Теорема 3. Если точное решение \mathcal{X} уравнения (1) истокопредставимо, т.е. $x = A^{2s}z$, s>0, то для итерационного процесса (3) имеет место оценка погрешности:

$$\left\|x - x_{n,\delta}\right\| \le \left(\frac{bs}{2n}\right)^s \left\|z\right\| + \sqrt{\frac{n}{2b}}\delta, \ n > 2s \ . \tag{4}$$

Теорема 4. Оптимальная по n оценка погрешности для метода (3) имеет вид

$$||x - x_{n,\delta}||_{onm} \le \left[(1 + 2s)2^{-4s} s^{-s} ||z||^2 \delta^{2s} \right]^{1/(2s+1)}.$$
 (5)

и получается при $n_{onm} = \left[2^{3-2s} \, s^{2(s+1)} b^{2s+1} \left\| z \right\|^2 \, \delta^{-2} \, \right]^{1/(2s+1)}$

Замечание. Если оператор A – ограниченный, $A=\int\limits_{-\infty}^{\infty}\lambda dE_{\lambda}$, то следует учиты-

вать значение функции $f(\lambda)$ в точке $\lambda=M$, поэтому общая оценка погрешности метода (3) будет иметь вид

$$||x - x_n|| \le \max\left\{ \left(\frac{bs}{2n}\right)^s, \frac{M^{2s}b^n}{\left(M^2 + b\right)^n} \right\} ||z|| + \sqrt{\frac{n}{2b}}\delta, \ n > 2s.$$
 (6)

Очевидно, при $n o \infty$ величина $\frac{M^{2s}b^n}{\left(M^2+b\right)^n}$, убывающая как геометрическая про-

грессия, станет меньше величины $\left(\frac{bs}{2n}\right)^s$, убывающей как $\frac{1}{n^s}$. Следовательно, для достаточно больших n оценка (6) примет вид (4).

Предложенный метод может быть успешно применён для решения некорректных задач, встречающихся в спектроскопии, акустике, синтезе антенн, математической обработке данных эксперимента, теплопроводности.

УДК 517.512.2

АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ ТИПА ВОРОНОВСКОЙ

Божко И.Н., Дацык В.Т.

УО «Брестский государственный университет им. А.С.Пушкина», г. Брест

Одной из основных задач теории суммирования рядов и интегралов, является нахождение главного члена уклонения функций определенного класса от ее линейных средних (операторов приближения) с равномерной оценкой остатка относительно всего класса указанных функций. Впервые такая задача была решена Е.В. Вороновской, а именно:

$$f(x) - B_n(f;x) = -\frac{1}{2} \frac{x(1-x)}{n} f(x) + O\left(\frac{1}{n}\right)$$
 (1)

Теорема 1. Если функция f(x) абсолютно интегрируема и ограничена на числовой прямой, то справедлива следующая асимптотическая формула

$$F_{\sigma}(f;x) - f(x) = \frac{1}{\pi} \int_{\lambda}^{\infty} \frac{f\left(x - \frac{t}{\sigma}\right) - 2f(x) + f\left(x + \frac{t}{\sigma}\right)}{t^2} dt + O(\omega_2(\sigma^{-1};f)) \tag{2}$$

эбѕ

$$F_{\sigma}(f;x) = \frac{1}{\pi} \int_{0}^{\sigma} \left(1 - \frac{u}{\sigma}\right) du \int_{-\infty}^{\infty} f(t) \cos u(x - t) dt$$
 (3)

есть (C,1) - средние (средние Фейера) интеграла Фурье функции f(t);

 $\omega_2(\sigma^{-1};f) = \sup_{|t| \le \sigma^{-1}} \max_{x \in R} \left| f(x-t) - 2f(x) + f(x+t) \right|$ - модули гладкости второго поряд-ка функции f;

 $\lambda > 0$ - произвольная действительная постоянная.

Следствие 1. Если дополнительно к условиям теоремы f(x) есть ещё и функция класса Гёльдера порядка $0 < \alpha \le 1$, то из определения модуля гладкости $\omega_2(\frac{1}{\sigma};f)$ следует, что:

$$F_{\sigma}(f;x) - f(x) = \frac{1}{\pi} \int_{\lambda}^{\infty} \frac{f\left(x - \frac{t}{\sigma}\right) - 2f(x) + f\left(x + \frac{t}{\sigma}\right)}{t^2} dt + O(\sigma^{-\alpha}), \tag{4}$$

причём, если $0 < \alpha < 1$, то и интеграл правой части (4) также имеет порядок $O(\sigma^{-\alpha})$.

Обозначим через $W^{(2\rho+1)}(D)$ (ρ -фиксированное целое неотрицательное число) класс абсолютно интегрируемых на числовой прямой функций f вместе со своими существующими $(2\rho+1)$ -первыми производными, причём $\left|f^{(2\rho+1)}(t)\right| \leq D < \infty$

Видно, что все производные до порядка 2ρ включительно, а также сама функция f(t), принадлежат классу Липшица порядка $\alpha = 1$. Тогда для функций введенного класса $W^{(2\rho+1)}(D)$ справедливы представления.

$$f^{(m)}(x) = \frac{1}{\pi} \int_{0}^{\infty} u^{m} du \int_{-\infty}^{\infty} f(t) \cos\left(u(x-t) + \frac{m\pi}{2}\right) dt$$
 (5)

$$\overline{f^{(m)}}(x) = \frac{1}{\pi} \int_{0}^{\infty} u^{m} du \int_{-\infty}^{\infty} f(t) \cos\left(u(x-t) + \frac{m+1}{2}\pi\right) dt$$
 (6)

 $m = \overline{1,2\rho}$

Введём обобщённые средние сопряжённого интеграла Фурье.

$$\overline{U_{\sigma}}(f;x) := -\frac{1}{\pi} \int_{0}^{\sigma} K(\sigma, u) du \int_{-\infty}^{\infty} f(t) \sin u(x - t) dt$$
 (7)

где
$$K(\sigma, u) := \sum_{m=0}^{\infty} a_m(\sigma) \left(\frac{u}{\sigma}\right)^m$$
 (8)

есть сумма или абсолютно сходящийся ряд по степеням $\frac{u}{\sigma}$, $0 \le u \le \sigma, \, \sigma > 0$. Причём, коэффициенты $a_{\dots}(\sigma)$ такие, что ряд

$$A_{\sigma} := a_0(\sigma) + \sum_{m=1}^{\infty} m |a_m(\sigma)| \tag{9}$$

сходится.

Справедлива теорема:

Теорема 2. Если $f \in W^{(2\rho+1)}(D)$, то

$$\begin{split} \overline{U}_{\sigma}(f;x) &= \sum_{\nu=0}^{\rho} (-1)^{\nu} \overline{f}^{(2\nu)}(x) \frac{a_{2\nu}(\sigma)}{\sigma^{2\nu}} + \sum_{\nu=1}^{\rho+1} (-1)^{\nu+1} f^{(2\nu-1)}(x) \frac{a_{2\nu-1}(\sigma)}{\sigma^{2\nu-1}} + \\ &+ \frac{(-1)^{\rho}}{\sigma^{2\rho+1}} J_{\sigma,\rho}(x) \sum_{m=0}^{\infty} a_{m}(\sigma) + \frac{1}{\sigma^{2\rho+1}} \Big(O(\omega_{2}(\sigma^{-1}; f^{(2\rho+1)})) + B_{\sigma,\rho} \Big) A_{\sigma} \end{split} \tag{10}$$

где $B_{\sigma,\rho} = \mu(1)$;

$$J_{\sigma,\rho}(x) := \frac{1}{\pi} \int_{0}^{\infty} \Phi_{x}^{(2\rho+1)}(t) \frac{\sin \sigma t}{t} dt,$$

$$\Phi_{x}^{(2\rho+1)}(t) := f^{(2\rho+1)}(x+t) - 2f^{(2\rho+1)}(x) + f^{(2\rho+1)}(x-t)$$

Следствие 2. Если $f \in W^{(2\rho+1)}(D)$ и удовлетворяет условию Гельдера порядка α , $0 < \alpha < 1$, то в формуле (10) будет $e_{\sigma,\rho} = \left(\frac{1}{\sigma^{\alpha}}\right)$ и $\mu(\omega_2(\sigma^{-1};f^{(2\rho+1)})) = O\left(\frac{1}{\sigma^{\alpha}}\right)$.

Следствие 3. Для методов суммирования, у которых $\sum_{m}^{\infty}0^{lpha_{m}}\left(\sigma\right) =0$, например:

средних Зигмунда с $K_{(\sigma,u)}=1-\left(\frac{u}{\sigma}\right)^8$, слагаемое с множителем $J_{\sigma,\,\rho}(x)$ в формуле (10) будет отсутствовать . И в этом случае, например, при выполнении условий следствия 1, будем иметь (если s>2 $\rho+1$)

$$\overline{U}_{\sigma}(f;x) = \overline{f(x)} + O\left(\frac{1}{\sigma^{2\rho+1+\alpha}}\right)$$

Литература

- 1 Дзядык, В.К. Введение в теорию равномерного приближения функций полиномами / В.К. Дзядык М.: Наука, 1977.
- 2 Ибрагимов, И.Й. Экстремальные свойства функций конечной степени/ И.И. Ибрагимов Баку, 1962.
- 3 Семенчук Н.П. Асимптотические формулы типа Вороновской / Н.П. Семенчук, В.Т. Дацык // Весці АН БССР. 1996. № 2.