УДК 517.925

К ВОПРОСУ ИНТЕГРИРУЕМОСТИ В КВАДРАТУРАХ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ШЕСТЬЮ ОСОБЫМИ ТОЧКАМИ

Степанюк Г.П.

Волынский национальный университет имени Леси Украинки, г. Луцк, Украина Чичурин А.В.

УО «Брестский государственный университет им. А.С.Пушкина», г. Брест

Известно, что линейное дифференциальное уравнение второго порядка

$$y''+p(z)y'+q(z)y=0,$$
 (1)

с произвольными аналитическими коэффициентами p(z) и q(z) не интегрируется в квадратурах в общем виде (например, [1]). Имеется, однако, много конкретных примеров функций p(z) и q(z), когда уравнение (1) интегрируется в квадратурах, либо определяет специальные функции.

Наша задача – указать способ интегрирования уравнения (1) в квадратурах, когда коэффициенты p(z) и q(z) являются дробно-рациональными функциями и имеют шесть полюсов по z. Коэффициенты p(z) и q(z) в явной форме запишем в виде

$$p(z) = \frac{\sum_{i=0}^{4} \beta_{i} z^{4-i}}{z \prod_{k=1}^{4} (z - a_{k})}, \quad q(z) = \frac{\sum_{i=0}^{4} \gamma_{i} z^{4-i}}{z^{2} \prod_{k=1}^{4} (z - a_{k})^{2}},$$
 (2)

где a_k $(k=\overline{1,4}),$ β_i $(i=\overline{0,4}),$ γ_j $(j=\overline{0,8})-$ постоянные. Особыми точками уравнения (1), (2) являются точки $0, a_1, a_2, a_3, a_4, \infty$. Важность исследования уравнений (1) с числом особых точек больших трех, отмечена в работах [2, 3].

Для решения сформулированной задачи воспользуемся методом, приведенным в работе [4]. Согласно этому методу, требуется найти частное решение уравнения Риккати

$$2b' = b^2 - 2p(z)b + 4q(z), (3)$$

где коэффициенты p(z), q(z) определяются соотношениями (2).

Частное решение уравнения (3) будем искать в виде

$$b(z) = \frac{\sum_{i=0}^{4} \delta_{i} z^{4-i}}{z \prod_{k=1}^{4} (z - a_{k})}$$
(4)

где δ_i $(i=\overline{0,4})$ — постоянные, подлежащие определению.

Подставляя (4) в уравнение (3), (2), получим систему из девяти уравнений вида

$$\begin{aligned} &4\gamma_0 + \delta_0(2 - 2\beta_0 + \delta_0) = 0, \\ &4\gamma_1 - 2\beta_1\delta_0 + 2(2 - \beta_0 + \delta_0)\delta_1 = 0, \\ &4\gamma_2 - 2a_2a_3\delta_0 - 2a_2a_4\delta_0 - 2a_3a_4\delta_0 - 2\beta_2\delta_0 - 2a_2\delta_1 - 2a_3\delta_1 - 2a_4\delta_1 - \\ &-2\beta_1\delta_1 + \delta_1^2 - 2a_1(a_2\delta_0 + a_3\delta_0 + a_4\delta_0 + \delta_1) + 6\delta_2 - 2\beta_0\delta_2 + 2\delta_0\delta_2 = 0, \\ &2(2\gamma_3 + 2a_2a_3a_4\delta_0 - \beta_3\delta_0 - \beta_2\delta_1 + 2a_1(a_3a_4\delta_0 + a_2(a_3 + a_4)\delta_0 - \delta_2) - \\ &-2a_2\delta_2 - 2a_3\delta_2 - 2a_4\delta_2 - \beta_1\delta_2 + \delta_1\delta_2 + 4\delta_3 - \beta_0\delta_3 + \delta_0\delta_3 = 0, \\ &4\gamma_4 - 2\beta_4\delta_0 + 2a_2a_3a_4\delta_1 - 2\beta_3\delta_1 + 2a_2a_3\delta_2 + 2a_2a_4\delta_2 + 2a_3a_4\delta_2 + \\ &+2\beta_2\delta_2 + \delta_2^2 + 2a_1(a_4\delta_2 + a_3(a_4\delta_1 + \delta_2) + a_2(a_4\delta_1 + a_3(-3a_4\delta_0 + \delta_1) + \delta_2) - 3\delta_3) - 6a_2\delta_3 - 6a_3\delta_3 - 6a_4\delta_3 - 2\beta_1\delta_3 + 2\delta_1\delta_3 + 10\delta_4 - \\ &-2\beta_0\delta_4 + 2\delta_0\delta_4 = 0, \\ &-2(-2\gamma_5 + \beta_4\delta_1 + \beta_3\delta_2 - 2a_2a_3\delta_3 - 2a_2a_4\delta_3 - 2a_3a_4\delta_3 + \beta_2\delta_3 - \delta_2\delta_3 + \\ &+4a_2\delta_4 + 4a_3\delta_4 + 4a_4\delta_4 + \beta_1\delta_4 - \delta_1\delta_4 + 2a_1(a_2(a_3a_4\delta_1 - \delta_3) - a_3\delta_3 - \\ &-a_4\delta_3 + 2\delta_4)) = 0, \end{aligned}$$
 (5)
$$4\gamma_6 - 2\beta_4\delta_2 - 2a_2a_3a_4\delta_3 - 2\beta_3\delta_3 + \delta_3^2 + 6a_2a_3\delta_4 + 6a_2a_4\delta_4 + \\ &+6a_3a_4\delta_4 - 2\beta_2\delta_4 + 2\delta_2\delta_4 - 2a_1(a_3(a_4\delta_3 - 3\delta_4) + a_2(a_4\delta_3 + a_3(a_4\delta_2 + \delta_4) + \delta_3) - 3\delta_4) - 3a_4\delta_4) = 0, \\ &-2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_3 + (2a_2a_3a_4 + 2a_1(a_3a_4 + a_2(a_3 + a_4)) + \beta_3 - \delta_3)\delta_4) = 0, \\ &+2(-2\gamma_7 + \beta_4\delta_4) = 0. \end{aligned}$$

Система (5) является алгебраической системой относительно неизвестных, где δ_i ($i=\overline{0,4}$). Уравнения (5_1) и (5_9) являются квадратными относительно δ_0 и δ_4 соответственно; уравнения (5_2) – (5_4) - линейные относительно δ_1 – δ_3 соответственно.

Таким образом, найдя корни уравнений (5_1) , (5_9) , и (5_2) – (5_4) , подставим найденные значения δ_i ($i=\overline{0,4}$) в четыре оставшихся уравнения, которые определят соотношения между коэффициентами β_i ($i=\overline{0,4}$), γ_i ($j=\overline{0,8}$) и полюсами a_k ($k=\overline{1,4}$).

В качестве примера приведем решение системы (5) для следующих значений полюсов $a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4$ и коэффициентов

$$\beta_0 = 1, \ \beta_1 = 1, \ \beta_2 = 105, \ \beta_3 = -100, \ \beta_4 = 24, \ \gamma_0 = -1, \ \gamma_1 = 1, \ \gamma_2 = \beta_2 + 35,$$

$$\gamma_3 = \beta_3 - 100, \ \gamma_4 = (576 - 48\beta_4 + \beta_4^2)/4 : \ \gamma_4 = 96, \ \gamma_5 = 0, \ \gamma_6 = 0, \ \gamma_7 = 0,$$

$$\delta_0 = 2, \ \delta_1 = 0, \ \delta_2 = 0, \ \delta_3 = 0, \ \delta_4 = 4.$$

Таким образом, частное решение (4) примет вид

$$b(z) = \frac{2z^3}{(z-1)(z-2)(z-3)(z-4)} \tag{6}$$

Коэффициенты p(z) и q(z) вида (2) уравнения (3) примут вид

$$p(z) = \frac{z^4 + z^3 + 105z^2 - 100z + 24}{z(z - 1)(z - 2)(z - 3)(z - 4)},$$

$$q(z) = \frac{-z^8 + z^7 + 145z^6 - 200z^5 + 96z^4}{z^2(z - 1)^2(z - 2)^2(z - 3)^2(z - 4)^2}.$$
(7)

Зная коэффициенты (7) уравнения Риккати (3) и его частное решение (6) легко найти его общее решение. Тогда, согласно работе [4], найдем общее решение уравнения (1), (2) в виде

$$y = C_1 \frac{e^{\frac{1}{2} \int b(z)dz}}{e^{\int b(z)dz}} (C_1 - \int e^{\int b(z)dz} C_2 e^{-\int b(z)dz} dz)$$
 (8)

где C_1 , C_2 — произвольные постоянные.

Для приведенного примера величина $\int b(z)dz$ в соотношении (8) равна

$$\int \frac{2z^3}{z(z-1)(z-2)(z-3)(z-4)} dz = \frac{64}{3}\ln(z-4) - 27\ln(z-3) + 8\ln(z-2) - \frac{1}{3}\ln(z-1).$$

Литература

- 1. Матвеев, Н.М. Методы интегрирования обыкновенных дифференциальных уравнений / Н.М. Матвеев СПб: Изд-во «Лань», 2003.
- 2. Славянов, С.Ю. Специальные функции: Единая теория, основанная на анализе особенностей / С.Ю. Славянов, В. Лай СПб.: Невский Диалект, 2002. 312 с.
- 3. Уиттекер, Э.Т.Курс современного анализа / Э.Т. Уиттекер, Дж.Н. Ватсон М.: Физматгиз. 1963. Ч.1. 344 с.
- 4. Лукашевич, Н.А. Об интегрируемости в квадратурах линейных дифференциальных уравнений второго порядка / Н.А. Лукашевич, А.В. Чичурин // Веснік Брэсцкага ун-та. 2006. № 2 (26). С. 11 15.

УДК 517.988.6

О ДВУХПАРАМЕТРИЧЕСКИХ КВАЗИНЬЮТОНОВСКИХ ИТЕРАЦИОННЫХ МЕТОДАХ ДЛЯ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Стрилец Н.Н.

УО «Брестский государственный университет им. А.С.Пушкина», г. Брест

В работе [1] для решения уравнения

$$f(x) = 0, \ f: D \subset X \to X, \ X - B$$
 -пространство

предложен двухпараметрический квазиньютоновский итерационный метод, сходящийся со сверхлинейной (локально квадратичной) скоростью.

Приведем алгоритм реализации метода, который отличается от метода в [1] лишь некоторыми деталями при вычислении шаговой длины.

На нулевой итерации задан начальный набор параметров (x_0,β_0,γ_0) , где $\beta_0\in[10^{-4},1],\ \gamma_0=\beta_0^2$.