{2^n}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$$
;

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n^2+1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{3n-2}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{(n+1)^2}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n^2-1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+4}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+2}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+3}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2(n+1)}$$
.

**1.14.** a) 
$$\sum_{n=1}^{\infty} \frac{2n-1}{n^2}$$
;

**1.15.** a) 
$$\sum_{n=1}^{\infty} \frac{3n-1}{n(n+2)}$$
;

**1.16.** a) 
$$\sum_{n=1}^{\infty} \frac{4n-1}{n^2(n+1)};$$

**1.17.** a) 
$$\sum_{n=1}^{\infty} \frac{4n-2}{n^2+3n}$$
;

**1.18.** a) 
$$\sum_{n=1}^{\infty} \frac{4n-3}{n(n+4)}$$
;

**1.19.** a) 
$$\sum_{n=1}^{\infty} \frac{2n-1}{n^2}$$
;

**1.20.** a) 
$$\sum_{n=1}^{\infty} \frac{n+4}{\sqrt{n^3+1}}$$
;

**1.21.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^4 + 1}}$$
;

**1.22.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^3}}$$
;

**1.23.** a) 
$$\sum_{n=1}^{\infty} \frac{n+4}{\sqrt{n^2+4n}};$$

**1.24.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+2)^3}$$
;

**1.25.** a) 
$$\sum_{n=1}^{\infty} \frac{n+2}{n^3}$$
;

**1.26.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+2)^3}$$
;

**1.27.** a) 
$$\sum_{n=1}^{\infty} \frac{n+4}{(n+1)^2}$$
;

$$6) \sum_{n=1}^{\infty} \frac{n \cdot 2^{n-1}}{(n+1)!};$$

$$\mathsf{G}) \; \sum_{n=1}^{\infty} \frac{n!}{(n+1) \cdot 3^n};$$

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^2 \cdot 2^n}{n!}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n \cdot 5^n}{(n+1)!}$$
;

$$\mathsf{G}) \; \sum_{n=1}^{\infty} \frac{(n+1) \cdot \mathsf{G}^n}{(n+2)!};$$

$$6) \sum_{n=1}^{\infty} \frac{\left(n+1\right)^4}{n!};$$

$$6) \sum_{n=1}^{\infty} \frac{n \cdot 2^n}{(n+1)!};$$

$$6) \sum_{n=1}^{\infty} \frac{n \cdot 3^{n+1}}{(n+2)!};$$

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{3^n}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n!}{(n+1)\cdot 5^n};$$

$$6) \sum_{n=1}^{\infty} \frac{n^2 \cdot 3^n}{(n+1)!};$$

6) 
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{5^n}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n^2}{(n+1)!}$$
;

$$\mathsf{G}) \; \sum_{n=1}^{\infty} \frac{n \cdot 3^n}{(n+2)!};$$

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+2)^2}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{2n-1}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+1}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{3n+1}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{4n+5}}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)^2}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+3}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{2n^2 + 1}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+4}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+3}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3n+4}$$
.

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5n+3}$$
.

**1.28.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^4 + 1}}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{(n+1)^2 \cdot 2^n}{n!}$$
;

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+2)^2}$$
.

**1.29.** a) 
$$\sum_{n=1}^{\infty} \frac{n}{(n+3)^2}$$
;

6) 
$$\sum_{n=1}^{\infty} \frac{n!}{n(n+1)(n+2)};$$

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
.

**1.30.** a) 
$$\sum_{n=1}^{\infty} \frac{n+1}{(n+5)^2}$$
;

$$6) \sum_{n=1}^{\infty} \frac{n!}{n \cdot 5^{n+1}};$$

B) 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+6}$$
.

## Задание 2. Исследовать ряд на сходимость:

- а) написать первые четыре члена ряда;
- б) найти интервал сходимости ряда;
- в) выявить вопрос о сходимости ряда на концах интервала сходимости.

**2.01.** 
$$\sum_{n=1}^{\infty} \frac{(2n-1)^n}{2^n \cdot n^n} (x+1)^n.$$

**2.16.** 
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}} (x+6)^n.$$

**2.02.** 
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{5^n \cdot (n+1)} \left(x-3\right)^n.$$

**2.17.** 
$$\sum_{n=1}^{\infty} (n+2)(x+3)^n.$$

**2.03.** 
$$\sum_{n=1}^{\infty} \frac{1}{n(2n+3)} (x-4)^n.$$

**2.18.** 
$$\sum_{n=1}^{\infty} \frac{n}{6^n} (x-6)^n.$$

**2.04.** 
$$\sum_{n=1}^{\infty} \frac{4^n}{n} (x+1)^n.$$

**2.19.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n \cdot n^n} (x-3)^n.$$

**2.05.** 
$$\sum_{n=1}^{\infty} \frac{1}{9^n \cdot n^n} (x-1)^n.$$

**2.20.** 
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1} (x + 1)^n.$$

**2.06.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \cdot n}{3^n} (x-1)^n.$$

**2.21.** 
$$\sum_{n=1}^{\infty} \frac{2^n}{n(n+1)} (x-1)^n.$$

**2.07.** 
$$\sum_{n=1}^{\infty} \frac{1}{4^n \cdot n} (x+3)^n.$$

**2.22.** 
$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n+2}} (x+2)^n.$$

**2.08.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n \cdot (n+3)} (x+1)^n.$$

**2.23.** 
$$\sum_{n=1}^{\infty} \frac{n+2}{2^n} (2x-1)^n.$$

**2.09.** 
$$\sum_{n=1}^{\infty} \left( \frac{n+1}{n+2} \right)^n (x-2)^n.$$

**2.10.** 
$$\sum_{n=0}^{\infty} \frac{3}{n^2} (x+8)^n.$$

**2.11.** 
$$\sum_{n=1}^{\infty} \frac{(3n+2)^n}{3^n \cdot n^n} (x-1)^n.$$

**2.12.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n^2} (x-2)^n.$$

**2.13.** 
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{2^n} (x+2)^n.$$

**2.14.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{5^n \cdot n} (x-5)^n.$$

**2.15.** 
$$\sum_{n=1}^{\infty} \frac{4^n}{2n-1} (x-4)^n.$$

**2.24.** 
$$\sum_{n=1}^{\infty} \frac{(n+2)^n}{(n+1)^n} (x+4)^n.$$

**2.25.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n} \cdot 4^n} (x+1)^n.$$

**2.26.** 
$$\sum_{n=1}^{\infty} n \cdot (2+x)^n.$$

**2.27.** 
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2 \cdot 2^n} (x+5)^n.$$

**2.28.** 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1)} (x-1)^n.$$

**2.29.** 
$$\sum_{n=1}^{\infty} \frac{2^n}{n(n+3)} (x-1)^n.$$

**2.30.** 
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{n \cdot \sqrt{n}} (x+1)^n.$$

**Задание 3.** Найти три первых, отличных от нуля члена разложения в степенной ряд решения y = y(x) дифференциального уравнения y' = f(x), удовлетворяющего начальному условию  $y(0) = y_0$ .

**3.01.** 
$$y' = 3\cos x + y^2$$
,  $y(0) = 1$ . **3.16.**  $y' = 3xy - e^x + 4$ ,  $y'(0) = 0$ .

**3.02**. 
$$y' = 2y + y^2$$
,  $y(0) = 3$ . **3.17.**  $y' = 2\sin x - x^2y$ ,  $y(0) = 1$ .

**3.03.** 
$$y' = 4 \sin x + y^2$$
,  $y(0) = 1$ . **3.18.**  $y' = xy^3 - 2x$ ,  $y(0) = 2$ .

**3.04.** 
$$y' = x^2 + y^2$$
,  $y(0) = 2$ . **3.19.**  $y' = 3xy - \sin x$ ,  $y(0) = 2$ .

**3.05.** 
$$y' = 2e^y + xy$$
,  $y(0) = 0$ . **3.20.**  $y' = e^{3x} + 2xy^2$ ,  $y(0) = 0$ .

**3.06**. 
$$y' = e^x + y^2$$
,  $y(0) = 0$ . **3.21.**  $y' = 2\sin x + xe^y + 2$ ,  $y(0) = 1$ .

**3.07.** 
$$y' = 2e^y - xy$$
,  $y(0) = 0$ . **3.22.**  $y' = 4xy^2 - yx^2$ ,  $y(0) = -1$ .

**3.08.** 
$$y' = e^x + y$$
,  $y(0) = 4$ . **3.23.**  $y' = 4xy^2 - 2x$ ,  $y(0) = 3$ .

**3.09.** 
$$y' = \sin x + 3y^2$$
,  $y(0) = 1$ . **3.24.**  $y' = 5xy^2 - e^x + 1$ ,  $y(0) = 0$ .

**3.10.** 
$$y' = x + x^2 + y^3$$
,  $y(0) = 5$ . **3.25.**  $y' = 4x^3 - xy^2$ ,  $y(0) = 1$ .

**3.11.** 
$$y' = 2x^2 + y^3$$
,  $y(0) = 3$ . **3.26.**  $y' = e^{3x} - \sin x$ ,  $y(0) = 1$ .

**3.12.** 
$$y' = 3x^2 - yx$$
,  $y(0) = 3$ . **3.27.**  $y' = 3xy - \cos 3x$ ,  $y(0) = 1$ .

**3.13.** 
$$y' = xy - e^{2x}$$
,  $y(0) = 0$ . **3.28.**  $y' = x^2y + \sin 2x$ ,  $y(0) = 2$ .

**3.14.** 
$$y' = 3xy^2 + y$$
,  $y(0) = 1$ . **3.29.**  $y' = 3xy^2 - \sin 3x$ ,  $y(0) = 3$ .

**3.15.** 
$$y' = x^2y - 3x + 1$$
,  $y(0) = 0$ . **3.30.**  $y' = xy^2 + e^{3x}$ ,  $y'(0) = 2$ .

# **Задание 4.** Найти коэффициент растяжения и угол поворота в точке $z_0$ при отображении w = f(z) = u(x,y) + i v(x,y).

|       | <i>u</i> ( <i>x</i> , <i>y</i> ) | <i>v</i> ( <i>x</i> , <i>y</i> ) | $z_0$                  |
|-------|----------------------------------|----------------------------------|------------------------|
| 4.1.  | $3x^2y-y^3;$                     | $3xy^2-x^3;$                     | − <i>i</i> +1.         |
| 4.2.  | $e^{1+y}\cos x$ ;                | $-e^{1+y}\sin x$ ;               | $\frac{p}{4}+i$ .      |
| 4.3.  | $x^3 - 3xy^2 + x^2 - y^2$ ;      | $3x^2y-y^3+2xy;$                 | $\frac{2}{3}i$ .       |
| 4.4.  | 2xy-2x;                          | $y^2 - 2y - x^2 + 1;$            | 1.                     |
| 4.5.  | $e^x \cos y$ ;                   | $e^x \sin y$ ;                   | -1+ <i>ip</i> .        |
| 4.6.  | $x^2 + 2x - y^2;$                | 2xy+2y;                          | i.                     |
| 4.7.  | $e^{-1-y}\cos x$ ;               | $e^{-1-y}\sin x$ ;               | p - i.                 |
| 4.8.  | $e^{-x}\cos y$ ;                 | $-e^{-x}\sin y$ ;                | i.                     |
| 4.9.  | $x^2-y^2;$                       | 2 <i>xy</i> ;                    | $\sqrt{2}+i\sqrt{2}$ . |
| 4.10. | 2xy;                             | $y^2-x^2;$                       | −i.                    |
| 4.11. | $2x^2-2y^2+y$ ;                  | 4xy-x;                           | −1+ <i>i</i> .         |
| 4.12. | $e^{y^2-x^2}\cos 2xy;$           | $-e^{y^2-x^2}\sin 2xy;$          | i.                     |
| 4.13. | $x^3-3xy^2+3x;$                  | $3x^2y - y^3 + 3y - 1;$          | −1+ <i>i</i> .         |
| 4.14. | $x^3 - 3xy^2 + x^2 - y^2$ ;      | $3x^2y-y^3+2xy;$                 | 1- <i>i</i> .          |

| 4.15. | $e^{-1+2y}\cos 2x;$      | $-e^{-1+2y}\sin 2x;$        | $\frac{p}{6}$ .    |
|-------|--------------------------|-----------------------------|--------------------|
| 4.16. | $x^3 - 3xy^2 + 2x;$      | $3x^2y - y^3 + 2y - 1;$     | 2 i .              |
| 4.17. | $3xy^2-x^3;$             | $y^3-3x^2y;$                | −1+ <i>i</i> .     |
| 4.18. | $-e^{1+y}\sin x$ ;       | $-e^{1+y}\cos x$ ;          | $-\frac{p}{4}-i$ . |
| 4.19. | $3x^2y-y^3+2xy;$         | $-x^3 + 3xy^2 - x^2 + y^2;$ | $\frac{2}{3}$ i.   |
| 4.20. | $x^2-y^2-x;$             | 2 <i>xy</i> – <i>y</i> ;    | 5-41.              |
| 4.21. | $y^2 - 2y - x^2 + 1$ ;   | 2x-2xy;                     | 1–2 <i>i</i> .     |
| 4.22. | xy + y + 2;              | $\frac{1}{2}(y^2-x^2)-x-1;$ | 1+ <i>i</i> .      |
| 4.23. | $e^{-x} \sin y$ ;        | $e^{-x}\cos y$ ;            | рi.                |
| 4.24. | $x^2 - y^2 - 3x + 1;$    | 2xy-3y;                     | 4 .                |
| 4.25. | 2xy-3y;                  | $-x^2+y^2+3x-1$ ;           | <i>i</i> .         |
| 4.26. | 4 <i>xy</i> – <i>x</i> ; | $2y^2-y-2x^2;$              | 1- <i>i</i> .      |
| 4.27. | $3x^2y - y^3 + 3y - 1;$  | $3xy^2-x^3-3x;$             | $\frac{1}{2}i$ .   |
| 4.28. | $3x^2y-y^3+2xy;$         | $y^2 - x^3 + 3xy^2 - x^2$ ; | 2+i.               |
| 4.29. | $e^{1+2y}\sin 2x$ ;      | $e^{1+2y}\cos 2x$ ;         | $\frac{p}{3}$ .    |
| 4.30. | $3x^2y - y^3 + 2x - 1;$  | $3xy^2-x^3+2y;$             | 3+2 <i>i</i> .     |

# **Задание 5.** Вычислить интегралы.

5.01. a) 
$$\int_{L} \overline{z} \cdot \text{Re}(z^{2}) dz$$
, где  $L$ -дуга параболы  $y = x^{2}$  от  $z_{1} = 0$  до  $z_{2} = 1 + i$ .  
 б)  $\int_{C} \frac{z}{(z+3)(z-3i)} dz$ , где  $C:|z+3| = 1$ .

б) 
$$\oint_C \frac{z}{(z+3)(z-3i)} dz$$
, где  $C: |z+3| = 1$ .

**5.02.** a) 
$$\int_{L} \text{Im } z \cdot \text{Re}(z^2) dz$$
, где  $L$ -отрезок прямой  $y = 2 + x$  от  $z_1 = -1 + i$ 

до 
$$z_2 = 1 + 3i$$
.

б) 
$$\int_{C} \frac{z+1}{(z+2+3i)(z+3i)} dz$$
, где  $C: |z+2+3i| = 1$ .

**5.03.** a) 
$$\int_{L} \text{Re } z \cdot \text{Re}(z^2) dz$$
, где  $L$ -дуга параболы  $y = 1 - x^2$  от  $z_1 = -1$ 

до 
$$z_2 = i$$
.

б) 
$$\int_{C} \frac{z-3}{(z+2-4i)(z+2-2i)} dz$$
, где  $C: |z+2-4i| = 1$ .

**5.04.** a) 
$$\int_{L} z \cdot \text{Re}(z^2) dz$$
, где  $L$  – дуга параболы  $y = -x^2$  от  $z_1 = 0$ 

до 
$$z_2 = 1 - i$$
.

б) 
$$\int_{C} \frac{z-2}{(z+2+i)(z+4+i)} dz$$
, где  $C: |z+2+i| = 1$ .

**5.05.** a) 
$$\int_{L} \text{Re}(z^2) \cdot \text{Im}(z+2-3i) dz$$
, где  $L$  – отрезок прямой  $y = 3 - x$ 

от 
$$z_1 = 3i$$
 до  $z_2 = 3$ .

ОТ 
$$z_1 = 3i$$
 до  $z_2 = 3$ .  
б)  $\int_C \frac{z-i}{(z+2-i)(z+2-3i)} dz$ , где  $C: |z+2-i| = 1$ .

**5.06.** a) 
$$\int_{L}^{\infty} (\overline{z})^3 dz$$
, где  $L$ -дуга параболы  $y = x^2$  от  $z_1 = 0$  до  $z_2 = 1 + i$ .

б) 
$$\int_{C} \frac{z+2}{(z+1-4i)(z+5-4i)} dz$$
, где  $C: |z+1-4i| = 2$ .

**5.07.** a) 
$$\int_{L} (\overline{z})^2 \cdot \text{Im } z \, dz$$
, где  $L$ -отрезок прямой  $y = 2 + x$  от  $z_1 = -1 + i$ 

до 
$$z_2 = 1 + 3i$$
.

б) 
$$\int_{C} \frac{z+i}{(z+1+4i)(z+1+8i)} dz$$
, где  $C: |z+1+4i| = 2$ .

**5.08.** a) 
$$\int_{L} (\bar{z})^2 \cdot \text{Re } z \, dz$$
, где  $L$ -дуга параболы  $y = 1 - x^2$  от  $z_1 = -1$ 

ДО 
$$Z_2 = i$$

б) 
$$\int_{C} \frac{z+2i}{(z+1-2i)(z-3-2i)} dz$$
, где  $C: |z+1-2i| = 2$ .

**5.09.** a) 
$$\int_{L} z \cdot (\overline{z})^{2} dz$$
, где  $L$ -дуга параболы  $y = -x^{2}$  от  $z_{1} = 0$  до  $z_{2} = 1 - i$ .  
б)  $\int_{C} \frac{2z+1}{(z+1-i)(z+1-7i)} dz$ , где  $C: |z+1-i| = 3$ .

до 
$$z_2 = 1 - i$$
.

б) 
$$\int_{C} \frac{2z+1}{(z+1-i)(z+1-7i)} dz$$
, где  $C: |z+1-i| = 3$ 

**5.10.** a) 
$$\int_{L} (\overline{z})^2 \cdot \text{Im}(z+2-3i) dz$$
, где  $L$ -отрезок прямой  $y = 3-x$ 

от 
$$z_1 = 3i$$
 до  $z_2 = 3$ 

б) 
$$\int_{C} \frac{z+4}{(z+1+i)(z-5+i)} dz$$
, где  $C: |z+1+i| = 3$ .

**5.11.** a) 
$$\int_{L}^{C} \overline{z} \cdot \text{Im}(z^{2}) dz$$
, где  $L -$ дуга параболы  $y = x^{2}$  от  $z_{1} = 0$ 

до 
$$z_2 = 1 + i$$
.

б) 
$$\int_{C} \frac{z-i}{(z-1-4i)(z-1+2i)} dz$$
, где  $C: |z-1-4i| = 3$ .

**5.12.** a) 
$$\int_{L} \text{Im}(z^2) dz$$
, где  $L$  – отрезок прямой  $y = 2 + x$  от  $z_1 = -1 + i$ 

$$z+3i$$
  $dz$ , где  $C: |z-1+3i|=3$ 

б) 
$$\sum_{C} \frac{z+3i}{(z-1+3i)(z-7+3i)} dz$$
, где  $C: |z-1+3i| = 3$ .

**5.13.** a) 
$$\int_{L} \text{Re } z \cdot \text{Im}(z^2) dz$$
, где  $L$  – дуга параболы  $y = 1 - x^2$  от  $z_1 = -1$ 

ДО 
$$z_2 = i$$
.

б) 
$$\oint_C \frac{2z+1}{(z-1-2i)(z-1-10i)} dz$$
, где  $C: |z-1-2i| = 4$ .

**5.14.** a) 
$$\int_{L} z \cdot \text{Im}(z^2) dz$$
, где  $L$  – дуга параболы  $y = -x^2$  от  $z_1 = 0$ 

до 
$$z_2 = 1 - i$$
.

б) 
$$\oint_C \frac{z-1}{(z-1-i)(z+7-i)} dz$$
, где  $C: |z-1-i| = 4$ .

**5.15.** a) 
$$\int_{L}^{3} \text{Im}(z^2) \cdot \text{Im}(z+2-3i) dz$$
, где  $L$ -отрезок прямой  $y=3-x$ 

от 
$$z_1 = 3i$$
 до  $z_2 = 3$ 

от 
$$z_1 = 3i$$
 до  $z_2 = 3$ .  
б)  $\sum_{C} \frac{z+i}{(z-1+i)(z-1+9i)} dz$ , где  $C: |z-1+i| = 4$ .

**5.16.** a) 
$$\int_{L} z \cdot (\overline{z+1-i}) dz$$
, где  $L$  – дуга параболы  $y = x^2$  от  $z_1 = 0$ 

ДО 
$$Z_2 = 1 + i$$
.

б) 
$$\int_{C} \frac{z-4}{(z-3-4i)(z-11-4i)} dz$$
, где  $C:|z-3-4i|=4$ .

**5.17.** a) 
$$\int_{L} \left(\overline{z+1-i}\right) \cdot \operatorname{Im} z \, dz$$
, где  $L$ -дуга параболы  $y = 2 + x$ 

от 
$$z_1 = -1 + i$$
 до  $z_2 = 1 + 3i$ .

ОТ 
$$z_1 = -1 + i$$
 до  $z_2 = 1 + 3i$ .  
б)  $\sum_{C} \frac{z+3i}{(z-3+3i)(z-3-4i)} dz$ , где  $C: |z-3+3i| = 5$ .

**5.18.** a) 
$$\int_{L} (\overline{z+1-i}) \cdot \text{Re } z \, dz$$
, где  $L$ -дуга параболы  $y = 1 - x^2$  от  $z_1 = -1$ 

ДО 
$$Z_2 = I$$
.

б) 
$$\int_{C} \frac{2z-i}{(z-2-2i)(z-12-2i)} dz$$
, где  $C: |z-2-2i| = 5$ .

**5.19.** a) 
$$\int_{L} z \cdot (\overline{z+1-i}) dz$$
, где  $L$ -дуга параболы  $y = -x^2$  от  $z_1 = 0$ 

до 
$$z_2 = 1 - i$$
.

б) 
$$\oint_C \frac{z+2}{(z-3-i)(z-3+9i)} dz$$
, где  $C: |z-3-i| = 5$ .

**5.20.** a) 
$$\int_{L} (\overline{z+1-i}) \cdot \text{Im}(z+2-3i) dz$$
, где  $L$  – отрезок прямой  $y = 3-x$ 

б) 
$$\oint_C \frac{i-z}{(z-2+i)(z+8+i)} dz$$
, где  $C: |z-2+i| = 5$ .

а)  $\int \operatorname{Im} z \cdot \operatorname{Re}(z^2) dz$ , где L – отрезок прямой y = 2 + x от  $z_1 = -1$ 

до 
$$z_2 = 1 + 3i$$
.

б) 
$$\oint_C \frac{z+2i}{(z-2-4i)(z-2-16i)} dz$$
, где  $C: |z-2-4i| = 3$ 

б)  $\int_{C} \frac{z+2i}{(z-2-4i)(z-2-16i)} dz$ , где C: |z-2-4i| = 3. **5.22.** a)  $\int_{C} \overline{z} \cdot z^2 dz$ , где L-дуга параболы  $y = x^2 - 1$  от  $z_1 = 1$ 

$$\sum_{i=1}^{\infty} \frac{z+2i}{(z-3+i)(z-8-3i)} dz$$
, где  $C: |z-3+i| = 4$ .

б)  $\int_{C} \frac{z+2i}{(z-3+i)(z-8-3i)} dz$ , где C: |z-3+i| = 4. а)  $\int_{L} z \cdot (\overline{z})^{2} dz$ , где L-дуга параболы  $y = -x^{2}$  от  $z_{1} = 0$ 

до 
$$z_2 = 1 - i$$
.

б) 
$$\int_{0}^{\infty} \frac{3-z}{(z-3-2i)(z-3+10i)} dz$$
, где  $C: |z-3-2i| = 6$ 

До  $z_2 = 1 - i$ . б)  $\int_C \frac{3 - z}{(z - 3 - 2i)(z - 3 + 10i)} dz$ , где C: |z - 3 - 2i| = 6. **5.24.** a)  $\int_C \text{Im}(z^2) \cdot \text{Im}(z + 2 - 3i) dz$ , где L-отрезок прямой y = 3 - x

б) 
$$\int_{C} \frac{i-2z}{(z-2-i)(z+10-i)} dz$$
, где  $C: |z-2-i| = 6$ .

а)  $\int (\overline{z+1-i}) \cdot \text{Im } z \, dz$ , где L-дуга параболы  $y=x^2$  от  $z_1=0$ 

до 
$$z_2 = 1 + i$$
.

б) 
$$\sum_{(z-3+i)(z-3-4i)}^{z+1-i} dz$$
, где  $C: |z-3+i| = 1$ .

**5.26.** a)  $\int_{-\infty}^{\infty} (\overline{z-1+2i}) \cdot \text{Re}(z-i) dz$ , где L – дуга параболы  $y = -x^2$ от  $z_1 = 0$  до  $z_2 = 1 - i$ .

б) 
$$\int_{C} \frac{2z-3+4i}{(z+3-i)(z+3-3i)} dz$$
, где  $C: |z+3-i| = 1$ .

**5.27.** a) 
$$\int_{L} \text{Im } z \cdot \text{Im}(z^2) dz$$
, где  $L$  – отрезок прямой  $y = 2 + x$  от  $z_1 = -1 + i$ 

до 
$$z_2 = 1 + 3i$$
.

б) 
$$\oint_C \frac{2i-z}{(z+1+i)(z-5+i)} dz$$
, где  $C: |z+1+i| = 3$ .

**5.28.** a) 
$$\int_{L}^{C} \overline{z} \cdot \text{Im}(z^{2}) dz$$
, где  $L -$ дуга параболы  $y = x^{2}$  от  $z_{1} = 0$ 

до 
$$z_2 = 1 + i$$
.

б) 
$$\int_{C} \frac{1+i-z}{(z+1-i)(z+1-7i)} dz$$
, где  $C: |z+1-i| = 3$ 

б) 
$$\int_{C} \frac{1+i-z}{(z+1-i)(z+1-7i)} dz$$
, где  $C: |z+1-i| = 3$ .  
**5.29.** a)  $\int_{L} (\overline{z})^3 \cdot \text{Re}(z-1+i) dz$ , где  $L$ -дуга параболы  $y = x^2$  от  $z_1 = 0$ 

до 
$$z_2 = 1 + i$$
.

б) 
$$\int_{C} \frac{z+3-2i}{(z+2-i)(z+2-3i)} dz$$
, где  $C: |z+2-i| = 1$ .

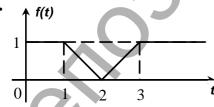
б) 
$$\int_{C} \frac{z+3-2i}{(z+2-i)(z+2-3i)} dz$$
, где  $C:|z+2-i|=1$ .  
**5.30.** a)  $\int_{L} (\overline{z})^2 \cdot \text{Re}(z+2-3i) dz$ , где  $L$ -отрезок прямой  $y=3-x$ 

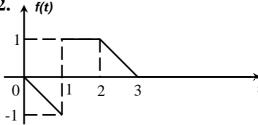
от 
$$z_1 = 3i$$
 до  $z_2 = 3$ .

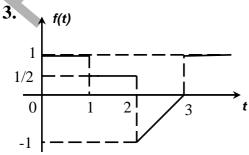
б) 
$$\int_{C} \frac{2z-i+5}{(z+1+4i)(z+1+8i)} dz$$
, где  $C: |z+1+4i| = 2$ .

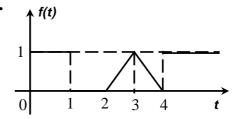
**Задание 6.** По данному графику оригинала f(t) найти изображение

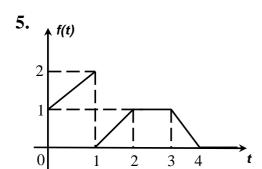


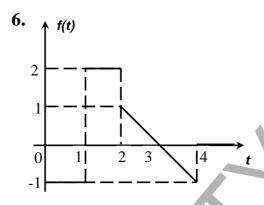


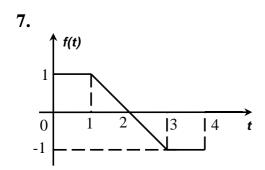


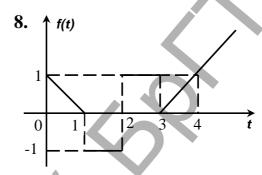


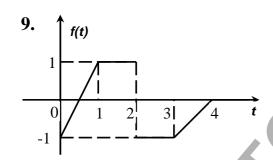


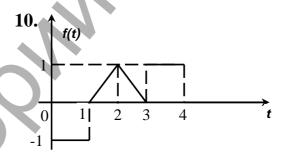


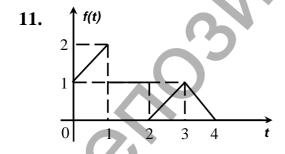


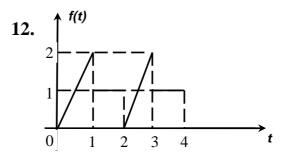


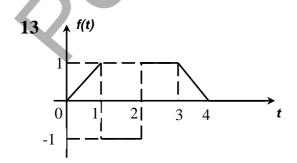


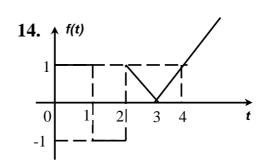


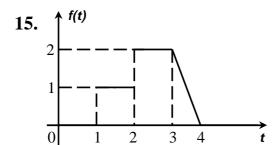


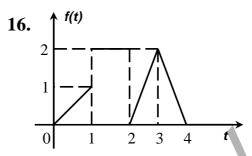


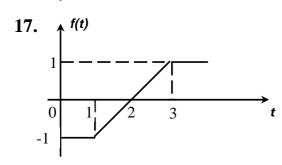


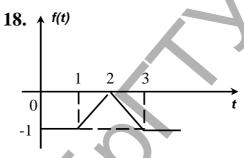


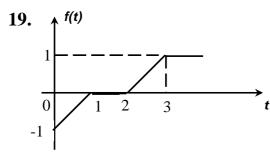


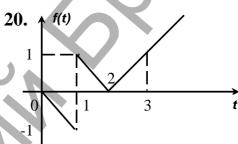


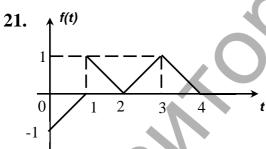


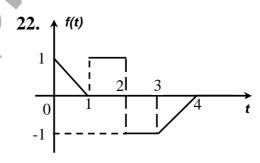


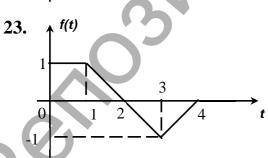


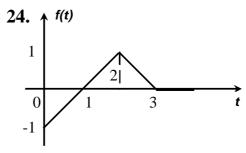


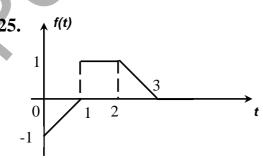


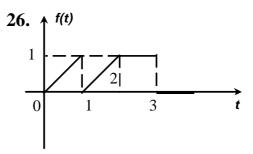




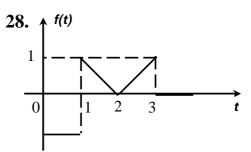


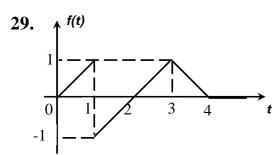


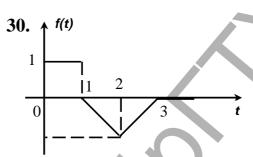












Задание 7. Операционным методом решить задачу Коши.

**7.1.** 
$$y'' + y' + y = 7e^{2t}$$
,

$$y(0) = 1,$$
  $y'(0) = 4.$ 

7.2. 
$$y'' + y' - 2y = -2(t+1)$$
,

$$y(0) = 1,$$
  $y'(0) = 1.$ 

**7.3.** 
$$y'' + 4y' + 29y = e^{-2t}$$
,

$$y(0) = 0$$
,  $y'(0) = 1$ .

**7.4.** 
$$2y'' + 5y' = 29\cos t$$
,

$$y(0) = -1, \quad y'(0) = 0.$$

7.5. 
$$y'' + 2y' + 10y = 2e^{-t}\cos 3t$$
,

$$y(0) = 5$$
,  $y'(0) = 1$ .

7.6. 
$$y'' + y' - 2y = e^{-t}$$

$$y(0) = -1, \quad y'(0) = 0.$$

7.6. 
$$y'' + y' - 2y = e^{-t}$$
,  
7.7.  $y'' - 3y' + 2y = 2e^{t} \cos\left(\frac{t}{2}\right)$ ,

$$y(0) = 1,$$
  $y'(0) = 0.$ 

**7.8.** 
$$y'' + y' + y = t^2 + t$$
,

$$y(0) = 1,$$
  $y'(0) = -3.$ 

**7.9.** 
$$y'' + 4y = \sin 2t$$
,

$$y(0) = 0$$
,  $y'(0) = 1$ .

**7.10.** 
$$y'' - 9y = \sin t - \cos t$$
,

$$y(0) = -3$$
,  $y'(0) = 2$ .

**7.11.** 
$$y'' - 3y' + 2y = 12e^{3t}$$
,

$$y(0) = 2$$
,  $y'(0) = 6$ .

**7.12.** 
$$y'' + 3y' - 10y = 47\cos 3t - \sin 3t$$
,

$$y(0) = 3$$
,  $y'(0) = -1$ .

**7.13.** 
$$y'' - 2y' = e^t (t^2 + t - 3),$$

$$y(0) = 2$$
,  $y'(0) = 2$ .

**7.14.** 
$$y'' + 4y = 8 \sin 2t$$
,

$$y(0) = 3$$
,  $y'(0) = -1$ .

**7.15.** 
$$y'' + y = \sinh t$$
,

$$y(0) = 2$$
,  $y'(0) = 1$ .

**7.16.** 
$$y'' + y' - 2y = e^t$$
,

$$y(0) = -1, \quad y'(0) = 0.$$

**7.17.** 
$$y'' + y = 6e^{-t}$$
,

$$y(0) = 3$$
,  $y'(0) = 1$ .

**7.18.** 
$$y'' - y' = t^2$$
,

$$y(0) = 0$$
,  $y'(0) = 1$ .

**7.19.** 
$$y'' + y' = t^2 + 2t$$
,

$$y(0) = 0$$
,  $y'(0) = -2$ .

**7.20.** 
$$y'' - y' = \cos 3t$$
,

$$y(0) = 1,$$
  $y'(0) = 1.$ 

**7.21.** 
$$y'' + 2y' = 2 + e^t$$
,

$$y(0) = 1,$$
  $y'(0) = 2.$ 

**7.22.** 
$$y'' + y' = \cos 2t$$
,

$$y(0) = 1,$$
  $y'(0) = 2.$ 

**7.23.** 
$$y'' + 2y' = \sin\left(\frac{t}{2}\right)$$
,

$$y(0) = -2$$
,  $y'(0) = 4$ .

**7.24.** 
$$y'' - 3y' + 2y = e^t$$

$$y(0) = -1, \quad y'(0) = 0.$$

**7.25.** 
$$y'' + 3y' + y = 3e^t$$
,

$$y(0) = 0$$
,  $y'(0) = -1$ .

**7.26.** 
$$y'' - 2y' - 3y = 2t$$

$$y(0) = 1,$$
  $y'(0) = 1.$ 

**7.27.** 
$$y'' - y' - 6y = 2$$

$$y(0) = 1,$$
  $y'(0) = 0.$ 

**7.28.** 
$$y'' + 4y = 4e^{2t} + 4t^2$$
,

$$y(0) = 1,$$
  $y'(0) = 2.$ 

**7.29.** 
$$y'' + 4y' + 4y = t^3 e^{2t}$$
,

$$y(0) = 1,$$
  $y'(0) = 2.$ 

**7.30.** 
$$y'' + 4y = 3 \sin t + 10 \cos 3t$$
,

$$y(0) = -2$$
,  $y'(0) = 3$ .

**Задание 8.** Операционным методом решить систему линейных дифференциальных уравнений.

8.01. 
$$\begin{vmatrix} \dot{x} = -x + 3y + 1, \\ \dot{y} = x + y, \end{vmatrix} \begin{cases} x(0) = 1, \\ y(0) = 2, \end{cases}$$
8.16. 
$$\begin{vmatrix} \dot{x} = 2y + 1, \\ \dot{y} = 2x + 3, \end{vmatrix} \begin{cases} x(0) = -1, \\ y(0) = 0. \end{cases}$$
8.02. 
$$\begin{vmatrix} \dot{x} = x + 2y + 1, \\ \dot{y} = 4x - y, \end{vmatrix} \begin{cases} x(0) = 0, \\ y(0) = 1. \end{cases}$$
8.17. 
$$\begin{vmatrix} \dot{x} = 2x + 8y + 1, \\ \dot{y} = 3x + 4y, \end{vmatrix} \begin{cases} x(0) = 2, \\ y(0) = 1. \end{cases}$$
8.03. 
$$\begin{vmatrix} \dot{x} = x + 3y + 2, \\ \dot{y} = x - y + 1, \end{vmatrix} \begin{cases} x(0) = -1, \\ y(0) = 2. \end{cases}$$
8.18. 
$$\begin{vmatrix} \dot{x} = 2x + 2y + 2, \\ \dot{y} = 4y + 1, \end{vmatrix} \begin{cases} x(0) = 0, \\ y(0) = 1. \end{cases}$$
8.04. 
$$\begin{vmatrix} \dot{x} = x + 4y, \\ \dot{y} = 2x - y + 9, \end{vmatrix} \begin{cases} x(0) = 1, \\ y(0) = 0. \end{cases}$$
8.19. 
$$\begin{vmatrix} \dot{x} = x + y, \\ \dot{y} = 4x + y + 1, \end{vmatrix} \begin{cases} x(0) = 0, \\ y(0) = 1. \end{cases}$$
8.06. 
$$\begin{vmatrix} \dot{x} = -2x + 5y + 1, \\ \dot{y} = x + 2y + 1, \end{vmatrix} \begin{cases} x(0) = 0, \\ y(0) = 1. \end{cases}$$
8.20. 
$$\begin{vmatrix} \dot{x} = x - 2y + 1, \\ \dot{y} = x + 2y, \end{cases} \begin{cases} x(0) = 1, \\ y(0) = 0. \end{cases}$$
8.21. 
$$\begin{vmatrix} \dot{x} = 3y + 2, \\ \dot{y} = x + 2y, \end{cases} \begin{cases} x(0) = 1, \\ y(0) = 1. \end{cases}$$
8.08. 
$$\begin{vmatrix} \dot{x} = -3x - 4y + 1, \\ \dot{y} = 2x + 3y, \end{cases} \begin{cases} x(0) = 0, \\ y(0) = 2. \end{cases}$$
8.22. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = x + 4y, \end{cases} \begin{cases} x(0) = 0, \\ y(0) = 1. \end{cases}$$
8.09. 
$$\begin{vmatrix} \dot{x} = -2x + 6y + 1, \\ \dot{y} = 2x + 2, \end{cases} \begin{cases} x(0) = 0, \\ y(0) = 2. \end{cases}$$
8.24. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 2x + 3y + 1, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = 2x + 3y + 1, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = 2x + 3y, \end{cases} \begin{cases} x(0) = 1, \\ y(0) = 0. \end{cases}$$
8.19. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 0, \\ x(0) = 0, \end{cases}$$
8.20. 
$$\begin{vmatrix} \dot{x} = 3y + 2, \\ \dot{y} = x + 2y, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = x + 2y, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = x + 4y + 1, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = 2x + 3y, \end{cases} \begin{cases} x(0) = 1, \\ x(0) = 0, \end{cases}$$
8.21. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 2x + 3y, \end{cases} \begin{cases} x(0) = 1, \\ x(0) = 0, \end{cases}$$
8.22. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 2x + 3y, \end{cases} \begin{cases} x(0) = 1, \\ x(0) = 0, \end{cases}$$
8.23. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 0, \\ \dot{y} = 3x, \end{cases} \end{cases} \begin{cases} x(0) = 0, \end{cases}$$
8.10. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 0, \end{cases}$$
8.11. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 0, \end{cases} \end{cases}$$
8.12. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 0, \end{cases}$$
8.23. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \begin{cases} x(0) = 1, \end{cases}$$
8.24. 
$$\begin{vmatrix} \dot{x} = 2x + 3y, \\ \dot{y} = 3x, \end{cases} \end{cases} \begin{cases} x(0) = 1, \end{cases}$$
8.25. 
$$\begin{vmatrix} \dot{x} = 4x + 3, \\ \dot{y} = x + 2, \end{cases} \end{cases} \begin{cases} x(0) = 1, \end{cases}$$
8.26.

## РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Задание 1. Исследовать сходимость числовых рядов:

#### Решение

а) Для исследования числового ряда  $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^5}}$  на сходимость ис-

пользуем признак сравнения. Сравним его со сходящимся рядом  $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ 

$$\left(a = \frac{3}{2} > 1\right).$$

Составляем предел  $\lim_{n\to\infty}\frac{a_n}{b_n}$ , где  $a_n=\frac{1}{\sqrt{n^5}}$  и  $b_n=\frac{n+1}{\sqrt{n^5}}$ .

$$\lim_{n \to \infty} \left( \frac{1}{n^{\frac{3}{2}}} : \frac{n+1}{\sqrt{n^5}} \right) = \lim_{n \to \infty} \left( \frac{1}{n^{\frac{3}{2}}} \cdot \frac{\sqrt{n^5}}{n+1} \right) = \lim_{n \to \infty} \frac{n^{\frac{5}{2}}}{n^{\frac{3}{2}} \cdot \left(1 + \frac{1}{n}\right)n} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1.$$

Так как предел конечен и не равен нулю, то оба ряда ведут себя одинаково. Значит, ряд  $\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^5}}$  сходится.

б) Исследуем ряд  $\sum_{n=1}^{\infty} \frac{n \cdot (n+1)^2}{2^n}$  по признаку Д'Аламбера.

Запишем  $a_n$  и  $a_{n+1}$  члены ряда

$$a_n = \frac{n \cdot (n+1)^2}{2^n}$$
  $a_{n+1} = \frac{(n+1) \cdot (n+2)^2}{2^{n+1}}$ .

Составляем предел  $k = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ :

$$k = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} : \frac{n \cdot (n+1)^2}{2^n} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^{n+1}} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n \cdot (n+1)^2} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2}{2^n} \cdot \frac{2^n}{n \cdot (n+1)^2} \right) = \lim_{n \to \infty} \left( \frac{(n+1) \cdot (n+2)^2$$

$$= \lim_{n \to \infty} \left( \frac{n^3 \cdot \left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{2}{n}\right)^2}{2^n \cdot 2} \cdot \frac{2^n}{n^3 \cdot \left(1 + \frac{1}{n}\right)^2} \right) = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right) \cdot \left(1 + \frac{2}{n}\right)^2}{2 \cdot \left(1 + \frac{1}{n}\right)^2} =$$

$$=\frac{(1+0)\cdot (1+0)^2}{2\cdot (1+0)^2}=\frac{1}{2}.$$

Так как  $k = \frac{1}{2} < 1$ , то ряд  $\sum_{n=1}^{\infty} \frac{n \cdot (n+1)^2}{2^n}$  сходится.

в) Исследуем ряд  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+3)}$  на абсолютную сходимость.

Составим ряд из абсолютных величин

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n(n+3)} \right| = \sum_{n=1}^{\infty} \frac{1}{n(n+3)}.$$

Исследуем знакоположительный числовой ряд  $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$  на сходимость используя признак сравнения. Сравним его со сходящимся рядом  $\sum_{i=1}^{\infty} \frac{1}{n^2}$  ( $\alpha=2>1$ ).

Составляем предел 
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$
, где  $a_n = \frac{1}{n(n+3)}$  и  $b_n = \frac{1}{n^2}$ .

$$\lim_{n \to \infty} \left( \frac{1}{n(n+3)} : \frac{1}{n^2} \right) = \lim_{n \to \infty} \left( \frac{1}{n(n+3)} \cdot \frac{n^2}{1} \right) = \lim_{n \to \infty} \frac{n^2}{n^2 \left( 1 + \frac{3}{n} \right)} = \lim_{n \to \infty} \frac{1}{1 + \frac{3}{n}} = 1.$$

Так как предел конечен и не равен нулю, то оба ряда ведут себя одинаково. Значит, ряд  $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$  сходится.

Так как ряд, составленный из абсолютных величин, сходится, то ряд  $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n(n+3)}$  сходится абсолютно.

г) Ряд  $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+2}$  является знакочередующимся. Он может сходиться условно и абсолютно.

Исследуем его на условную сходимость по признаку Лейбница. Для знакочередующегося ряда

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

проверяют условия:

1) 
$$a_n \ge a_{n+1}, n \in N$$
;

$$2) \lim_{n\to\infty} a_n = 0.$$

Для исходного ряда, получим

$$a_{1} = \frac{1}{1^{2} + 2} = \frac{1}{3} \approx 0,3333;$$

$$a_{2} = \frac{2}{2^{2} + 2} = \frac{2}{6} = \frac{1}{3} \approx 0,3333;$$

$$a_{3} = \frac{3}{3^{2} + 2} = \frac{3}{11} \approx 0,2727;$$

$$a_{4} = \frac{4}{4^{2} + 2} = \frac{4}{18} = \frac{2}{9} \approx 0,2222;$$

$$a_{5} = \frac{5}{5^{2} + 2} = \frac{5}{27} \approx 0,1852;$$

$$a_{6} = \frac{6}{6^{2} + 2} = \frac{6}{38} = \frac{3}{19} \approx 0,1579.$$

Очевидно, что

$$a_1 = a_2 > a_3 > a_4 > a_5 > a_6 > \dots$$

т.е. последовательность  $\frac{n}{n^2+2}$  убывающая при  $n \ge 2$ .

Проверим второе условие

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n^2 + 2} = \lim_{n \to \infty} \frac{n}{n^2 \left(1 + \frac{2}{n^2}\right)} = \lim_{n \to \infty} \frac{1}{n \cdot \left(1 + \frac{2}{n^2}\right)} = 0.$$

Оба условия признака Лейбница выполнены. Значит, исходный ряд сходится условно.

Проверим исходный ряд на абсолютную сходимость.

Составим ряд из абсолютных величин

$$\left| \sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{n}{n^2 + 2} \right| = \sum_{n=1}^{\infty} \frac{n}{n^2 + 2} = \sum_{n=1}^{\infty} a_n.$$

Сравним полученный ряд с гармоническим рядом  $\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} b_n$ , который расходится.

Найдем 
$$\lim_{n\to\infty}\frac{a_n}{b_n}$$
:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n^2 + 1} : \frac{1}{n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = \lim_{n \to \infty} \frac{n^2}{n^2 \left(1 + \frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^2}} = 1.$$

Так как предел конечен и не равен нулю, то оба ряда ведут себя одинаково. Значит, ряд  $\sum_{n=1}^{\infty} \frac{n}{n^2+2}$  расходится. Следовательно, исходный ряд абсолютно не сходится, т.е. сходится условно.

**Ответ.** а) ряд сходится; б) ряд сходится; в) ряд сходится абсолютно; г) ряд сходится условно.

**Задание 2.** Исследовать ряд 
$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} (x+1)^n$$
 на сходимость:

- а) написать первые четыре члена ряда;
- б) найти интервал сходимости ряда;
- в) выявить вопрос о сходимости ряда на концах интервала сходимости.

### Решение

а) Запишем первые четыре члена ряда  $\sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} (x+1)^n$ , придавая последовательно числу n значения 1, 2, 3, 4.

$$\frac{3^{1}}{1 \cdot \sqrt{1+2}} (x+1)^{1} + \frac{3^{2}}{2 \cdot \sqrt{2+2}} (x+1)^{2} + \frac{3^{3}}{3 \cdot \sqrt{3+2}} (x+1)^{3} + \frac{3^{4}}{4 \cdot \sqrt{4+2}} (x+1)^{4} + \dots = \frac{3^{4}}{4 \cdot \sqrt{4+2}}$$

$$= \sqrt{3}(x+1) + \frac{9}{4}(x+1)^2 + \frac{9}{\sqrt{5}}(x+1)^3 + \frac{81}{4 \cdot \sqrt{6}}(x+1)^4 + \dots$$

б) Найдём интервал сходимости ряда, используя признак Д'Аламбера:

Запишем  $u_n(x)$  и  $u_{n+1}(x)$  члены ряда

$$u_n(x) = \frac{3^n}{n \cdot \sqrt{n+2}} (x+1)^n \text{ if } u_{n+1}(x) = \frac{3^{n+1}}{(n+1) \cdot \sqrt{n+3}} (x+1)^{n+1}.$$

Составляем предел 
$$k = \lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right|$$
: 
$$k = \lim_{n \to \infty} \left| \frac{3^{n+1}}{(n+1) \cdot \sqrt{n+3}} (x+1)^{n+1} : \frac{3^n}{n \cdot \sqrt{n+2}} (x+1)^n \right| = \lim_{n \to \infty} \left| \frac{3^n \cdot 3 \cdot (x+1)^n (x+1)}{(n+1) \cdot \sqrt{n+3}} \cdot \frac{n \cdot \sqrt{n+2}}{3^n (x+1)^n} \right| = 3 \cdot |x+1| \cdot \lim_{n \to \infty} \frac{n \cdot \sqrt{n+2}}{(n+1) \cdot \sqrt{n+3}} = 3 \cdot |x+1| \cdot \lim_{n \to \infty} \frac{n^2 \cdot \sqrt{1+\frac{2}{n}}}{n \cdot \left(1+\frac{1}{n}\right) \cdot n \cdot \sqrt{1+\frac{3}{n}}} = 3 \cdot |x+1| \cdot \lim_{n \to \infty} \frac{\sqrt{1+\frac{2}{n}}}{\left(1+\frac{1}{n}\right) \sqrt{1+\frac{3}{n}}} = 3 \cdot |x+1| \cdot \frac{\sqrt{1+0}}{(1+0)\sqrt{1+0}} = 3 \cdot |x+1|.$$

Для того чтобы ряд сходился, должно выполняться условие k < 1, поэтому

$$3 \cdot |x+1| < 1, \quad |x+1| < \frac{1}{3}, \quad -\frac{1}{3} < x+1 < \frac{1}{3}, \quad -\frac{1}{3} - 1 < x < \frac{1}{3} - 1,$$
  $-\frac{4}{3} < x < -\frac{2}{3}$ . Значит, на интервале  $\left(-\frac{4}{3}; -\frac{2}{3}\right)$  исходный ряд сходится абсолютно.

в) Исследуем поведение ряда на концах интервала сходимости. Пусть  $x = -\frac{2}{3}$ , тогда получаем числовой ряд

$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} \left( -\frac{2}{3} + 1 \right)^n = \sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} \cdot \left( \frac{1}{3} \right)^n = \sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt{n+2}}.$$

Для исследования числового ряда  $\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt{n+2}}$  на сходимость используем признак сравнения. Сравним его со сходящимся рядом

Составляем предел 
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$
, где  $a_n = \frac{1}{n^{\frac{3}{2}}}$  и  $b_n = \frac{1}{n\cdot\sqrt{n+2}}$ .

$$\lim_{n\to\infty} \left( \frac{1}{n^{\frac{3}{2}}} : \frac{1}{n\cdot\sqrt{n+2}} \right) = \lim_{n\to\infty} \frac{n\cdot\sqrt{n+2}}{n^{\frac{3}{2}}} = \lim_{n\to\infty} \frac{n^{\frac{3}{2}}\cdot\sqrt{1+\frac{2}{n}}}{n^{\frac{3}{2}}} = \lim_{n\to\infty} \sqrt{1+\frac{2}{n}} = 1.$$

Так как предел конечен и не равен нулю, то оба ряда ведут себя одинаково. Значит, ряд  $\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt{n+2}}$  сходится.

Пусть  $x = -\frac{4}{3}$ , тогда получим знакочередующийся ряд

$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} \left( -\frac{4}{3} + 1 \right)^n = \sum_{n=1}^{\infty} \frac{3^n}{n \cdot \sqrt{n+2}} \cdot \left( -\frac{1}{3} \right)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot \sqrt{n+2}}.$$

Исследуем его на абсолютную сходимость. Для этого составим ряд из абсолютных величин

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n \cdot \sqrt{n+2}} \right| = \sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt{n+2}} = \sum_{n=1}^{\infty} a_n.$$

Сравним полученный ряд с рядом  $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} = \sum_{n=1}^{\infty} b_n$ , который сходится.

Найдем  $\lim_{n\to\infty}\frac{a_n}{b_n}$ :

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n\sqrt{n+2}} : \frac{1}{n^{\frac{3}{2}}} = \lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{n^{\frac{3}{2}} \cdot \sqrt{1 + \frac{2}{n}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{2}{n}}} = 1.$$

Так как предел конечен и не равен нулю, то оба ряда ведут себя одинаково. Значит, ряд  $\sum_{n=1}^{\infty} \frac{1}{n\cdot\sqrt{n+2}}$  сходится.

Значит, знакочередующийся ряд сходится абсолютно.

Следовательно, область сходимости степенного ряда  $\left[ -\frac{4}{3}; -\frac{2}{3} \right]$ .

**Ответ.** 
$$\left[ -\frac{4}{3}; -\frac{2}{3} \right]$$
.

**Задание 3.** Найти три первых, отличных от нуля члена разложения в степенной ряд решения y = y(x) дифференциального уравнения  $y' = 4xy^2 - x^3$ , удовлетворяющего начальному условию y(0) = 2.

#### Решение

Решение дифференциального уравнения будем искать в виде ряда Маклорена:

$$y(x) = y(0) + \frac{y'(0)}{1!} \cdot x + \frac{y''(0)}{2!} \cdot x^2 + \frac{y'''(0)}{3!} \cdot x^3 + \frac{y^{(4)}(0)}{4!} \cdot x^4 + \dots$$

По условию задачи  $y' = 4xy^2 - x^3$ . Подставляя x = 0 и y = 2 в уравнение, вычислим значение y'(0):

$$y'(0) = 4 \cdot 0 \cdot 2^2 - 0^3 = 0$$
.

Найдем y''(x):

$$y''(x) = (4xy^{2} - x^{3})' = (4xy^{2})' - (x^{3})' = 4y^{2} \cdot (x)' + 4x \cdot (y^{2})' - 3x^{2} =$$

$$=4y^2 \cdot 1 + 4x \cdot 2y \cdot y' - 3x^2 = 4y^2 + 8xyy' - 3x^2.$$

Подставляя x = 0, y = 2 и y'(0) = 0 в y''(x), вычислим значение y''(0):  $y''(0) = 4 \cdot 2^2 + 8 \cdot 0 \cdot 2 \cdot 0 - 3 \cdot 0^2 = 16$ .

Найдем y'''(x):

$$y'''(x) = (4y^{2} + 8xyy' - 3x^{2})' = (4y^{2})' + (8xyy')' - (3x^{2})' =$$

$$= 8y \cdot y' + 8yy' + 8x(yy')' - 6x = 16yy' + 8x(yy'' + y'y') - 6x =$$

$$= 16yy' + 8xyy'' + 8x(y')^{2} - 6x.$$

Подставляя x = 0, y = 2, y'(0) = 0 и y''(0) = 16 в y'''(x), вычислим значение y'''(0):

$$y'''(0) = 16 \cdot 2 \cdot 0 + 8 \cdot 0 \cdot 2 \cdot 16 + 8 \cdot 0 \cdot (0)^2 - 6 \cdot 0 = 0$$

Найдем  $y^{(4)}(x)$ :

$$y^{(4)}(x) = (16yy' + 8xyy'' + 8x(y')^{2} - 6x)' = (16yy')' + (8xyy'')' + (8x(y')^{2})' - (6x)' =$$

$$= 16y'y' + 16yy'' + 8yy'' + 8x(yy'')' + 8(y')^{2} + 8x \cdot 2y' \cdot y'' - 6 =$$

$$= 24(y')^{2} + 24yy'' + 8x(y'y'' + yy''') + 16x \cdot y' \cdot y'' - 6 =$$

$$= 24(y')^{2} + 24yy'' + 24xy'y'' + 8xyy''' - 6.$$

Подставляя x = 0, y = 2, y'(0) = 0, y''(0) = 16 и y'''(0) = 0 в  $y^{(4)}(x)$ , вычислим значение  $y^{(4)}(0)$ :

$$y^{(4)}(0) = 24 \cdot 0^2 + 24 \cdot 2 \cdot 16 + 24 \cdot 0 \cdot 0 \cdot 16 + 8 \cdot 0 \cdot 2 \cdot 0 - 6 = 768 - 6 = 762$$
.

Подставляя найденные коэффициенты в ряд Маклорена, получим решение исходного дифференциального уравнения

$$y(x) = 2 + \frac{0}{1!} \cdot x + \frac{16}{2!} \cdot x^2 + \frac{0}{3!} \cdot x^3 + \frac{762}{4!} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{762}{24} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{16}{2} \cdot x^4 + \dots = 2 + \frac{16}{2} \cdot x^2 + \frac{16$$

**Ответ.** 
$$y(x) \approx 2 + 8x^2 + 31,75x^4$$
.

**Задание 4.** Найти коэффициент растяжения и угол поворота в точке  $z_0 = 1 + 2i$  при отображении  $w = f(z) = 2xy + 2y + i\left(y^2 - x^2 - 2x\right)$ .

#### Решение

Проверим функцию w = f(z) на дифференцируемость, для этого проверим выполнение условий Коши-Римана:

$$\begin{cases} \mathbf{u}_{x}' = \mathbf{v}_{y}' \\ \mathbf{u}_{y}' = -\mathbf{v}_{x}' \end{cases}$$

По условию задачи

$$u(x,y) = 2xy + 2y \text{ u } v(x,y) = y^2 - x^2 - 2x.$$

Найдем первые частные производные функций u(x,y) и v(x,y):

$$u'_{x} = (2xy + 2y)'_{x} = 2y,$$

$$u'_{y} = (2xy + 2y)'_{y} = 2x + 2,$$

$$v'_{x} = (y^{2} - x^{2} - 2x)'_{x} = -2x - 2 = -(2x + 2),$$

$$v'_{y} = (y^{2} - x^{2} - 2x)'_{y} = 2y.$$

Подставляя в условия Коши-Римана найденные производные, получим

$$\begin{cases} 2y = 2y \\ 2x + 2 = 2x + 2 \end{cases}$$

Оба условия выполняются. Тогда

$$f'(z) = u'_x + i \cdot v'_x = 2y - i \cdot (2x + 2).$$

Найдем значение f'(z) в точке  $z_0 = 1 + 2i$ .

Так как  $z_0 = 1 + 2 \cdot i$ , то x = 1 и y = 2.

Тогда

$$f'(z_0) = f'(1+2i) = (2y-i\cdot(2x+2))\Big|_{\substack{x=1\\y=2}} = 2\cdot 2-i\cdot(2\cdot 1+2) = 4-4i.$$

Коэффициент растяжения равен

$$k = |f'(1+2i)| = \sqrt{4^2 + (-4)^2} = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}.$$

Так как 4 > 0 и -4 < 0, то угол поворота равен

$$j = arg(f'(1+2i)) = arctg(\frac{-4}{4}) = arctg(-1) = -\frac{p}{4}$$
.

**Ответ.**  $k = 4\sqrt{2}$  ,  $j = -\frac{p}{4}$  .

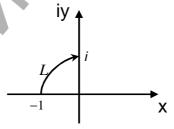
**Задание 5.** Вычислить интегралы:

а) 
$$\int_{L} (\overline{z})^2 \cdot \text{Re } z \, dz$$
, где  $L$ -дуга параболы  $y = 1 - x^2$  от  $z_1 = -1$  до  $z_2 = i$ .

б) 
$$\int_{C} \frac{z+5i}{(z-2+3i)(z-14+3i)} dz$$
, где  $C: |z-2+3i| = 6$ .

#### Решение

а) Изобразим путь интегрирования:  $y = 1 - x^2$ ,  $-1 \le x \le 0$ .



Так как 
$$z = x + iy$$
 и  $y' = -2x$ , то  $dz = dx + idy = dx + i(-2x dx) = (1 - 2x i) dx$ .

$$Re(z) = Re(x+iy) = x$$
.

$$(\overline{z})^{2} = (\overline{x+iy})^{2} = (x-iy)^{2} = x^{2} - 2xyi + (iy)^{2} = x^{2} - 2xyi - y^{2} = x^{2} - 2x(1-x^{2})i - (1-x^{2})^{2} = x^{2} + (-2x+2x^{3})i - (1-2x^{2}+x^{4}) = (3x^{2} - x^{4} - 1) + (-2x + 2x^{3})i.$$

Подынтегральное выражение примет следующий вид

$$(\overline{z})^{2} \cdot \operatorname{Re} z \, dz = \left( \left( 3x^{2} - x^{4} - 1 \right) + \left( -2x + 2x^{3} \right) i \right) x \left( 1 - 2x i \right) dx =$$

$$= \left( 3x^{2} - x^{4} - 1 - 2x i + 2x^{3} i \right) \left( x - 2x^{2} i \right) dx =$$

$$= \left( 3x^{3} - x^{5} - x - 2x^{2} i + 2x^{4} i - 2i \left( 3x^{4} - x^{6} - x^{2} - 2x^{3} i + 2x^{5} i \right) \right) dx =$$

$$= \left( 3x^{3} - x^{5} - x - 2x^{2} i + 2x^{4} i - 6x^{4} i + 2x^{6} i + 2x^{2} i - 4x^{3} + 4x^{5} \right) dx =$$

$$= \left( 3x^{5} - x^{3} - x + 2x^{6} i - 4x^{4} i \right) dx.$$

Подставляя в интеграл получим

$$\int_{L} (\overline{z})^{2} \cdot \operatorname{Re} z \, dz = \int_{-1}^{0} (3x^{5} - x^{3} - x + 2x^{6} \, i - 4x^{4} \, i) \, dx =$$

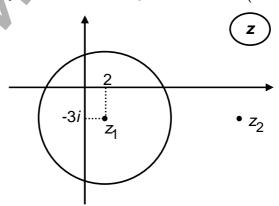
$$= \left( 3 \cdot \frac{x^{6}}{6} - \frac{x^{4}}{4} - \frac{x^{2}}{2} + 2i \cdot \frac{x^{7}}{7} - 4i \cdot \frac{x^{5}}{5} \right) \Big|_{-1}^{0} =$$

$$= 0 - \left( 3 \cdot \frac{(-1)^{6}}{6} - \frac{(-1)^{4}}{4} - \frac{(-1)^{2}}{2} + 2i \cdot \frac{(-1)^{7}}{7} - 4i \cdot \frac{(-1)^{5}}{5} \right) =$$

$$= -\left( \frac{3}{6} - \frac{1}{4} - \frac{1}{2} - \frac{2}{7}i + \frac{4}{5}i \right) = -\frac{1}{2} + \frac{1}{4} + \frac{1}{2} + \frac{2}{7}i - \frac{4}{5}i = \frac{1}{4} - \frac{18}{35}i.$$

б) Определим контур интегрирования.

$$C: |z-2+3i| = 6; |x+iy-2+3i| = 6; \sqrt{(x-2)^2 + (y+3)^2} = 6;$$
  $(x-2)^2 + (y+3)^2 = 6^2$  – окружность с центром в точке  $(2;-3)$  радиуса  $6$ .



Функция 
$$g(z) = \frac{z+5i}{(z-2+3i)(z-14+3i)}$$
 имеет две особые точки: 
$$(z-2+3i)(z-14+3i) = 0,$$
 
$$z_1 = 2-3i$$
 и  $z_2 = 14-3i$ .

В контур C попадает одна точка  $z_1 = 2 - 3i$ . В этой точке у функции g(z) нарушается условие аналитичности. Однако функция  $f(z) = \frac{z + 5i}{z - 14 + 3i}$  аналитична в круге  $|z - 2 + 3i| \le 6$ .

Воспользуемся интегральной формулой Коши:

$$\oint_C \frac{f(z)}{z - z_0} = 2p \ i \cdot f(z_0),$$

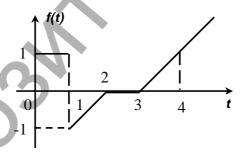
где f(z) аналитична в круге, ограниченном контуром интегрирования  ${\it C}$  .

Так как 
$$g(z) = \frac{f(z)}{z-2+3i}$$
, то

$$\left( \frac{z+5i}{(z-2+3i)(z-14+3i)} dz = 2p \, i \cdot \left( \frac{z+5i}{z-14+3i} \right) \right|_{z_1=2-3i} = 2p \, i \cdot \frac{2-3i+5i}{2-3i-14+3i} = 2p \, i \cdot \frac{2+2i}{-12} = -p \, i \cdot \frac{1+i}{3} = -\frac{p}{3}i - \frac{p}{3}i^2 = \frac{p}{3} - \frac{p}{3}i.$$

**Ответ.** a) 
$$\frac{1}{4} - \frac{18}{35}i$$
; б)  $\frac{p}{3} - \frac{p}{3}i$ .

**Задание 6.** По данному графику оригинала f(t) найти изображение



#### Решение

Оригинал f(t) задан графически, запишем сначала его аналитическое выражение:

$$f(t) = egin{cases} 0, & ext{если} & t < 0, \ 1, & ext{если} & 0 \leq t < 1, \ t - 2, & ext{если} & 1 \leq t < 2, \ 0, & ext{если} & 2 \leq t < 3, \ t - 3, & ext{если} & t \geq 3. \end{cases}$$

В момент времени t=0 «включается» функция f(t)=1, которая при t=1 снимается и «включается» функция f(t)=t-2, которая снимается при t=2 и «включается» функция f(t)=0, которая снимается при t=3 и «включается» функция f(t)=t-3.

Теперь представим функцию f(t) единым аналитическим выражением с помощью функции сдвига h(t-t).

$$\begin{split} f(t) &= -0 \cdot h(t) + 1 \cdot h(t) - 1 \cdot h(t-1) + (t-2) \cdot h(t-1) - (t-2) \cdot h(t-2) + \\ &+ 0 \cdot h(t-2) - 0 \cdot h(t-3) + (t-3) \cdot h(t-3) = \\ &= h(t) + (t-2-1) \cdot h(t-1) - (t-2) \cdot h(t-2) + (t-3) \cdot h(t-3) = \\ &= h(t) + ((t-1)-2) \cdot h(t-1) + (-(t-2)) \cdot h(t-2) + (t-3) \cdot h(t-3) = \\ &= j_{-1}(t) \cdot h(t) + j_{-2}(t) \cdot h(t-1) + j_{-3}(t) \cdot h(t-2) + j_{-4}(t) \cdot h(t-3). \end{split}$$

Таким образом:

$$j_{1}(t) = 1$$
  $L(j_{1}(t)) = \frac{1}{p};$   
 $j_{2}(t) = t - 2$   $L(j_{2}(t)) = \frac{1}{p^{2}} - \frac{2}{p};$   
 $j_{3}(t) = -t$   $L(j_{3}(t)) = -\frac{1}{p^{2}};$   
 $j_{4}(t) = t$   $L(j_{4}(t)) = \frac{1}{p^{2}}.$ 

Используя теорему запаздывания, найдем изображение F(p) оригинала f(t):

$$F(p) = \frac{1}{p} + \left(\frac{1}{p^2} - \frac{2}{p}\right) \cdot e^{-p} - \frac{1}{p^2} \cdot e^{-2p} + \frac{1}{p^2} \cdot e^{-3p}.$$

**ОТВЕТ.** 
$$F(p) = \frac{1}{p} + \left(\frac{1}{p^2} - \frac{2}{p}\right) \cdot e^{-p} - \frac{1}{p^2} \cdot e^{-2p} + \frac{1}{p^2} \cdot e^{-3p}.$$

Задание 7. Операционным методом решить задачу Коши.

$$2y'' - y' = \sin 3t$$
,  $y(0) = 2$ ,  $y'(0) = 1$ .

#### Решение

Перейдем от оригиналов к изображениям:

$$L(y(t)) = Y(p),$$

$$L(y'(t)) = pY(p) - y(0) = pY(p) - 2$$

$$L(y''(t)) = \rho^2 Y(\rho) - \rho y(0) - y'(0) = \rho^2 Y(\rho) - 2\rho - 1$$

$$L(\sin 3t) = \frac{3}{p^2 + 9}.$$

Операторное уравнение примет вид

$$2(p^2Y(p)-2p-1)-(pY(p)-2)=\frac{3}{p^2+9}$$

Откуда получаем операторное решение

$$Y(p) = \frac{4p^3 + 36p + 3}{2p\left(p - \frac{1}{2}\right)\left(p^2 + 9\right)}$$

Представим последнюю дробь в виде суммы простейших дробей:

$$\frac{4p^3+36p+3}{p(2p-1)(p^2+9)} = \frac{A}{p} + \frac{B}{2p-1} + \frac{Cp+D}{p^2+9}.$$

Воспользуемся методом неопределенных коэффициентов.

$$\frac{4p^{3} + 36p + 3}{p(2p-1)(p^{2}+9)} = \frac{A(2p-1)(p^{2}+9) + Bp(p^{2}+9) + (Cp+D)p(2p-1)}{p(2p-1)(p^{2}+9)}.$$

$$4p^{3} + 36p + 3 = A(2p-1)(p^{2}+9) + Bp(p^{2}+9) + (Cp+D)p(2p-1).$$

Составляем систему:

$$p^{3}: 2A + B + 2C = 4$$

$$p^{2}: -A - C + 2D = 0$$

$$p^{1}: 18A + 9B - D = 36$$

$$p^{0}: -9A = 3$$

Найдем решение полученной системы.

$$\begin{cases} -\frac{2}{3} + B + 2C = 4, \\ \frac{1}{3} - C + 2D = 0, \\ -6 + 9B - D = 36, \\ A = -\frac{1}{3}. \end{cases}$$

$$B = \frac{14}{3} - 2C,$$

$$D = -\frac{1}{6} + \frac{1}{2}C,$$

$$9 \cdot \left(\frac{14}{3} - 2C\right) - \left(-\frac{1}{6} + \frac{1}{2}C\right) = 42,$$

$$A = -\frac{1}{3}.$$

$$C = \frac{1}{111},$$

$$A = -\frac{1}{3}.$$

Подставляя найденные коэффициенты, получим

$$Y(p) = \frac{-\frac{1}{3}}{p} + \frac{\frac{172}{37}}{2p-1} + \frac{\frac{1}{111}p - \frac{6}{37}}{p^2 + 9}.$$

$$Y(p) = -\frac{1}{3} \cdot \frac{1}{p} + \frac{86}{37} \cdot \frac{1}{p - \frac{1}{2}} + \frac{1}{111} \cdot \frac{p}{p^2 + 9} \cdot \frac{2}{37} \cdot \frac{3}{p^2 + 9}.$$

Перейдем к оригиналам

ейдем к оригиналам 
$$y(t) = L^{-1}(Y(p)) = -\frac{1}{3} \cdot 1 + \frac{86}{37} \cdot e^{\frac{1}{2}t} + \frac{1}{111} \cdot \cos 3t - \frac{2}{37} \cdot \sin 3t.$$

**Ответ.** 
$$y(t) = -\frac{1}{3} + \frac{86}{37} \cdot e^{0.5t} + \frac{1}{111} \cdot \cos 3t - \frac{2}{37} \cdot \sin 3t$$
.

**Задание 8.** Операционным методом решить систему дифференциальных уравнений.

$$\begin{cases} \dot{x} = x + 4y + 1, & \begin{cases} x(0) = 0, \\ \dot{y} = 2x + 3y, \end{cases} & \begin{cases} y(0) = 1. \end{cases}$$

#### Решение

Перейдем в каждом уравнении системы от оригиналов к изображениям:

$$L(x(t)) = X(p);$$

$$L(\dot{x}(t)) = pX(p) - x(0) = pX(p);$$

$$L(1) = \frac{1}{p};$$

$$L(y(t)) = Y(p);$$

$$L(\dot{y}(t)) = pY(p) - y(0) = pY(p) - 1.$$

$$\begin{cases} pX(p) = X(p) + 4Y(p) + \frac{1}{p}, \\ pY(p) - 1 = 2X(p) + 3Y(p). \end{cases}$$

Найдем решение системы по формулам Крамера.

$$\begin{cases} (p-1)X(p) - 4Y(p) = \frac{1}{p}, \\ -2X(p) + (p-3)Y(p) = 1. \end{cases}$$

$$D = \begin{vmatrix} p-1 & -4 \\ -2 & p-3 \end{vmatrix} = (p-1)(p-3) - 8 = p^2 - 4p - 5 = (p-5)(p+1).$$

$$D_X = \begin{vmatrix} \frac{1}{p} & -4 \\ 1 & p-3 \end{vmatrix} = \frac{1}{p}(p-3) + 4 = \frac{5p-3}{p}.$$

$$D_Y = \begin{vmatrix} p-1 & \frac{1}{p} \\ -2 & 1 \end{vmatrix} = p-1 + \frac{2}{p} = \frac{p^2 - p + 2}{p}.$$

Следовательно,

$$\begin{cases} X(p) = \frac{D_X}{D} = \frac{5p-3}{p(p-5)(p+1)}, \\ Y(p) = \frac{D_Y}{D} = \frac{p^2 - p + 2}{p(p-5)(p+1)}. \end{cases}$$

Разложим дробь  $\frac{5p-3}{p(p-5)(p+1)}$  на простейшие дроби:

$$\frac{5p-3}{p(p-5)(p+1)} = \frac{A}{p} + \frac{B}{p-5} + \frac{C}{p+1} = \frac{A(p+1)(p-5) + B(p+1)p + Cp(p-5)}{p(p-5)(p+1)}.$$

Приравняем числители дробей слева и справа:

$$5p-3 = A(p+1)(p-5) + B(p+1)p + Cp(p-5).$$

Чтобы получить значения коэффициентов A, B и C, в данное равенство подставим значения p=0, p=5 и p=-1 (последовательно).

Пусть p = 0, тогда из уравнения получим

$$-3 = A \cdot 1 \cdot (-5).$$

Откуда

$$A=\frac{3}{5}$$
.

Пусть p = 5, тогда из уравнения имеем

$$5 \cdot 5 - 3 = B \cdot 6 \cdot 5$$
.

Откуда

$$B = \frac{11}{15}$$
.

Пусть p = -1, тогда из уравнения имеем

$$5 \cdot (-1) - 3 = C \cdot (-1) \cdot (-6)$$
.

Откуда

$$C=-\frac{4}{3}.$$

Таким образом, получили

$$\frac{5p-3}{p(p-5)(p+1)} = \frac{\frac{3}{5}}{p} + \frac{\frac{11}{15}}{p-5} + \frac{-\frac{4}{3}}{p+1}.$$

Изображение X(p) примет следующий вид

$$X(p) = \frac{3}{5} \cdot \frac{1}{p} + \frac{11}{15} \cdot \frac{1}{p-5} - \frac{4}{3} \cdot \frac{1}{p-(-1)}$$

Разложим дробь  $\frac{p^2-p+2}{p(p-5)(p+1)}$  на простейшие дроби:

$$\frac{p^2 - p + 2}{p(p-5)(p+1)} = \frac{A}{p} + \frac{B}{p-5} + \frac{C}{p+1} = \frac{A(p+1)(p-5) + B(p+1)p + Cp(p-5)}{p(p-5)(p+1)}.$$

Приравняем числители дробей слева и справа:

$$p^2 - p + 2 = A(p+1)(p-5) + B(p+1)p + Cp(p-5).$$

Пусть p = 0, тогда из уравнения получим

$$2 = A \cdot 1 \cdot (-5).$$

Откуда

$$A=-\frac{2}{5}.$$

Пусть  $\rho = 5$ , тогда из уравнения имеем

$$5^2 - 5 + 2 = B \cdot 6 \cdot 5.$$

Откуда

$$B = \frac{11}{15}$$
.

Пусть p = -1, тогда из уравнения имеем

$$(-1)^2 - (-1) + 2 = C \cdot (-1) \cdot (-6)$$
.

Откуда

$$C=\frac{2}{3}$$
.

Таким образом, получили

$$\frac{p^2-p+2}{p(p-5)(p+1)} = \frac{-\frac{2}{5}}{p} + \frac{\frac{11}{15}}{p-5} + \frac{\frac{2}{3}}{p+1}.$$

Изображение Y(p) примет следующий вид

$$Y(p) = -\frac{2}{5} \cdot \frac{1}{p} + \frac{11}{15} \cdot \frac{1}{p-5} + \frac{2}{3} \cdot \frac{1}{p-(-1)}$$

В результате имеем систему:

$$\begin{cases} X(p) = \frac{3}{5} \cdot \frac{1}{p} + \frac{11}{15} \cdot \frac{1}{p-5} - \frac{4}{3} \cdot \frac{1}{p-(-1)}; \\ Y(p) = -\frac{2}{5} \cdot \frac{1}{p} + \frac{11}{15} \cdot \frac{1}{p-5} + \frac{2}{3} \cdot \frac{1}{p-(-1)}. \end{cases}$$

Переходя к оригиналам, получим решение системы дифференциальных уравнений:

$$\begin{cases} x(t) = \frac{3}{5} + \frac{11}{15} \cdot e^{5t} - \frac{4}{3} \cdot e^{-t}; \\ y(t) = -\frac{2}{5} + \frac{11}{15} \cdot e^{5t} + \frac{2}{3} \cdot e^{-t}. \end{cases}$$

Переходя к оригиналам, получим решение сильных уравнений: 
$$\begin{cases} x(t) = \frac{3}{5} + \frac{11}{15} \cdot e^{5t} - \frac{4}{3} \cdot e^{-t}; \\ y(t) = -\frac{2}{5} + \frac{11}{15} \cdot e^{5t} + \frac{2}{3} \cdot e^{-t}. \end{cases}$$
 Ответ. 
$$\begin{cases} x(t) = \frac{3}{5} + \frac{11}{15} \cdot e^{5t} - \frac{4}{3} \cdot e^{-t}; \\ y(t) = -\frac{2}{5} + \frac{11}{15} \cdot e^{5t} + \frac{2}{3} \cdot e^{-t}. \end{cases}$$

### Литература

- 1 Индивидуальные задания по высшей математике: Ряды. Кратные и криволинейные интегралы. Элементы теории поля: учеб. пособие / А.П. Рябушко и [др.]; под общ. ред. А.П. Рябушко. Мн.: Выш. шк., 2004. 367 с.
- 2 Индивидуальные задания по высшей математике: Операционное исчисление. Элементы теории устойчивости: учеб. пособие / А.П. Рябушко. Мн.: Выш. шк., 2006. 336 с.
- 3 Краснов, М.А. Функции комплексного переменного. Операционное исчисление. Теория устойчивости / М.А. Краснов, А.И. Киселев, Г.И. Макаренко. М.: Наука, 1981. 303 с.
- 4 Сборник задач по высшей математике: с контрольными работами / К.Н. Лунгу, Д.Т. Письменный, С.Н. Федин, Ю.А. Шевченко. М.: АйрисПресс, 2003. 576 с.
- 5 Элементы теории функций комплексного переменного и операционного исчисления: методические указания для студентов технических специальностей / И.И. Гладкий, М.П. Сидоревич, Т.А. Тузик. Брест: Изд. БрГТУ. 2000. 88 с.

## Содержание

| Организационно-методические указания          | 3  |  |  |  |
|-----------------------------------------------|----|--|--|--|
| Контрольные вопросы курса "Высшая математика" |    |  |  |  |
| Контрольная работа                            |    |  |  |  |
| Задание 1                                     | 5  |  |  |  |
| Задание 2                                     | 7  |  |  |  |
| Задание 3                                     | 8  |  |  |  |
| Задание 4                                     | 9  |  |  |  |
| Задание 5                                     | 10 |  |  |  |
| Задание 6                                     | 15 |  |  |  |
| Задание 7                                     | 18 |  |  |  |
| Задание 8                                     | 20 |  |  |  |
| Рекомендации к выполнению контрольной работы  |    |  |  |  |
| Задание 1                                     | 21 |  |  |  |
| Задание 2                                     | 24 |  |  |  |
| Задание 3                                     | 27 |  |  |  |
| Залание 4                                     | 28 |  |  |  |
| Задание 5                                     | 29 |  |  |  |
| Задание 6                                     | 31 |  |  |  |
| Задание 7                                     | 33 |  |  |  |
| Задание 8                                     | 34 |  |  |  |
| Литература                                    | 38 |  |  |  |

### Учебное издание

Составители: Гладкий Иван Иванович

Лизунова Ирина Владимировна Тузик Татьяна Александровна Юхимук Михаил Михайлович

## РЯДЫ

# ТЕОРИЯ ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

## ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

Методические рекомендации и варианты контрольной работы по дисциплине *"Высшая математика"* для студентов технических специальностей заочной формы обучения

Ответственный за выпуск: Гладкий И.И. Редактор: Строкач Т.В. Компьютерная вёрстка: Боровикова Е.А. Корректор: Никитчик Е.В.

Подписано в печать 28.04 2011 г. Формат 60х84 <sup>1</sup>/<sub>16</sub>. Бумага «Снегурочка». Усл. п. л. 2,3. Уч. изд. л. 2,5. Заказ № 498. Тираж 100 экз. Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет».

224017, г. Брест, ул. Московская, 267.