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1. BASIC CONCEPTS 

1.1. Structural Mechanics and Its Tasks 

Structural mechanics is the science of determining structures strength, rigidity 

and stability.  

The main goal of the structural mechanics is to determine the stress-strain state of 

structures, that is, the definition of internal forces (forces) and displacements that 

arise in the elements of structures from actions and influens. In general case action 

are devided accordance with EN 1990 (load arrangement): indirect actions (dis-

placement of supports, temperature and shrinkage deformation), direct actions – me-

chanical forces. 

The tasks of structural mechanics also include the study of the principles of the 

formation of structures, the study of the conditions for their stability and behavior of 

structures under various moving and dynamic loads. 
 

1.2. Design Diagram for Structures Loads and Actions 

Select the design diagram is the very important and difficult stage of the calcula-

tion – design diagram should be chosen so to accommodate all the main features of 

this structure and thus to facilitate the calculation. 

 The degree of accuracy of the reflection of the actual work of construction is as-

sociated with accounting in the design diagram: 

– the actual geometry of construction elements and their compounds; 

– Physico-mechanical properties of materials of structural member of structure; 

– The use of calculation methods, computer programs and computing techniques 

to perform the calculation with the required accuracy. 
 

1.2.1 Structural Idealization 

The main idea of structural idealization is to make a mathematical model of the 

real construction convenient for analisis and calculation. 

After we will know the idealization of different joint and supports, we will take 

care about whole structure idealization. 

Structural mechanics is the computation of deformations, deflactions, and internal 

forces (as an effect of action of external forces) or stresses (strein equivalent) within 

structures, either for design or for performance evaluation of existing structures. It is 

one subset of structural analysis. However, the calculation of real structures with an 

accurate account of all its features is the complex and, in most cases, almost impossi-

ble task. Therefore, this calculation is simplified by replacing the actual construction 

of its design diagrum. 

A design diagram for structures is a simplified, idealized scheme of the buildings 

entered into the calculation, which reflects the main properties and neglected the mi-

nor properties and minor details, slightly affect the structure. 

The selection of the design diagram largely determines the complexity of calcula-
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tion and the correctness of the obtained results. To determine the design diagrum 

engener must have experience in analysis of structures, a good understanding of the 

question of the structure and its individual elements, the principles of interaction of 

construction elements with each other. 

Definition of structure (simplest). A structure refers to a system with connected 

parts used to maintain loads. There are a few types of structure: Three-space struc-

tures; Frame structures: trusses, three-hinged frame, frames, plane structures; Surface 

structures. 

All the structures as usual are three-space structures. Often, however, if it is pos-

sible to make the structure of the buildings, the three-space structures is divided into 

plane structures – in this case, their calculation is greatly simplified. This approach 

can be applied, if in a three-space structures it is possible to allocate a plane load-

bearing elements (slabs) connected by transverse bracing.  

The structures are isolated elements (rods, plates, shells and solids), which are in-

ter-connected in uniform system by means of bar connection: pin-connected joint (pin 

joint) or fixed connected joint (fixed joint), and rely on the earth (ground) by support-

ing structures, or structural supports (supports).  

The rod elements are rectilinear or curvilinear three-space elements, in which one 

dimension (length) considerably larger than the other two (transverse dimensions). 

On the design diagrams the above mentioned elements are replaced with the axial 

lines (straight, curved or broken) and are called rods. In the calculations take into ac-

count the parameters of cross-sections of these elements through their corresponding 

characteristics (square cross-sections, moments of inertia, etc.), given to the centers 

of the cross sections.  

If the structure consists only of the rod elements, it is a rod system. 
 

1.2.2 Support Idealization 

Actual supporting structures in the design diagram are replaced with the ideal 

schemes. A support transmits load from structures on the base associated with the 

earth. 

The main types of supports and their characteristics are presented in table 1.1.  

(The essence of the concepts "kinematic relations" and "degree of freedom" – see  

below). 
 

1.2.3 Joint Idealization 

Joint can be pin-connected joint and fixed connected joint or torsional spring 

joint. 

 

 

 

Fig 1.0 
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Table 1.1 

The main types of supports 
 

№ 

 
Name support 

Possible  

constructive 

scheme  

of support 

The image on the 

desing schemes 

The number 

of kinemat-

ic joint 

connections 

The 

number of 

reactions 

The number 

of degrees 

of freedom 

1 
Roller support 

(hinged movable 

support) 
 R R

90

 

1 1 2 

2 
Pin (pinned)  

support 
(hinged immova-

ble support)  
R

xR

yR  

2 1(2) 1 

3 
Rigid restraind 

(pinching) 

(fixed end) 
 

RM

R

xR

yR  

3 2(3) 0 

4 

Spring support 

 

 R
M R  

2 2 1 

 

Pin-connected joint (hinge) is seen as a device allowing a mutual rotation of the 

connected elements relative to the center of hinge. On the design diagram of the 

hinge is indicated by a circle. The friction forces in the hinge are usually neglected. 

The fixed connected joint (fixed joint) is completely eliminates mutual displace-

ment, and the angle between the axes of the rods it does not change when the defor-

mation of the system.  

The division of joints on a pin and fixed joint is not always true. Often joints give 

and allow mutual displacement of connected elements (rotations, shifts) in dependent 

with arising in the joints of internal forces. On the design diagram pliable joints stipu-

late or represent with elastic connections – line (Fig. 1.1, a) or angular (Fig. 1.2, a). 

The internal forces in a accordant joint associated with the mutual displacement of 

the connected elements. For example, the value of bending moment at joint in Fig. 

1.2,a will depend on the values of mutual rotation angle of the connected rods and 

can be expressed through the value of elastic compliance of a joint C that represents 

the magnitude of the bending moment generated during mutual rotation of the con-

nected elements on a single angle value (Fig. 1.2, b).  
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c



cM  

Y

Y

X
X

)a )b

c  cN  

 cM  

)a )b

 

       Fig. 1.1              Fig. 1.2 
 

 

In actiual structures all the elements (racks, beams, plates, shells, etc.) always 

have some kind of imperfactions from design shapes, sizes, properties of the materi-

als used, which occur during their manufacture, transport, assembly and on which the 

current schemes are often not taken into account. It is impossible to imagine perfectly 

straight racks, which appear in the current schemes as straight rods. 

Hinges are considered perfect, that is, it is considered that there are no friction 

forces, and the forces are transmitted through the centers of the pins (hinges), which 

in practice is difficult to achieve. 

  
 

1.2.4 Idealization for Loads and Actions 

Even more approximations associated with the loads and actions, to determine 

the exact magnitude of which is in some cases almost impossible. Characteristic val-

ues for snow and wind loads are calculated on the basis of statistical processing of the 

values of loads the results of many years observations. Division of loads into concen-

trated forces and moments, uniformly distributed loads is also quite conditional. 

All the actions on structures can be divided into a direct and undirect; forces (or 

displacements) as has been mentioned. 

The actions can be static and dynamic. 

Static action is a load, which increases from zero to a finite value so slowly that 

the acceleration a points of system which may cause inertia forces (if the deformation 

is small) can be neglected. 

Dynamic is an action, which give to the masses of buildings significant accelera-

tion and, accordingly, this is cause of inertial forces, and their influence should be 

taken into account. 

Example of dynamic actions is vibration, exposure to blast waves, seismic ef-

fects.   

Forces (direct actions) as a mechanical load: point moments, distributed loads 

constant or variable intensity can be mobile and stationary. Static load acts constantly 

in one place. Moving load is move through the system (for example, transport across 

the bridge). 
 

 

1.3. Classification of Structures 

Classification of structures and their design schemes can be performed according 

to various criteria, some of which are presented below. 

All the structures are spatial. However, as already indicated, often they can be 

calculated and is calculated as a planar system. This manual further describes only 

planar system. 
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On geometric attributes distinguish:  

1. Frameworks (consisting of rod – beams, trusses, frames, arches, combined sys-

tem). 

2. Structures of plates and shells. 

3. Massive structures (retaining walls, dams). 

On working structures distinguish: 

1. Beam construction. 

2. Arch construction. 

3. Frame – framework system with rigid connection of members in all or some 

joints. 

4. Truss – system with all members which are work only tensile-compression. 

5. Suspended system – basically, flexible elements wich only work for stretching. 

6. The combined system, combination of 1–5. 

7. Plates. 8. Shells.  

From the point of view of statics all system are divided into:  

1. Statically determinate systems – with no "extra" links and, consequently, the 

calculation of which can be performed using only the equilibrium equations (equa-

tions of statics). 

2. Statically indeterminate systems – having the "extra" reactions at the supports, 

to calculate which is necessary to attract additional equations. 
 

In the directions of the reactions at the supports there are: 

1. The non-spreading structure – structures that have load one direction (e.g., ver-

tical) causes the support reactions are the same direction (only vertical). Example: 

simple and multi-span beams. 

2. Spacer structure – under load in one direction occur, the support reactions 

in other directions. Examples of push systems are fully articulated arches and 

frames. 
 

1.4. The Main Assumptions, Principles and Concepts 

The basis of the classical methods of structural mechanics based on the following 

main assumptions, principles and concepts: 

1. The material of all elements of structures is a continuous, isotropic and homo-

geneous. Isotropic material is a material whose properties are the same in all direc-

tions. 

2. Body considered perfectly elastic. These bodies recover their original shape 

and size after removal of external loads. 

3. Considered materials satisfy Hooke's law, according to which the dependence 

between load and displacement and “stress – strein” is linear; 

4. It is assumed that for structures fair the principle of superposition of forces. It 

may be stated as follows; the total displacement or internal forces at a point in struc-

ture which subjected to several external loads (actions) can be determinate by adding 

together the displacements or internal forces by each of the external loads acting sep-

arately. 

5. Preconditions about displacement and deformations: we assume that the dis-
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B
y
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B




y

A
y

Ax

A

B




)a )б

x x

placements are small with respect to the dimansions of the elements and deformations 

are small compared with unit. This precondition allows as to write equilibrium condi-

tions for the ininial shape of structure and also to neglect the small displacement of 

structure. 
 

2. Kinematic Analysis of Structures 

Building structures are designed to perceive acting on them loads, while main-

taining a predetermined shape, that is, they must be invariable (geometrically) system 

(stable system). 

Invariable system is called such a system where, shape change and mutual  

arrangement of elements are possible only due to the deformation of its elements. 

An example of a simple invariable system is the three rod hinged triangle (Fig. 2.1). 

 Invariable system is a system the change of 

the shape and mutual arrangement of elements 

which is possible even in the case that all its 

elements are to be considered absolutely rigid. 

The simplest example of an unstable (inperfect)  

system is the rectangle hinged rod (Fig. 2.2).                    Fig. 2.1             Fig. 2.2 
 

Unstable systems in buildings is unacceptable, given that they can dramatically 

change the form and therefore can not perceive acting on them load.  

To clarify the geometric invariability or unstable of the systems is the kinematic 

analysis of the structures which is performed in two stages: 

1) determination of the degree of freedom of the system; 

2) Geometric analysis of the structure of the system. 

The degree of freedom of a system is the number of independent geometrical pa-

rameters (coordinates, displacements) that determine the position of all elements of 

the structure on the plane or in space. 

 For example, a point on the plane has two degrees of freedom, since its position 

is described by two coordinates (Fig. 2.3, a). 

 

 

 
 
 

Fig. 2.3 
 

Point in space has three degrees of freedom. 

Any intentionally invariable (perfect) body, structure or its part will be called a 

disk. 

Examples disk is shown in Fig. 2.4. Disk may be gotten if jointing of a number of 

rectilinear rods with the formation of the branched framework (see figure 2.4). Given 

that a rigid jointing can be gotten by connection of three elements (perfect way) in 

triangular structure. 
 

Any disk in the plane has three degrees of freedom – the position in the plane de-

termined by three parameters (хА, yА, φ) (Fig. 2.3, b). 
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Fig. 2.4 
 

In the space the disk has six degrees of freedom – three coordinates of a point and 

three angles of rotation about axes x, y, z. 

Any body, which takes back from another body one degree of freedom, is called 

kinematic or simple restriction. 

Construction on the design schemes, as already noted, can be represented in the 

form of systems consisting of a disk, connected by hinge joint, and resting on the 

base (on the ground) by means of supports. 

Can be distinguished:  – hinge joint (joint)  

– a simple or single hinge joint (single joint). 

A single joint – is a joint connecting two disks.  

In the hinge joint that connects a number of disks, can be joined a few simple 

hinge joints, which can be determined by the formula:     nh.= Dj – 1, 

where  Dj – the number of disks connecting to the joint. 

For example: 
 
 

 
 

1 s. h.       2 s. h.        1 s. h.         3 s. h. 
 

Fig. 2.5 
 

 Each simple joint prevents any mutual linear displacement 

of the connecting elements, leaving the possibility of their mutual 

rotation with respect to each other, respectively, has two kinemat-

ic constraints. And at its cutting in it there are two internal forces 

two reactions of interaction of the connected disks (Fig. 2.6). 

Determination of the degree of freedom of the system 

can be performed according to the formulas:  
 

1)      W = − (3L − H),        (2.1)                    Fig. 2.6 

where: L – the number of closed loops in the system;  

    H – the number of simple, single joints in the system, including hinge joints  
 

between the disks (rods) and a base (ground).    а)         b)   c) 

Under closed loop we mean a closed           

contour which formed by the series of 

rigidly or hingedly connected of disks , 

one of which may be ground (Fig. 2.7, b). 
If in closed loop all the elements are connected   Fig. 2.7 
 

A

AX

AY

)a

AY

AX

a) 
 

 

 

 

b) 
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2L

1L 3L

4L2 . .s h

2 . .s h

1

2

3

4

5

6

7 8

to each other only tough (rigidly), it will be called a rigid closed loop (Fig. 2.7, c). 
 

Formula (2.1) can be applied to any planar systems. 

For example, for the system depicted in Fig. 2.8, we get: 
  

 

 

         W = − (3L − H) = − (3·4 − 8) = − 4. 
 
 

 

Fig. 2.8 
 

or  

2)      W = 3D – 2H − C0 ,          (2.2) 
 

where: D – the number of disks in the system;    H – the number of single joints 

by which are performed the connecting the disks D;    С0 – the number of kinematic 

restrictions (reactions at the supports) of the system. 

This formula can be used for all systems; exept those which contain completely 

rigid closed contours (Fig. 2.7, c). 

Examples of the application of the formula: 

 
 

 

 

 

 
 

W = 3D – 2H − С0 = 3·3 − 2·2 − 5 = 0;     W = 3D − 2H − С0 = 3·4 − 2·4 − 6 = − 2. 
 

 

3. For truss:   W = 2J − R− С0 ,             (2.3) 
 
 

where:  J – the number of hinge joints in the truss;  R – the number of rod in the truss;  

С0 – the number of kinematic restrictions of the system.  

For the truss shown in Fig. 2.9, will receive: 

 

      W = 2J − R− С0 = 2·8 − 13 − 3 = 0. 
 

Fig. 2.9 
 

 

Depending on the number of degrees of freedom for systems, there are three 

qualitatively different from each other result: 

1. W > 0 – the unstable system is a mechanism as it does not have enough connec-

tions. 

2. W = 0 – the system has a sufficient number of connections to be invariable (per-

fect) and statically determinate.  

3. W <  0 – the system has a redundant connection, is statically indeterminate and 

must be invariable. 

1D
2

D 3D
1H 2H

1)
2D

1
D

3
D

4D

3 42 . .( )s h H and H
2)

1H

2H
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Conditions W < 0 and W = 0 – are necessary but not sufficient to claim that the sys-

tem is invariable, as geometric invariability depends not only on links but also on 

their location, that is, from the structure of the system. In some cases the system may 

has a sufficient number of connections but to be unstable system. This illustrates a 

simple system, shown in Fig. 2.10, a. Beam as the disk has three degrees of freedom, 

which would seem out of the three available restrictions. But since all these re-

strictions are vertical, none of them fixes the beam from the horizontal displacement 

that is possible and accordingly (consequently) the system is unstable. If one of the 

supports to move, for example, set it horizontally as shown in Fig. 2.10, b, the system 

becomes invariable variant. 
 

)a )b

 
Fig. 2.10 

 

As you can see, the invariability of the system to a large extent determined by the 

location of their elements, conditions of their restriction to each other and the disposi-

tion of the supports, that is, the structure of the systems. 

Therefore, to determine whether the structure is (geometrically) invariable, or it is 

instantaneously variable system, it is necessary to perform geometric analysis of the 

structure of buildings, which usually performs on the basis of known previously (or 

in advance): 

Principles of Formation of Geometrically Invariable Systems: 

1. Three disks connected to each other sequentially by three hinge joints are not 

collinear, form an invariable system, that is, the whole system is the disk (Fig. 2.11,  

criterion 1). 

1. 2. 4.3. 




  

 

Fig. 2.11. The principles of formation of geometrically invariable systems 
 

2. If the point is attached to the disk (e. g. through two rods), not lying on one 

straight line, then the whole system invariable, i.e., is a disk (Fig. 2.11, criterion 2). 

3. Two disks, united to each other by three rods that are not parallel to each 

other and not intersecting in one point, form an invariable system, that is, the whole 

system is a disk (Fig. 2.11, criterion 3). 

Consider the connection of two disks at some point (by help of two intersecting 

rods) (Fig. 2.12, a). Analysis of this system shows that the disks can be rotated each 
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relative to the other with respect to the point of intersection of the rods C, (this point 

is the joint). Such a joint is called an imaginary hinge, and connection of the two 

disks can then be represented as shown in Fig. 2.12, b. 
 


C

C

Imaginary hinge

)a )b

C

A B

1D
2D

3D

 
Fig. 2.12          Fig. 2.13 

 

Based on the case  (Fig. 2.11, criterion 3, which was shown above) connecting 

three disks can be represented as shown in Fig. 2.13, which corresponds to the suc-

cessive connection of the three disks three joints of which do not lie on a straight line 

(or the first criterion of invariability). 

4. Three disks linked successively to each other in pairs of rods, the points of in-

tersection which lie on the same line, form an invariable system, and the system as a 

whole is the disk (Fig. 2.11, criterion 4). 

If a pair of intersecting rods to replace here imaginary hinges (joints located at 

the points of intersection of these pairs of rods), then again, we have three disks, con-

nected to each other sequentially by three hinges (though imaginary hinges), not lying 

on one straight line. 

The Concept of Instantaneously Variable System 

Instantaneously variable system represents an exceptional case of geometrically 

invariable systems in which the mambers of a system get infinitely small displace-

ments.   For example, consider the system shown in Fig. 2.14, a. 

The rightmost point of the disk D1 (joint C) in this state can move vertically up-

ward or downward (when happens the rotation of the disk D1 with respect to a point 

A the displacement vector of this point will be perpendicular to AC radius); arguing 

similarly, we get that the leftmost point of the disk D2  also has the possibility of ver-

tical desplasement, which will be identical to the previous vertical desplasement. 

Thus, the point C in the system can move vertically. But as soon as this point moves 

to the some value, the system will satisfy of the first criterion of invariability – three 

disks to be linked successively to each other by three joint, not lying on one straight 

line become invariable.  
 

C

A B1D

3D

2D y

1N

P

P

2N 


)а )b

C

C

)c

 

 

Fig. 2.14 
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This is the essence of instantaneously variable system. The possibility of dis-

placements in instantaneously variable system, however small, does not allow their 

use in building constructions.  

Instantaneously variable system can be obtained from the system shown in  

Fig. 2.14, b,   if the angle α tends to zero (α → 0). When the jointing load only acts, 

this system will only work in compression and longitudinal forces can be found, cut-

ting out the joint C (Fig. 2.14, c): 

1 10; 2 sin 0; ;
2sin

P
Y N P N


       With 0   we get: 

1 .
0

P
N      

This calculation shows that for instantaneously variable system internal forces 

can take very large values, and accordingly the cross section elements should also be 

large up to enfinity, this is evidantly imposible. Thas instantaneously variable system 

may not be used in building constructions. 

Criterias of Instantaneously Variable System 

1. If three disks are linked to each other sequentially by three hinges lying on 

a straight line, the system is instantaneously variable (Fig. 2.14,а). 

2. If two disks are linked to each other by three rods parallel to each other, this 

system instantaneously variable (Fig. 2.15, а). 

3. If two disk are connected to each other by three rods that intersect in one 

point, this system is instantaneously variable (Fig. 2.15, b). 
 



)a )b

 
 

Fig. 2.15 
 

Perform kinematic analysis of several systems. 

Example 1. Consider the system shown in Fig. 2.16, a. We define the degree of 

freedom of the system by formulas (2.1) (Fig. 2.16,   а) and (2.2) (Fig. 2.16,   b): 

W = − (3L − H) = − (3·4 − 12) = 0;         

W = 3D – 2H − С0 = 3·5 − 2·5 − 5 = 0. 

The results, as you can see, the same, which, of course, it should be. 

Proceed to the second stage of the kinematic analysis, geometric analysis of the 

structure of the system. Note that the base (ground) is a holistic object that is why it 

may be considered as disk too. 

The procedure of geometric analysis: 

1) Disks D2, D3 and D4 are linked by three hinge joints В, S, C, non-collinear and 

respectively form an invariable system, that is, the disk (the first critarion of invaria-

bility (Fig. 2.16, c); 
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)a )b
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1 . .s h

1 . .s h1 . .s h

3 . .s h

2 . .s h2 . .s h

 
 

A

B

C

S

T

)c )d

5D1D

A

B

C

S

T

5D
1D

K
 

Fig. 2.16 
 

2) The hinge joint C is attached to the disk of the earth the two rods do not lie on 

a straight line, they form with it (with earth) an invariable system (a second character-

istic of invariability) (Fig. 2.16, c);  

3) disk D1, the disk of the earth and disk ВSC are linked by three hinge joints А, В 

and C, non-collinear, forming an invariable system (the first critarion of invariability) 

(Fig. 2.16, d); 

4) the last disc (together with the earth), disk D5 and the support rod TK (and this 

is also the disk) linked to each other sequentially by three hinge joints S, T and K, not 

lying on one straight line (Fig. 2.16, d) and thus form a generally invariable system 

(the first critarion of invariability).  

Thus, we conclude that the considered system is statically determinable and in-

variable geometrically. 

Therefore, performing geometric analysis of the structure of the system repre-

sents the structural-logical problem which it is necessary to solve with use the above 

cases. The result of solution of it may be recapitulation about the structure of the sys-

tem (connections of elements); is designed system has reliability to use farther or not? 

This should be done from point of view of usage of concepts: geometric invariability 

or the instantaneous variability (or concept of unstable structure). 

Let's represent some quantity of systems which demand from you implementation 

of the kinematic analysis. 

 

 

 

c) d) 
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Tasks for independent solutions: 
 

2.1 2.2

2.3 2.4

h

a aaa
 

2.5 2.6

2.7 2.8 2.9

2.10

 
 

 

2.5 2.6

2.7
2.8 2.9

2.10

 

2.11 2.12

2.8
2.9

 

 

 

The answers to these tasks are presented in the end of the book in the section 

"Answers to tasks for independent solution" (p. 67). 
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3. Calculation of Statically Determinable Framworks 

3.1. Internal Forces and Determination of Them 

At the action onto the framework statically determinat  

system of external loads in each cross section (in the plane) 

may occur three types of internal forces (Fig. 3.1):  

 the bending moment M acting in the plane of the 

structure with respect to (w.r.t.) the central axis of the cross 

section of the element (rod) paralel to the plane Oxy; 

 The shear force Q acting in the plane of the cross sec-

tion in the direction of the central axis of the cross section  

element (rod), which lies in the plane of the structure;       Fig. 3.1 

 The longitudinal force N acting in perpendicular to the cross section (along  

the axis of the rod) and applies to the center of gravity of a section. 

The determination of the forces of M, Q, N in the cross sections of statically  

determinate rod systems is performed by the method of sections. The method is based 

on the fact that if the same system is in equilibrium, that is equilibrium any part of it. In 

the set place of determining the forces a cross section need to divide the element into 

two parts. Then examine the balance of one of the parts of the system. Thus the  

discarded fraction at the considered part is replaced by a forces are equal to the internal 

forces in the section. These forces act on the remaining part, as an external forces. 

From equilibrium equations, the number of which is equal to three (corresponding  

to the number of unknown internal forces) the forces in the system section are  

determined.  

A method of sections allows us to formulate rules for determining internal forces 

in cross sections of framework: 

!  Bending moment in cross-section is numerically equal to algebraic sum of 

moments of all external forces (including support reactions), which is to parts of the 

framework on one side of the section, w.r.t. to the center of gravity of a section. 

!  The shear force in the cross-section is numerically equal to algebraic sum of 

projections of external forces (including support reactions), which is to part of the 

framework with one side of the section, on the axis perpendicular to the axis of the rod. 

!  The longitudinal force in cross-section is numerically equal to algebraic sum 

of projections of external forces (including support reactions), which is applied to 

part of the framework on one side of the section, on the axis that is tangent to the axis 

of the rod (a straight rod on the axis of the rod).  

Recall that the projection of force on the axis is equal to 

the product of the magnitude of the force on the cosine of the 

angle between the line of action (l. a.) of the force and the axis 

Pz = P cos φ. (see figure to the right). 
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Moment of a force about a point is equal to the product of the magnitude of this 

force on its arm (lever) about this point. Where the moment arm of a force about a 

point (hP) is defined as the length of the perpendicular from 

this point to the line of action of the force. For example,   

МА (Р) = Р hP. in (Fig. 3.2, а) 

According to the definition can easily be calculated the 

moment about any point and moment of projection of force 

on any axis, moment of loads distributed by any laws if these 

loads lead to resultant forces (Rq). The magnitude of the 

moment about a point A a uniformly distributed load q1  

(Fig. 3.2, b) (the resultant Rq1 which is applied in the middle 

of the plot, on which acts the load) is equal to: 

1 1 1 1
( ) ( )A q R R

M q R h qa h  , 

 and moment of load q2, changing by the triangular law will 

be determined by the expression: 

2 2 2 2 2

1
( )

2A q R RM q R h q b h
 

   
 

. 

Note that the moment about any point from the action of the     Fig. 3.2 

concentrated moment equal to the value of the moment itself and its projection on 

any axis is equal to zero.  

For visual presentation the change of internal forces in framework sections the 

diagrams of forces are plotted. The diagram of forces (M, Q, N) called a graph (dia-

gram), reflecting the dependence of this forces to the lengths of all elements (rods) of 

a system. 

Note some of the rules are used to plot internal forces: 

1. Axis (base) on which to plot the diagram of forces, always choose so that it to 

be parallel to the axis of the rod or simply coincids with it. 

2. The ordinate of the diagram of forces set aside from the basic axis is perpen-

dicular to it. Each of the ordinate of the diagram represents the force of a certain 

scale.  

3. To hatch the diagram of forces taken perpendicular to the base axis (each of the 

hatch lines is also the ordinate of the diagram of forces). 

4. Ordinate the forces are laid off at a given scale; in specific points are put the 

values of the ordinates of force in the certain fields of diagram. Usually are put signs 

ordinate the diagram of forces (plas or minus) into the circles. 

In determining shear and longitudinal forces and plot their diagrams in structural 

mechanics usually accept the following rules of signs: 

– The shear force in the cross-section is defined by the above rule: is positive if 

when its infinitesimal distance from the section under consideration from the main part 

seeks to turn this part w.r.t. to the cross section clockwise, and negative if it tends to 

rotate the part w.r.t. to the section in a counterclockwise direction – see Fig. 3.3. 

For example, when considering the cut off part in Fig. 3.3, c the shear force in the 

cross-section K is equal to the force P and is positive. 
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– The longitudinal force in the section is positive if it causes tension in the rod 

frame (is directed from the cross-section), and negative if it causes compression (is 

directed to the section) – see Fig. 3.4. 
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Fig. 3.3             Fig. 3.4 
 

 

Note that to plot Q and N (are the ordinates of the shear and longitudinal forces) 

can be plotted from any side of the base axles of rods. It should be guided with a 

point of view of best visibility of diagrams and, of course, on the same plot, which is 

a continuation of each other in a straight line, advantageously (beneficially), and 

preferably, the ordinates of the same sign to put off into one side. For bending mo-

ment diagram special rules are not set, the ordinates are put aside at the stretched fi-

bers (from the stretched fibers). In determining the values of the bending moments 

signs they can be taken at your own discretion (consideration). In this book the bend-

ing moment is taken positive if it acts on the cross section clockwise. The stretched 

fiber in cross-section in this case are defined as follows. In that part of the system 

from equilibrium of which the bending moment determined, to allocat the infinitesi-

mal element of the rod, adjacent to the section (in the diagrams, this infinitesimal el-

ement of the rod, for clarity depicted as element of finite length). Consider then that 

in the design cross-section of the specified element has a fixed-ended condition, put 

to it previously computed for this cross-section bending moment. Analyzing now the 

bending of the considered element of the system (frame) is easy to determine which 

side of the rod fibers are stretched and some are compressed. 

Diagram of the bending element of the system, selected by the section 1–1 to the 

right side shown in Fig. 3.5, b. From the analysis of this scheme is visible that 

stretched in the cross-section 1–1 will be the lower fiber (hereinafter in the diagrams 

of the bending elements the stretching fibers will be denoted by dashed lines). 

Note that for systems in equilibrium, stress in any cross-section obtained when 

considering one and (or) the other parts of frame w.r.t. this section, will be certenly 

equal to each other (the values of the bending moments in this case use of the known 

of the rule of signs will be obtained with opposite signs – but stretched fiber, defined 

by them, will be with the same side).  

For example, for the system in Fig. 3.5, a, must be complied with equality:  
( )

1-1

leftM = –
(right )

1-1M ;     
( )

1-1

leftQ = 

(right )

1-1Q ;       
( )

1-1

leftN =
(right )

1-1N . 

This should be used to verify the correctness of calculation of forces in sections of the 

system. 

Here are some examples of computing forces in section 1–1 (in general) the system 

)b
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shown in Fig. 3.5, a, which we assume equilibrium: 

 

 

 

 

 

 

 

 
 

Fig. 3.5 
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Here: ( )

1-1

leftM , ( )

1-1

leftQ , ( )

1-1

leftN  – forces to cross-section 1-1, obtained from considera-

tion of the left part of the system with respect to this section; 
( )

1-1

rightM , 
( )

1-1

rightQ , 
( )

1-1

rightN  – 

the same forces is obtained from consideration of the right part of the system with 

respect to cross-section 1-1.  
 

3.2. Statically Determinable Frames, Their Types 

Frames call system consisting of straight members connected together rigidly 

(and hinged joint), and supported by means of support on the base. 

The statically determinate frames are usually divided         а)                b) 

into simple, three-hinged joint frame and composite  

frame. 

A simple frame is a system (Fig. 3.6), consisting of a 

single disk as a broken branched rods connected to the 

base by three restrictions typically using three main 

types of supports are movable hinged support (or roller  

support), an immovable hinged support (or pin), and         Fig. 3.6  Simple frame 

absolutely rigid restraint (or pinching) (table. 1.1).         

Three-hinged frame (Fig. 3.7, a, b) – is a system, 

consisting of three disks (a broken branched rods), con-

nected together sequentially by three hinge joints are not 

collinear (that is, in principle, three disks). One of the 

disks in this case may be the base (Fig. 3.7, a). Three- 

hinged frame belong to the class of thrust systems.    Fig. 3.7 

a) b) 

 

right 
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Composite frame is called frame, which consists of   

several interconnected simple and (or) three-hinged frames  

(Fig. 3.7, c).  

Calculation of composite frames is performed by calcu-

lating the separate simple and three-hinged frames that can 

be separated composite frame, taking into account their  

interaction with each other.        Fig. 3.7 

 

3.3. The Calculation of Simple Frames 

Consider the frame shown in Fig. 3.8. From the analysis of a frame show (it is 

visible) that the determination of the forces of its sections is impossible to do without 

knowing about the reactions at the supports. Consequently, the calculation of the 

frame must begin with their determination. 

The reactions at the supports are determined from the equilibrium equations of 

the frame as a whole, which in general case can be in three different versions: 

1) a sum of projections of forces on two arbitrary non-parallel to each other axis 

and a sum of the moments of force with respect to some point on the plane. So, we 

can find all unknowns with the help of the following system of equations  

(Σ Х = 0;    Σ Y = 0;    Σ M Т = 0); 

2) As a sum of projections of forces on an arbitrary axis and the two sums of 

moments about any points on the plane not lying on the same perpendicular to the 

mentioned axis of projection, for example (Σ Х = 0;    Σ MА = 0;    Σ MВ = 0); 

3) Three sums of moments about three points, not lying on one straight line  

(Σ MА = 0;    Σ MВ = 0;    Σ MC = 0). 

Note that the equations of equilibrium to determine reactions at the supports must 

be selected so that in each of them, if possible, there will be only one unknown reac-

tion at the support that has not been previously defined. They must be selected using, 

for example, the equation of moments about the points of intersection of other un-

known reactions or the sum of projections of forces on axis, perpendicular to the line 

connecting two moment points (see calculation frame in Fig. 3.8). 

After determining the reactions at the supports it is always necessary to make the 

verification (or – confirm the results) of their calculation, we should use the equation 

of equilibrium, which has not previously been used, and which would include all pre-

viously calculated reactions. 

Determine the reactions at the supports for the frame (Fig. 3.8). Here we use the 

second variant of the equilibrium equations: 

Σ Х = 0;    RA – 4 = 0;  RA  = 4 кN; 

Σ M L = 0; – 43 + 42 + 8 + 242 – RC  4 = 0; RC = 5 кN; 

Σ M D = 0;  – 47 + 42 + 8 + RB 4 – 242 = 0; RB = + 7 кN. 

If the value of the result is negative, this indicates that we assumed its direction 

incorrectly and it will be the opposite. In this case, it is recommended to immediately 
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redirect the direction of the reaction. 

Check the correctness of the determination of reactions at the supports: 

Σ MK = 0; 44 – 24 + 8 – 73 + 245 – 57 = 0; +64 – 64 = 0; 0 = 0. 

For the convenience of further calculations it is recommended to show actual 

values of the calculated reactions on the design diagram of the frame  

(see Fig. 3.8). 

Go to the determination of internal forces and the plotting of their diagrams. It is 

easy to see that any frame can be divided into separate parts (segments of the rods), 

each of which changes a shape or the internal force is described (within this site) by 

one equation. The boundary points of these sites in which there is a transition from 

one dependence changes to another, will be named the characteristic points. 

Characteristic points are usually: 

 – the points at which the concentrated loads (forces, moments) or reactions are 

applied externally at the supports; 

– The points of the beginning, middle and end of distribution of loads applica-

tion; 

– A salient point of the branching rods. 

For the frame in Fig. 3.8 point’s А, Т, К, В, С will be characteristics and the 

frame can be divided into four design parts:  

I  AT,    II  TK,    III  KB  and part IV  BC. 

Consider first part 1. Let’s take the arbitrary cross section 1–1. The internal forc-

es in any section of the frame can be determined from the w.r.t. the right or/and vice 

versa (lower and upper parts of the frame as well); however, these values should be 

equal to each other (see section 1); they can and should be used to check the correct-

ness of the calculation of forces in the cross sections. Note that it is more convenient 

to produce the determination of internal forces in cross sections from the considera-

tion of the cut out part of the frame, which have a smaller number of forces. For the 

section I–I consider the upper part of the frame (this example will show the consider-

ing part of the frame separately – Fig. 3.9, a). The distance from the upper extreme 

point (point A) to the cross section 1–1 is denoted as x1. Then the expressions for de-

termining internal forces in an arbitrary cross section 1–1 (force zone 1: 0  x12) 

will have the form: 

I

topM = RAx1 + P0 = 4 x1; I

topQ = + RA = 4;  I

topN = – P = – 4. 

Similarly, we determine the internal forces on part II (0   x2 4) (Fig. 3.9, b): 

II

topM = 4(2 + x2) – 40 – 4x2 = 8 (at any value of x2); 

II

topQ = 4 – 4 = 0;  II

topN  = – 4, 

and on part III (0   x 3   3) (Fig. 3.9,c):      III

leftM = 44 – 42 – 4x3 = 8 – 4x3 

[at x3 = 0 (section 5) – М5 = 8 kNm;    at x3 = 3 (section 6) – М6 = – 4 kNm]; 

III

leftQ = – 4;     III

leftN = 0. 
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Fig. 3.10. Definition of stretched fibers 
 

a) Checking the balance of joint 
 

Joint  К 

 

 

 

 

Σ МК = 0;   Σ X = 0;  0 = 0; 

8 – 8 = 0;   Σ Y = 0;  – 4 + 4 = 0. 

 

b) Supporting joint  В 

 

 

 

 
 

Σ МВ = 0;    8 – 4 – 4 = 0;     8 – 8 = 0; 

Σ X = 0;       0 = 0; 

Σ Y = 0;   – 4 – 3 + 7 = 0;   – 7 + 7 = 0. 
 

            Fig. 3.11        Fig. 3.12 
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The bending moment at part 1 varies linearly and the shear and longitudinal force – 

is constant. Substituting values x1 for the extreme cross-sections into the expression 

for the bending moment, we will find: 

M 1 = M А = 40 = 0;  

M 2 = 42 = +8 kNm (section 2 is located at an infinitely small distance from the 

top of the point Т – the point of application of force Р). Stretched fibers section 1-1 

(and in this case for the whole part 1) is defined in Fig. 3.10, a. 

Somehow determined forces are more complicated on part IV. Having an arbi-

trary cross section IV–IV, consider the right part of the frame (Fig. 3.8). Expressions 

for the internal forces on the section will have the form: 
( )

IV

rightM = – 5x4 + 2x4 x4 /2 = x4
2 – 5x4; 

( )

IV

rightQ = – 5 + 2x4;      
( )

IV

rightN = 0. 

It is seen that the bending moment on part IV varies in a parabolic dependence, 

and the shear force is linear (but not uniform unlike parts I, II, III). To plot M in this 

area, therefore, it is necessary to calculate the values of the bending moments in at 

least three points – for example, the edges of the site (in sections 7 and 9) and in the 

middle of it (section 8): 

sec. 7 – x7 = 4 м;       М 7 = 42 – 54 = – 4 kNm; 

sec. 8 – x8 = 2 м;       М 8 = 22 – 52 = – 6 kNm;        sec. 9 – x9 =0;     М 9 = 0. 

The stretched fibers at part IV are defined by the obtained values of the bending 

moments in it (Fig. 3.10, e), and the diagram of M is presented in figure 3.11. 
To plot the shear forces on part IV, it is sufficient to calculate the values of Q in 

two sections (because you can always draw a straight line through two points) – usu-

ally these values are calculated in the extreme cross sections schemes: 

     sec. 7 – x 7 = 4 m; Q 7 = – 5 + 24 = + 3 kN; 

sec. 9 – x 9 = 0;  Q 9 = – 5+ 20  = – 5 kN. 

It should be borne in mind that the parts of action of uniformly distributed loads, 

where bending moments vary according to the parabolic dependences, the curve M can 

have the extreme (maximum or minimum), which is important characteristics of dia-

grams should be determined additionally. If we analyze the expressions for МIV  and QIV, 

given the condition of extreme functions (according to which the extremum of the func-

tion is the location where its first derivative equals zero) and a known differential de-

pendence Q = dM / dx, it is easy to see that the extreme values of the bending moments 

are taken in sections in which the shear force is zero. These cross-sections can be de-

termined from the expressions for Q (in our example – QIV = 2x4 – 5 = 0; xmax=2,5 m), 

or Q from geometric considerations (5/x max=3/(4– xmax); x max =2,5 m). The maximum 

bending moment of the considered frame on part IV thus takes place in section 10 

(xmax = 2,5 m) and is equal to: M10 = М IVmax = 2,52 – 52,5 = – 6,25 kNm. Final diagrams 

М, Q, N are shown in Fig. 3.11 

All joints of the frame, including a supporting joint, must be in equilibrium. 
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When we say “joint”, we mean a salient point or the point of branching rods of the 

frame and the point of junction of the rods through the hinge joints. So after plotting 

the frame diagrams M, Q and N t it is advisable to check the balance of their joint. 

For this purpose, the joints are cut out and drawn away from the frame (show them 

separately on fig 3.12,b). To make it clear, let’s show the elements adjacent to the 

joints of the rods and apply to them the forces occurring in the cross-sections infinite-

ly close to the joints, and the external loads – forces and moments acting on the joints 

(if they are). Then let’s make the equations of equilibrium of all forces applied to the 

joints (Σ M y =0; Σ  Х  = 0;  Σ  Y = 0) and check their implementation. For the considered 

frame checking the balance of joints are shown in Fig. 3.12. 

!  Analyzing the diagrams of internal forces allows us to set a number of general 

regularities in the change of the diagrams M, Q, N, which should always be ob-

served for rod systems: 

1) on straightforward no-load segment the diagram of the bending moments is al-

ways linear and can be constructed with two coordinates (usually for the extreme sec-

tions of the diagram), and diagram Q and N are uniform (the same in all sections); 

2) at the segment of the action of a uniformly distributed load the diagram M is 

always changed according to the parabolic law, and should be plotted using at least 

three coordinates (usually for outer and middle sections on the segment; if necessary, 

there is no difficulty to find M for additional sections); the convexity of the diagram 

of M is always plotted in the direction of the action of a uniformly distributed load; 

the diagram Q on this segment can be plotted for two ordinates (for cross sections); 

3) at the point of application of some concentrated force the diagram M always 

has a break, pointing in the direction of the force, the diagram Q – the jump (discon-

tinued) equal to the product of this force by the cosine of the angle between the force 

and the axis normal to the axis of the rod and the diagram. The diagram N – the jump 

equal to the product of this force by the sine of the angle between the force and the 

axis normal to the axis of the rod; if the external force is perpendicular to the axis of 

the rod, the jump on the diagram of Q is equal to the magnitude of the force, and on 

the diagram N there will be no jump; 

4) at the point of application of concentrated moment M the diagram always has a 

jump (discontinuity) on the magnitude of this moment; 

5) in the hinge the bending moment is always zero (not to be confused with the 

cross section and hinge section, infinitely close to the hinge; so if the section is infinite-

ly close to the hinge, the applied concentrated moment M on the diagram in this section 

according to the previous situation will jump from zero at the hinge to the value of the 

concentrated moment at the point of application); 

6) at the site of action of the distributed load in the cross section where the shear 

force is zero the bending moment always has an extremum (minimum, maximum); 

Diagrams М, Q, N can be plotted to compute the values in the characteristic sec-

tions of the frame. 



25 

Consider the frame shown in Fig. 3.13. 

 

 

 
 

 

 

 

 

 

 

 

 
 

Fig. 3.13. Design scheme of the frame          Fig. 3.14 
 

 
 

 

 

 

 

 

           Fig. 3.15 

 

The frame is a console tipe, and in the calculation of internal forces in any of its 

sections it is possible to do without determining reactions at the support. If we con-

sider for all sections balance of cut off cantilever parts of the frame. Thus, to plot in-

ternal forces in these frames reactions at the support can not determine, if it is not ex-

plicitly required. On the other hand, knowing the reactions, we always have the op-

portunity to check previous calculations (considering the equilibrium of cut off part 

of the frame from support side and the balance of the support joint).  

For plotting diagrams M, Q and N consider the frame (Fig. 3.13). It should be 

broken down into 5 parts. To plot the bending moments take into account that in parts 

I, II, IV, V of frame M plot will vary linearly and for its construction enough to know 

the values of the bending moments at the extreme points of these sections, that is sec-

tions 1, 2, 3, 4, 8, 9, 10, 11. On part III, which is subjected to action uniformly distrib-

uted load, the curve M will vary according to the parabolic law and for its construction 

it is necessary to calculate bending moments in sections 5, 6, 7. Perform the calcula-

tion internal forces in these cross sections, considering the equilibrium of cantilever 

parts of the frame (Fig. 3.14 and 3.15 shows the corresponding parts for 7 and 10 sec-

tions): 
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


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  



M1 = – 8·0 = 0;     M2 = – 8·2 = – 16 kN·m;      M3 = – 8·2+6 = – 10 kN·m; 

M4 = М5 = – 8 4 + 10·2 + 6 = – 6 kN·m;   М6 = – 8·4 + 10·2 + 6 + 4·1,5·0,75 = – 1,5 kN·m; 

М7 = – 8·4 + 10·2 + 6 + 4·3·1,5 = 12 kN·m;      М8 = +9 – 8·0 = 9 kN·m;  

М9 =+9 – 8·2 = – 7 kN·m;     М10 = +9 – 8·2 – 8·4 + 10·2 + 6 + 4·3·1,5 = – 7 kN·m;  

М11 = +9 – 8·2+ 8·2 – 10·4 + 6 + 4·3·1,5 = +6 kN·m. 

Final plot of the bending moments is based on the stretched fibers, according to 

the rules outlined above. The plot itself is shown in Fig. 3.16, a. 

Calculate the values of Q and N in the same section: 

QI = Q1 = Q2 = – 8 kN;   QII = Q3 = Q4 = – 8 + 10 = +2 kN; 

QIV = Q8 = Q9 = – 8kN;  QV = Q10 = Q11 = + 8 – 10 = –2 kN; 

NI = N1 = N2 = NII = N3 = N4 = NIV = N8 = N9 = 0; NV = N10 = N11 = – 8 – 4·3= – 20 kN. 

Compute Q in two sections – 5 and 7:   Q5 = 0;   Q7 = 4·3 = +12 кN.  NIII = –2 кN. 
 

 а)           б)       в) 
 

 

 

 

 

 

 

 

 
 

  

Diagram M [kN·m]  Diagram Q [kN]  Diagram N [kN] 
 

 

Fig. 3.16. Final diagram of internal forces 
 

After plotting the final diagrams of M, Q and N, the system is checked to the bal-

ance of their joints. There are shown for the considered frame in Fig. 3.17. 

а) on diagram M: 
 

Joint С             Joint В 

Σ МС  = 0;                Σ МВ  = 0; 

12 – 7– 5 = 0;            6 – 6 = 0; 

b) on diagram Q and N: 
 

Joint С               Joint В 

Σ X = 0;   2 – 2 = 0;            

Σ Y = 0;  – 8 + 20 – 12 = 0;        Σ X = 0;   2 – 2 = 0;    

               20 – 20 = 0.         Σ Y = 0;   0 = 0. 
 

 

Fig. 3.17. Checking the balance of joints 
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The calculation of the consol frame is finished if we are not interested in the reac-

tion of fixed end (pinching support). It should be noted that in the design practice of 

constructions calculation of value of support reactions is usually necessary to know. 

So here also fulfill the determination of reactions of fixed end, for which consider the 

equilibrium of the frame in general: 

Σ X = 0;    8 – 10 – H = 0;  H = –2 kN; 

Σ Y = 0;    R – 8 – 4∙3 = 0;  R = 20 kN; 

Σ MA = 0;    9 – 8∙2 + 4∙3∙1,5 – 10∙4 + 8∙2 – MR = 0;    MR  = –7 kN∙m. 

It is easy to see by analyzing the final diagrams of M, Q and N (Fig. 3.16) that the 

values of the calculated reactions are equal to the corresponding internal forces at 

support joint 11. This suggests that the support joint is in equilibrium and that the 

calculation of frame is done correctly. 

!  The analysis of above examples allows suggesting the following order of plot-

ting diagrams of the internal forces of M, Q and N in frame and truss and beam sys-

tems: 

1. Show assumed directions of the reactions at the supports in the system. 

2. Write the equilibrium equations of the system. By solving these equations the 

values of support reactions can be determined. 

3. Perform verification of calculated reactions at the supports. 

4. The system divides into calculated parts (areas between the characteristic 

points) and are identifyed section where nacessary to calculate the internal forces M, 

Q and N to plot diagram. 

5. The values of internal forces M, Q and N comput for these sections (based on 

the rules set out above) for plotting of diagram of internal forces. In the areas of  

action of uniformly distributed loads comput extreme values of the bending moments 

(if they are exist)). 

6. Are checked of the balance of the joints and is observed the general regularities 

of change in diagram of internal forces.  

Perform the calculation of another simple frame shown in Fig. 3.18, a. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.18 
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From the point of view of kinematic analysis frame is a single disk (a broken 

branched rod) connected to ground (earth) by three rods (jointed by movable hinges), 

not parallel to each other and intersecting at one point.  

Determine of the reactions at the supports (Fig. 3.18, b): 
 

Σ MК = 0;    (10∙3)∙3,5 – 7∙8 + 39 – 7∙4 – RD ∙10 = 0;    RD  = 6 kN; 

Σ Y = 0;      RА  – 30 + 6 = 0;       RА = 24 kN; 

Σ Х = 0;      RВ  – 7 – 7 = 0          RВ  = 14 kN. 
 

The checking of the calculations of reactions at the supports: 

Σ MТ = 0;    24∙5 – 14∙6 – (10∙3)∙1,5 – 7∙2 + 39 + 7∙2 – 6∙5 = 0;    159 – 159 = 0.  

For plotting diagrams M, Q and N the frame should be broken down into eight 

parts (Fig. 3.18, b), on which select the 13 sections for determining the shape of  

diagrams of internal forces. Omitted cross-sections in which the forces can easily be 

calculated orally and where bending moments equal to zero (are the cross-sections at 

the hinge joints and at the end of the console). It is recognized that the diagram of the 

bending moments at the site of action of a uniformly distributed load is changed by a 

parabolic dependence, and for its plotting it is necessary to calculate bending  

moments, at least, in three sections – 3, 4, 5; in other parts of the frame diagram M 

will be changed linearly and to plot diagram enough to know the values of the  

bending moments in the two extreme points of these sites. 

Calculation of values of bending moments and determination of the stretched  

fibers in the character cross sections (Fig. 3. 18, b): 
 

1

left
M = 24·2 = + 48 kN·m;            

2

low
M = – 14·2 = – 28 kN·m;  

 

3

low
M = 24·2 – 14·2 = + 20 kN·m; 

4

low
M = 24·3,5 – 14·4 – (10·1,5)·0,75  = + 16,75 kN·m;    

 

5

low
M = 24·5 – 14·6 – (10·3)·1,5 = –9 kN·m;             6

top
M  = – 7·2 = – 14 kN·m; 

 

7

right
M = +39 + 7·2 – 6·5 = + 23 kN·m; 

 

8

right
M = 39 + 7·2 – 6·3 = + 35 kN·m;                   9

right
M = 7·2 – 6·3 = – 4 kN·m; 

 

10

right
M = 7·2 – 6·1 = 8 kN·m;                  11

low
M = 7·2 – 6·1 = 8 kN·m;       

 

12

low
M = 7·0 – 6·1 = – 6 kN·m;                          13

right
M = – 6·1 = – 6 kN·m; 
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The final diagram of the bending moments for the con-

siderad frame is shown in Fig. 3.20, а. 

In the same way are reasoning also at plotting of dia-

grams of shear and longitudinal forces. 

At the area of action of uniformly distributed loads di-

agrams the shear and longitudinal forces will be linear. 

Compute the values of Q and N  in the two sections 3 and 5: 
 

3

low
Q = 24·cos  – 14·sin  = 24·0,6 – 14·0,8 = 3,2 kN; 

           Fig. 3.19 

5

low
Q = 24cos  – 14sin  – (10·3)cos  = 24·0,6 – 14·0,8 – (10·3) 0,6 = – 14,8 kN; 

3

low
N = – 24·sin  – 14·cos  = – 24·0,8 – 14·0,6 = – 27,6 kN; 

5

low
N = – 24·sin – 14·cos + (10·3) sin = 24·0,6 – 14·0,8 + (10·3) 0,8 = – 3,6 kN. 

In other sections, shear and longitudinal forces will be uniform. For plotting dia-

grams of Q and N enough get the values of one’s for each part section: 

1

left
Q  = 24 кН;   

2

low
Q  = – 14 kN;    

6

top
Q = – 7 kN;   

7

right
Q = Q8 = Q9 = Q10 = – 6 kN; 

11

top
Q = Q12 = + 7 kN;       

13

right
Q = – 6 kN;        

1

leftN  = 0;      
2

low
N  = 0;       

6

top
N = 0; 

7

right
N = N8 = N9 = N10 = – 7 kN;     

11

top
N = N12 = – 6 kN;    

13

right
N = 0. 

Plotted according to the given data diagrams Q and N are depicted in Fig. 3.20, b, c, 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

                                          Fig. 3.20 
 

At the part of action of a uniformly dis-

tributed load q on the diagram there is a sec-

tion where the shear force is zero. In this sec-

tion the bending moment will have the max-

imum value: 

max

left
M = 24·(2 + 0,533) – 14·(2 + 0,711) –  

– (10·0,533)·0,5·0,533 = 21,42 kN·m,  
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where is the location of the section is determined from the ratio: 

 max
max max

max

3,2
; 3,2 5 14,8 ;

14,8 5

х
х х

х
    


 max max18 16; 0,889 мх х   . 

After plotting the final diagrams of the internal forces of M, Q and N, in the 

system is checked the balance of the joints where bending moments, shear and 

longitudinal forces act.        

Checking the balance of joints on the diagram M: 

 

Σ MS = 0; 

  6 – 6 = 0. 

 

Σ MС = 0;          Σ MT = 0;    Σ MG = 0;   

48 – 28 – 20 = 0;       23 – 9 – 14 = 0;   8 – 8 = 0;     
 

Checking the balance of joints for diagrams Q and N: 

oint С:  

 Σ Х = 0;  – 27,6·0,6 + 3,2·0,8 + 14 = 0;  – 16,56 + 16,56 = 0; 

Σ Y = 0;     – 27,6·0,8 – 3,2·0,6  + 24 = 0;     – 24 + 24 = 0; 

 

Joint Т:    

Σ Х = 0;  3,6·0,6 + 14,8·0,8 – 7 – 7 = 0;  14 – 14 = 0; 

Σ Y = 0;  3,6·0,8 – 14,8·0,6 + 6 = 0;  8,88 – 8,88 = 0; 
 

Joint G:    

Σ Х = 0      7 – 7 = 0;    Joint S:    

Σ Y = 0;   – 6 + 6 = 0;       Σ Х = 0;      – 7 + 7 = 0; 

Σ Y = 0;     – 6 + 6 = 0. 
 

 

3.4. Features of the Calculation of Three-Hinged Frames 

Three-hinged frames (Fig. 3.7) usually have more than three external support 

reactions (Fig. 3.7, a) or closed loop (Fig. 3.7, b), no "cutting" of which it is 

impossible completely determine the internal forces in such systems.  

Therefore, to calculate three-hinged frames the three equilibrium equations of the 

entire system are not enough. Must be compiled additional equation of equilibrium of 

certain parts of these systems and determined along with the external reactions at the 

supports the internal forces (forces at joints). After finding reactions at the supports 

diagrams of internal forces M, Q, N in these systems can be plotted on the same 

principles as in simple frames. 

Below we consider possible schemes for determining the external reactions at the 

supports, and some of the internal forces for a series of frames, the knowledge of 

which is sufficient to plot diagrams of the internal forces in these systems (external 

load on the frames can be any and their combinations for frames is not shown; fea-

tures associated with the application of loads, will be discussed separately):  
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I. Three-Hinged Frame With Restrictions at the Same Level (Fig. 3.21): 
 

Possible order of calculation: 

1) Σ МА = 0;      RB =... 

2) Σ МВ = 0;      RА =... 

3) Σ 0;left

CM    HA=... 

4) Σ X=0;        HB=... 
 

                    Fig. 3.21       Check:   Σ 0;right

CM    ... 
 

II. Three-Hinged Frame with Restrictions at Different Levels (Fig. 3.22): 

The peculiarity of this frame is that it is impossible to make an equations of equi-

librium, which would include only one unknown. To determine the reactions at the 

supports should be combined the system of equations: 

 

     1) Σ МА=0;    (RB,  HB)     RB = ... 

2) Σ ;0right

CM    (RB,  HB)     HB = ... 

3) Σ X = 0;             HA = ... 

4) Σ Y = 0;             RA = ... 

      Fig. 3.22            Check:    Σ 0;left

CM    ... 
 

III. Three-Hinged Frame with Joining Beam (Fig. 3.23, а): 

Feature of frame is that in its structure a closed loop (CDK), which does not al-

low to determine of internal forces in a closed loop sections. For their determination 

it is necessary to cut the contour in the frame with joining beam. This can be made by 

cutting joining beam. 

Joining beam is a straight rod, connected with other parts of the system at the 

ends of the hinge joints and working in the absence of a load only in tension-

compression. 

Consider the frame shown in Fig. 3.23, а. Let the rod DK unloaded. Cut out it and 

consider it balance: 

Σ МD = 0;    YK·l = 0;  YK = 0;        Σ МK = 0;    YD·l = 0;        YD = 0; 

Σ X = 0;      HD – HK = 0;     HD = HK = H. 

 

We find that in the rod DK occurs only longitudinal 

force, and it accordingly works only in tension-

compression, that is, the rod DK is joining beam, axial 

force, which we denote by H (fig 3.23, b). 

Then frame with a unload joining beam can make 

the following calculation procedure: 

1) define the external reactions at the supports 

(which in this frame – Fig. 3.23, a – three, as in the  

  Fig. 3.23  simple frames), for example, from the equations: 
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Σ МА = 0;      RB =...      Σ МВ = 0;     RА = ...    

Σ X = 0;      НА =...       Check:     Σ Y = 0;   

         2) Take section 1–1 through the joint C and 

joining beam DK (Fig. 3.23, а), the force let’s denote 

by H; the frame takes the form shown in Fig. 3.23, c;  

       3) To determine the force at joining beam, consid-

er the equilibrium of one of the half-frame: 

          Fig 3.23           Σ ;0right

CM          Н = ... 

4) To check use the equation of equilibrium to another part of the frame: Σ 0.left

CM   
 

Three-Hinged Frame with Loaded Joining Beam (fig. 3.24, а):  

Schemes for the calculation can be as follow:  

1) external reactions at the supports RA, HA 

and RB are defined the same as for the three-

hinged frame with unload joining beam  

(Fig. 3.23, а): 

Σ МА = 0; RB = ... Σ X = 0; НА = ... 

Σ МВ = 0; RА = ... Check:   Σ Y = 0; 

2) cut of joining beam DK and consider it bal-

ance along with the act on it a loadings     

(Fig.3.24, b); 

From the equilibrium equations Σ МD = 0 and  

Σ МК = 0 determine a vertical reactions YD  and YK 

in joints D and К, аnd from the equation  

Σ X = 0 find the relationship between HD and HK. 

Let us denote one of these unknown by H. 

For example, for load on joining beam shown 

in (Fig. 3.24, a) we obtain:  
 

YD = YK= 0,5 sin  α; HD =HK  P cos  α = H – P cos  α. 
 

 

Having these values, we can plot in the join-

ing beam diagrams of the internal forces M, Q and 

N with a precision of parameter Н, (Fig. 3.24, b); 

3) consider the frame of ABC without any 

joining beam, but given the transmitted from it to 

the frame (in reverse directions) forces at joints D 

and K – YD , YK, which are already known, and 

actions HD, HK, which are known with a precision 

of parameter Н (Fig. 3.24, c).  

Find H (Fig. 3.23, c) 

Σ
right
CM = 0;   Н= ...       Check:  Σ

left
CM = 0; 

AH

AR
BR

A

C

B

D
K

H H

)c

HD YK

D

K
l/2

H=HK

YD l/2

P

Q

sin
2

P 

-
+

M

sin
4

Pl 

N

cosH P 

+
HH

sin
2

P 



C

B

RB

A
HA

RA

H =f(H)
D

H=H
K

Y
D

Y
K

AH

AR BR

A

C

BD K

l

I

P
α 

b) 

c) 

Fig. 3.24 

a) 
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IV. Three-Hinged Frame with Two Parallel Joining Beam (Fig. 3.25) 

A possible calculation scheme: 

1) take section I–I and consider the equi-

librium of left and right parts of the frame: 

ΣY 
left = 0;      RA = ...     ΣY 

right = 0;     RB = ... 

2) consider the equilibrium of the frame in 

general:     ΣМА =0;        НB = ... 

Fig. 3.25         ΣМВ =0;        НА = ... 

3) considering now the balance left (or right) part, we find the forces for joining 

beam:      Σ
left
KM =0;         Н2 = ...  Σ

left
CM =0;         Н1= ... 

4) perform the check on the correctness of reactions:   Σ
right
BM = 0; ... 

 

The Example of Calculation of Three-Hinged Frame  

Consider the calculation of the frame shown in Fig. 3.26, a. 

First, determine the reactions at the supports: 

Σ MA = 0;    10∙4 – 10 – 20∙4 – 10 + RD ∙10 = 0;        RD  = 6 kN; 

Σ 0;right

CM     20∙2 + 6∙7 – 10 – RВ ∙6 = 0;              RВ = 12 kN; 

Σ MК = 0;    10∙4 – 10 – 20∙4 – 10 + RА ∙10 = 0;    RА  = 6 kN; 

Σ 0;left

CM      6∙3 – 10∙2 – 10 + ∙6 = 0;    HА = 2 kN; 

Check:   Σ X = 0;   –2 + 10 – 20 +12 = 0;   22 –22 = 0;      Σ Y = 0;    – 6 + 6 = 0. 

For plotting diagrams M, Q and N the frame will be divided into eight parts  

(Fig. 3.26, b). At the part of action of a uniformly distributed load diagram of bending 

moments will vary according to the parabolic law and for its plotting it is necessary to 

calculate bending moments, at least, in three sections – in sections 9, 10, 11. For oth-

er sections diagram of M  will vary according to a linear law and to plot of it enough 

to know the values of the bending moments at the extreme points of these sections, 

i.e. in sections 1, 2, 3, 4, 8, 12, 13, 14 (here omitted a sections in which the calcula-

tion of internal moments are easily done even verbally, and in which the bending 

moments are clearly equal to zero, for example, sections of the joints). 
  

2
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The calculation of internal forces in the given cross-sections and determination of 

the location of the stratched fibers: 
 

1

left
M = 6·1 = + 6 kN·m;           

2

low
M = 6·1 + 2·0 = + 6 kN·m; 

 

3

low
M =

4M = 6·1 + 2·4 = +14;            
5

low
M = 6·1 +  2·6 –10·2 = – 2 kN·m; 

 

6

left
M =

5

low
M = – 2 kN·m;                 

7

left
M = 6·3 + 2·6 – 10·2 = + 10 kN·m; 

 

8

left
M =

9

left
M = 6·4 + 2·6 – 10·2 – 10 = + 6 kN·m; 

 

9

right
M = (5·4)·2 –10 + 6·6 – 12·6 = – 6 kN·m; 

 

10

right
M = (5·2)·1 –10 + 6·4,5 – 12·4 = – 21 kN·m; 

 

11

low
M = –10 + 6·3 –12·2 = –16 kN·m;                

12

low
M = – 12·2 = – 24 kN·m; 

 

13

right
M = –10 + 6·3 = + 8 kN·m;             

14

right
M = –10 + 6·0 = – 10 kN·m; 

 

Finally the bending moments diagrams in the frame under consideration based on 

the results of calculations presented in Fig. 3.27, a. 

Similarly are plotted of diagrams of shear and longitudinal forces. 

At the area of action of a uniformly distributed load the shear and longitudinal 

forces will be linear and for plotting of these (diagrams of Q and N) calculate the val-

ues of these forces, for two sections – 9 and 11 (Fig. 3.26, 3.27, b): 

9

low
Q = + (5·4) sin – 12·sin  + 6·cos  = (20 – 12)·0,8 + 6·0,6 = + 10 kN; 

11

low
Q = – 12·sin  + 6·cos  = – 12·0,8 + 6·0,6 = – 6 kN; 

9

low
N = – (5·4)·

 
cos  + 12·cos  + 6·sin  = (– 20 + 12)·0,6 + 6·0,8 = 0; 

11

low
N =12·cos + 6·sin =12·0,6 + 6·0,8 = +12 kN. 

In the other sections, shear and longitudinal forces will be constant and to plotting 

of their diagrams is sufficient to calculate the values of Q and N in one of the set sec-

tions: 

1

left
Q  = + 6 kN;           2

low
Q = Q3 = + 2 kN;     4

low
Q = Q5= +2 –10 = – 8 kN;   

6

left
Q = Q7 = Q8 = 6 kN;        12

low
Q = –12 kN;        13

right
Q = Q14= + 6 kN;  

1

left
N = 0;         2

low
N = N3 = N4 = N5 = – 6 kN;        12

low
N = 0;      

6

left
N = N7 = N8 = + 2 –10 = – 8 kN;            13

right
N = N14 = 0. 

Plotted diagrams Q and N according to the data is depicted in Fig. 3.28. 
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At the area of action of a uniformly distributed load q on the diagram of shear 

force there is a special section where shear force is zero. In this section the bending 

moment acquires the maximum value. The position of this cross section we find from 

the ratio (Fig. 3.28, a): 

 max max

max max

10 6
; 10 6 5 ;

5
s s

s s
    


      max max16 30; 1,875 ms s   . 
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Fig. 3.27       Fig. 3.27 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

Fig. 3.28 
 

The horizontal and vertical dimensions of the position of the cross section will be 

equal:    

max 1,875 0,6 1,125 mx    ;      max 1,875 0,8 1,5 my       (Fig. 3.28, a). 

The maximum bending moment is equal: 

max

right
M = (5·1,5)·0,75 –10 + 6·(3 + 1,125) – 12·(2 + 1,5) = – 21,625 kN·m. 

Checking the balance of joint for final diagrams M, Q and N: 

N
6

2
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8

6

2

8
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S

2

Q

10

12

8

6

6

6 6
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66

8

12

m
ax

1,875

s

m



m
ax

5
s



1
,5

m
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D

T G

S

a)
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а) on diagram М: 

 

 
 

Σ MD = 0;  Σ MT = 0;      Σ MG = 0;         Σ MS = 0;    

6 – 6 = 0;  2 – 2 = 0;      6 – 6 = 0;        16 + 8 – 24 = 0. 

  b) On diagrams Q and N: 
 

Joint D:           Joint G: 

Σ Х = 0;  – 2 + 2 = 0;          Σ Х = 0   8 – 10·0,8 = 0;  8 – 8 = 0; 

Σ Y = 0;   6 – 6 = 0;          Σ Y = 0;   6 – 10·0,6 = 0;  6 – 6 = 0; 
 

Joint Т:      

Σ Х = 0;  8 – 8 = 0;           

Σ Y = 0;  6 – 6 = 0;            
 

        Joint S: 

Σ Х = 0;  12 –12·0,6 – 6·0,8 = 0;  12 – 12 = 0; 

Σ Y = 0;  12·0,8 – 6·0,6 –6 = 0;  9,6 – 9,6 = 0; 

 

3.5. Calculation of Composite Frames 

The frame is called composite if it consists of several three-hinged frames and 

(or) simple frames (Fig. 2.3,  c; 3.29,  b). 

During the calculation of such frames as well as the multi-span should be divided 

(in hinge joints) into a separate three-hinged frame and (or) simple frame, some of 

which will have to rely on others, and the calculation of which we know how to per-

form; these simple and three-hinged frame here can also be divided into main (major) 

and secondary (minor). The calculation, of course, should begin with the secondary 

frame (top level), gradually moving to the calculation of the bottom frames and 

transmitting their reactions (in reverse directions) of the upper located frames. Full 

diagram of forces for a composite frame will be obtained by composing the respec-

tive diagrams for the separate frames.  

 For example, the calculation of the composite frame (Fig. 3.29, b) should be per-

formed in the following sequence. 

1. We cut out the top part Section I–I, which is a three-hinged frame CDO with 

support at different levels (in the joint C and imaginary hinge O) and determine the 

reactions at the hinge joint C and at the supports S and R. 

2. The right half of the frame DO of the considered above frame CDO,  represents 

itself as a three-hinged frame with a joining beam FK. Therefore, for breaking the 

closed loop we need to make the cross-section II–II (Fig. 3.29, c) and find the force H 

in the FK joining beam, considering the balance either left or right of the frame. 
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Fig. 3.29      Fig. 3.29 
 

3. Make the cross-section III – III, and considering separately the frame ABC, 

which is a three-hinged frame with supports at different levels (A and B). 

4. Finally we consider the simple frame TBU. 

Below we will consider an example of calculating the composite frame. 

Frame, that is shown in Fig. 3.30, can be divided into three-hinged frame DCТ 

and two simple console beams AD and BT (Fig. 3.31), while structurally the three-

hinged frame DCТ relies on the rods AD and BT. 

Let us first consider the three-hinged frame DCТ, hinges at the supports of which 

lie at different levels. Therefore, to determine the reactive forces at joints D and T we 

must solve the system of equations: 
 

1)    Σ МD=0;      + 22 – 6·2 – (4·3)·2,5 + ХТ + 4·YТ = 0;               ХТ = 8 kN; 

2)    Σ ;0right

CM                + (4·3)·1,5 – 3·ХТ + 2·YТ = 0;               YТ = 3 kN; 

3) Σ X = 0;  + ХD + 8 – 4·3 = 0;    ХD = 4 kN; 

4) Σ Y = 0;     + YD – 6 – 3 = 0;     YD = 9 kN. 

Check:     Σ 0;left

CM        + 22 + 9·2 – 6·4·– 4·4 = 0;     40·– 40 = 0. 
 

We transfer the found forces at joints D, and T in the reverse direction on the 

console rods AD and BT (Fig. 3.31). After that, the computation of forces in the three-

hinged frame sections DCТ and console rods AD and BT is not very difficult. Final 

bending moment diagrams, shear and longitudinal forces in the frame under consid-

eration is presented on Fig. 3.32 – 3.34. 
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Fig. 3.33              Fig. 3.34 
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3.6. Calculation of Statically Determinable Composite Beams 

Beams are called composite and statically determinate if they consist of several 

simple beams connected at the ends by hinge joints and, as a rule; do not coincide 

with the supports. 

The kinematic analysis of such systems is convenient to perform using the formu-

la W = (3D – 2H − С0), where:  D – the number of disks in the system, which are the 

simple beams; H – the number of single (simple) joints connecting the beams;  

С0– the number of restrictions at the supports in the system. 

Geometric structure analysis of composite beams allows introducing the concept 

of floor-by-floor schemes of the beam. Floor scheme of the composite of statically 

determinate beams is a scheme of the interaction of simple beams, where they unite 

into composite one (see Fig. 3.35). Thus among these simple beams it is possible to 

identify the main and secondary beams. 

The main are called the simple beams, which after cutting of the composite beam 

by joints connecting the simple beams can carry the load by themselves (invariable). 

We consider the beam as a disk having three degrees of freedom and the main beam 

must have three support restrictions it means that the main beam will be simple beam 

or beam with pinching (fixed end). The main beam in the composite system can also 

be the simple beam having two vertical reactions at the supports, considering that the 

third link for them – the horizontal beams are adjacent (which confirms the geometric 

analysis of the corresponding system). 

Secondary are called the simple beams, which can not carry the load by them-

selves because they are unstable. These beams rely on the adjacent joints. Also some 

of the secondary beams can rely on the other that means that among the secondary 

beams there is a certain hierarchy and, accordingly, their level of minarity may be 

different. The most secondary beams will be the beams that are located just above on 

the floor scheme. 

Work analysis of statically determinable composite beams allows us to identify 

the regularitys of their work and to formulate their possible order of calculation: 

– it is convenient to perform the calculation of composite statically determinable 

beams by the calculation of the simple beams that containts the compound 

one;  

– the calculation must start from the top of floor-by-floor scheme, gradually mov-

ing to the calculation of the bottom beams and sequantly passing the reactions on 

them from the upper beams to the lower, in the opposite directions; The main beams 

are calculated the last; 

– The forces from the load on floor-by-floor schemes are transferred only to the 

underlying beams and are not transferred to the overlying; 

– The calculation of the simple beams is similar to the calculation of simple 

frames; 

– During the action of only vertical loads on the statically determinate composite 

beam, the longitudinal force will be missing; 

– Final diagrams of internal forces in a composite beam are plotted by combining 

the diagrams of these forces, obtained by the calculation of simple beams. 
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Let’s perform the calculation of statically determinat beam, represented on  

Fig. 3.35.  

Kinematic analysis of the system:       W = 3D – 2H − С0 = 3·3 − 2·2 − 5 = 0. 

 

 

 

 

The system is statically determinate and invariable. 
 

Determination of reactions at the supports and plot the internal forces diagram: 

1) The calculation begins from the beam EF, the top floor on the scheme: 

Σ МЕ = 0;  –RF 6,6 + 24,42,2 + 58,8 = 0;  RF = 9,6 kN;  

Σ МF = 0;  RE 6,6 – 24,44,4 + 52,2 = 0;  RE = 4,2 kN; 

Check:  Σ Y = 0;      4,2 – 24,4 + 9,6 – 5 = 0;      0 = 0. 
 

The calculation of the ordinate of the diagram М:      
1

left
M = 0;  

2

left
M  = 4,22,2 – 22,21,1 = 4,4 kNm; 

3

left
M  = 4,24,4 – 24,42,2 = – 0,88 kNm; 

4

left
M = – 0,88 kNm; 

5

left
M = 4,26,6 – 24,44,4 = – 11 kNm;  

6

left
M = 52,2 = 11 kNm;  

7

left
M = 50 = 0 kNm. 

Determination of stretched fibers: 

Calculation of the ordinates of the diagram Q:    1

leftQ = 4,2 kN; 

3 4

left leftQ Q = 4,2 – 24,4 = – 4,6 kN; 
5

right
Q = – 9,6 + 5 = – 4,6 кN;  6 7

right right
Q Q = 5 kN. 

 

Сalculation of extreme values of the bending moment on the section 1-2: 

1,2
6,4

4,4

2,4
1

11 


 x
xx

 m;  Ммах= 4,22,1 – 22,11,05 = 4,41 kNm. 

Diagrams M and Q are depicted in the general scheme of composite beam (Fig. 3.35). 

2) Then we calculate the second beam CDЕ: 

Σ МС = 0; 9,41,55 + 9,43,1 – RD4,65 + 4,26,85 = 0;     RD = 15,587 kN; 

Σ MD = 0; 4,65RC – 9,43,1 – 9,41,55 + 4,22,2 = 0;           RC = 7,413 kN; 

Σ MD = 0; 4,65RC – 9,43,1 – 9,41,55 + 4,22,2 = 0;           RC = 7,413 kN. 

Check:         Σ Y = 0;       7,413 – 9,4 – 9,4 + 15,587 – 4,2 = 0;        0 = 0. 

The calculation of the diagram of ordinates of bending moment: 

1

left
M = 0;            2

left
M = 7,4131,55= 11,49 kNm;          3

left
M  = 11,49 kNm; 

     4

left
M = 7,4133,1 – 9,41,55 = 8,41 kNm;  5

left
M = 8,41; 6

right
M = – 4,22,2= 9,24 kNm; 

M2 M3, M4, M5 M6 

4,2 kNER  9,6 kNFR 

F

1 5 kNP 

1 6
E

4,4 m 2,2 m

2 3 754

2 2 kN/mq 

2,2 m
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7

rightM = 9,24 kNm;          8

rightM = 0. 

Determination of stretched fibers: 
 

 
 

The calculation of the ordinate of the  

diagram Q:  

1

leftQ = 7,413 kN;     
2

leftQ = 7,413 kN;       

3 4

left leftQ Q = 7,413 – 9,4 = – 1,987 kN;    

5 6

right right
Q Q = – 15,587 + 4,2 = – 11,387 kN;      

7 8

right right
Q Q = 4,2 kN. 

Diagrams M and Q in the beam depicted in the general scheme of composite 

beam (Fig. 3.35). 

3) We calculate the main beam ABC in the end:             Σ МА = 0; 

– 9,41,8 + 1,16,955,275 – RB7,2 +  

+ 7,4138,75 = 0;       RB = 12,26 kN; 

Σ МВ = 0; 

– 9,49 + RA7,2 – 1,16,95 1,925 + 

+ 7,4131,55 = 0;     RA = 12,198 kN. 

Check:    Σ Y = 0;      – 9,4 + 12,198– 

1,16,95 + 12,26 – 7,413 = 0;   0 = 0. 

The calculation of the ordinates of bending moment diagrams: 

1

left
M = 0;         

2

left
M = – 9,41,8 = – 16,92 kNм;   

3

left
M =

2

left
M = – 16,92 kNм; 

4

left
M =

5

left
M = – 9,43,6 + 12,1981,8 = – 11,884 kNm;   

6

left
M = – 9,4(3,6+2,7) + 12,198(1,8+2,7) – 1,12,71,35 = – 8,325 kNm;  

7 8

right rightM M = 7,4131,55 – 1,11,550,775 = 12,812 kNm;      

9

rightM = 7,413
1

2
1,55 – (1,10,775)

1

2
0,775 = 6,076 kN m;     10

rightM = 0. 

 

Determination of stretched fibers: 
 

 
 

The diagram of the bending moments and shear forces is shown in Fig. 3.35. 

The calculation of the ordinate of the diagram of shear forces Q:  

1

leftQ  = 2

leftQ = – 9,4 kN;        3

leftQ = – 9,4 + 12,198 = 2,798 kN;  

4 5 3

left left leftQ Q Q  = 2,798 kN;       7

rightQ = 7,413 + 1,11,55 – 12,26 = – 3,142 kN; 

8

rightQ = 7,413 + 1,11,55 = 9,118 kN;         9

rightQ = 7,413 kN. 

The calculation of the extreme values of the bending moments in the section 5–7: 

2 2
2

5,4
2,544 m

2,798 3,142

x x
x


   ; 

Ммах = – 9,46,144 + 12,1984,344 – 2,5441,12,544/2 = – 8,325 kNm. 

M2, M3, M4, M5 
M6, М7 

M2, M3, M4, M5, M6 M7, M8 

С

2 9,4 kNP  7,413 kN
C

R 

A

B

12,198 kNAR  12,26 kN
B

R 

1,8 m 5,4 m 1,55 m

1

2
3 4 5 6 7 8 9 10

1,8 m

1
1,1 kN/mq 

2 9,4 kNP 

7,413 kNCR  15,587 kNDR 

D

4,2 kNER 

1

6

C

1,55 m 2,2 m

2 3 8754

1,55 m 1,55 m

2 9,4 kNP 
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M

Q

9,4 9,4

2,798 2,798

3,142

9,118

7,413

11,387 11,387

4,2 4,2

4,6 4,6

5 5

16,92

8,325

12,812

11,49

8,41

9,24

4,41

0,88

11

1,8 1,8 5,4 m 1,55 1,551,55 1,55 2,2 4,4 m 2,2 2,2

2 9,4 kNP 

1

kN
9,4

m
q 

2 9,4 kNP  2 9,4 kNP 

12,198 kNАR  12,26 kNBR  15,587 kNDR 

1 5,0 kNP 

2

kN
2,0

m
q 

B

C D

E

A

9,6 kNFR 

1 2 3

F

1,987
2,12,544

11,884
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3.7. Influence Lines in The Beams Systems 

3.7.1. The Concept of Influence Lines  

Influence line for reaction at the support is a diagram represents of changes in the 

reaction in a particular element (section) of the structure when moving alongwith the 

construction of a unit dimensionless force (unit force) of constant direction. 

During the plotting of the influence lines of some reactions or internal forces we 

consider an arbitrary position of the unit force on the structure. For this state we make 

the equations of equilibrium, which displays the functional dependence of the consid-

ered forces from the abscissa of the unit force position. The diagram of this relation 

represents the influence line. 

The unit force is taken as dimensionless. Therefore, the dimensions of the influ-

ence lines are determined by the expression:  

[Dimension of the influence lines] = 







force ofdimension 

 force internal ofdimension 
  

Accordingly, the ordinates of the influence lines of reactions, shear and longitu-

dinal forces will be dimensionless (N/N) and the dimension of ordinates of moments-

influence lines will be equal to the dimension of length (N∙m/N=m). 

Note the differences between influence lines in comparison with the diagrams of 

internal forces. 

Plot internal forces is a diagram showing values of the internal forces (bending 

moment, shear force, longitudinal force, etc.) in all cross-sections of the considered 

structure from the effects of a particular set of fixed loads (concentrated forces, mo-

ments, distributed loads). The ordinates of the diagram the internal forces show the 

values of internal forces in the structures in which they are laid off. Any change in 

position and the load values, appearing (new) of loads, causes the internal forces to 

change, and the diagrams of internal forces should be replotted. 

Influence lines is a diagram showing the changes of the pointed out concrete 

force in one pointed section of the structure depending on position of unit concentrat-

ed dimensionless force, moving across the structure. The ordinate of the influence 

line shows the value of force in one particular section of the structure at the position 

of a unit force in the place where the ordinate is depicted. When plot the influence 

lines diagram the ordinate is depicted under the point of application of a unit force. 

This influence line can not say anything about the change force in other sections of 

the structure. 

For influence lines M and Q in beams the following rule of signs are used: the or-

dinates of the influence line M are positive, if stretched the bottom fibers of the 

beams, and for the ordinate of the influence lines Q also applies the same rule of 

signs that for plots Q. 

Influence lines of forces allow us: 

– to determine the values of reactions or internal forces from a variable action; 

– To find the most unfavorable position of the systems of variable actions (loads) 

and temporary loads in order to determine in a particular element of the structure of 

extreme (maximum or minimum) internal forces; 
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– To determine the internal forces from stationary system of loads, this is espe-

cially important during the multiple variants loading of the stucture. 

 
 

3.7.2. Plotting of the Influence Lines in Simple Beams 

Let’s consider the static method of plotting influence lines diagram for forces in 

one of the sections firstly for the simplest of beams – console beam (Fig. 336, a).  

The dependencies for the determination of the reactions at the supports during the 

desplacement of the unit force on the beam can be found from the equilibrium equa-

tions of the beam. 

The horizontal reaction can be found from the condition of equality of projections 

of the forces acting on the beam, on the horizontal axis ∑X = 0. Considering that a 

unit movable vertical force while moving the beam does not change its direction, we 

get that НА = 0. Influence line of horizontal reaction in the console beam will have 

zero ordinate. 

We determine the vertical reaction from the equation ∑Y = 0. Which means that 

regardless of the position of the load RА = 1, the vertical reaction at the console beam 

will be constant, and equal to the unit in the whole area of load movement.  

Diagram of the influence line of RA is 

represented in Fig. 3.36, b 

The reactive moment of the fixed 

end will be determined from the con-

dition of equality to zero of the sum 

of the moments about point A: 

0AM  ;     1 0RA FAM x   ;

      RA FAM x  . 

Reactive moment varies linearly. 

To plot a straight line it will be 

enough to calculate the ordinates at 

two points: at the beginning and at 

the end of the beam: when  0FAx  

0RAM ;    when lxFA   
RAM l  . 

Connecting these points of a  

straight line, we will get the influence    Fig. 3.36 

line of the reactive moment.  
Bending moment and shear force in cross-section K will be determind from the 

equilibrium equations of the right side of the beam. 

If the load F =1 is located to the right from the cross-section К: 

1right

K FKM x     (When 0
FK

x  ,  МК  =  0;  When 
FK

x c , 
K

M c  );    1right

KQ   . 

During the movement of the load to the left from the section K from the equations 

0right

K
M   and 0right

K
Q   it follows that 

K
M = 0,  0

K
Q  . Influence lines 

K
M  and 

K
Q  are shown on Fig. 3.36, d, e. 

A К

AR

AH

с

l

a)

b)

1

1 ARi. l.

c) RAM

d) КM

l

с

e) К
Q

11

Рис. 3.1

FAx

FKx 1FRAM

i. l.

i. l.

i. l.
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The highest modulo value of the bending moment in the cross section K occurs 

when the unit loads position at the end of the console. If the load is located to the 

right from the section K the top fiber of the beam will be stretched in this section, so 

the ordinates of the influence line of bending moment will be negative. The shear 

force in the cross section K at the same position of the unit load is positive (rotates 

the beam element in clockwise direction) and equal to one. In the section K, the influ-

ence line for the bending moment has a break, and the influence line for shear forces 

– the jump on the unit. 

Let’s plot the influence lines of RA and RB for simple beam with the console  

(Fig. 3.37, a). From the equilibrium equations of the beam we can see: 

  ;0
A

M           1 0;
B

x R l     ;
B

R x l                  (3.1) 

  ;0
B

M       1 0;Al x R l         AR l x l  .            (3.2) 
 

These dependencies represent the equations of the straight lines, which we will 

plot on the two ordinates:   when x = 0   RA =1, RB =0; when x = l; RA =0, RB =1. 

Additionally, we will compute the values of the reactions at the supports at the 

load position in specific points: 

a) at the end of the left console – when x = – lk1:     ;1 lllR kA   ;1 llR kB   

b) In cross section K between the supports – when x = а:   ;lalRA   ;
B

R a l  

c) At the end of the right console – when x = l+lk2 ;2 llR kA     lllR kB 2 . 

Influence lines of support reactions, plotted according to the dependencies and 

ordinates is shown in Fig. 3.37, b, c.  

Internal forces in cross-section K, located in the span of the beam (between the 

supports) can be identified from consideration of equilibrium in the left and right 

sides of the beams w.r.t. the cross-section K. Expedient to consider the part where 

there is no load. In this case, to determine the internal forces we will get more simple 

equations. 

During the movement to the left from the section K we will obtain the bending 

moment MK  from the equation of equilibrium of the right part of the beam: 
 

right

K B
M R b .           (3.3) 

This expression leads to a linear dependence:  

l

xb
M K  ;        (3.4) 

That is true for the left part of the beam, where the unit load is situated. 

Left direct influence line 
K

M  can be plotted by multiplying all ordinates of influ-

ence line RB by the amount b:  

i.l. МК = (i.l. RB) b. 
 

Similarly, the motion of the load to the right of the section К will have:  
 

i.l. МК = (i.l. RA) a. 
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That means that right direct influence line of МК can be plotted, by increasing the 

ordinates of i. l. RA on а times (Fig. 3.37, d). Note that the left and right branches of 

influence line of МК intersect at section К. 

Shear-influence line in the cross section К is plotted similarly. During the move-

ment of the unit load to the left from the cross-section let’s consider the right part of 

the beam. From the equation 0rightY    we obtain (the left influence line):  

BK RQ         or       i.l. QK = − (i.l. RB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.37 

During the movement of force to the right from the cross-section, examining the 

left part of the beam will give the direct line for the right part of the beam: AK RQ   

or  i.l. QK = i.l. RА. 

Influence line QK, plotted in accordance with these dependencies, is shown in  

Fig. 3.37, e. Under the section K it has the jump by the value equal to one  

(а / l+b / l = 1). In Fig. 3.37,  f, g influence lines are shown that have been plotted up 

on the same principles of of bending moment and shear force in the cross-section К1, 

infinitely close to the support В. 

F=1
A B

l

a b

k1l k2l
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=
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l
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l
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Influence lines in the sections on consoles of semple beam are being plotted  

(Fig. 3.37, h, i) as in section of console beams (Fig. 3.36, d, e). 
 

 

3.7.3. Plotting the Influence Lines in Multi-Span Beams 

At plotting the influence lines in multi-span beams, necessary to remamber that in 

this case there is only one force (load) that moves through the system. Procedure of 

calculation starts with the movement of load by the simple beam, to which the re-

quired action is applied. Plotting of the influence lines in the simple beams was dis-

cussed above. For movement of the load on the remaining beams we can use the in-

teraction conditions of simple beams in the system of many-span beams, which are 

easy to identify from the analysis of such systems: 

– during the transition of force through the hinge joint connecting the simple 

beams, all the loads in multi-span beam remain unchanged (equal), because the effect 

of the load is not changed; 

– When the position of the load on the support, the load is fully accepted by this 

support (reaction will be equal to the value of the load), and all other forces across 

multi-span beam will be absent (equal to zero); 

– During the movement of the load on the beams, which transmit this load to the 

underlying beams, influence lines in those (underlying) beams will change linearly 

(this is due to the fact that the transfer of the action of the load is carried out through 

reactions in the joints, which are the support reactions for the overlying beams, and 

those during the movement of the load over them change linearly (Fig. 3.36, b, c), 

(Fig. 3.37, b, c);  

– during the movement of load on simple beams located on the floor-by-floor di-

agram below the beam to which the considered load is related, the load is not trans-

mitted to the beam and considered force will be zero. 

Thus, to plot the influence lines in multi-span beam we must first plot the influ-

ence line in a simple beam to which considered load is related. Then, in accordance 

with the specified conditions of interaction and work of the simple beams in the mul-

ti-span system, plot the influence lines of load for the rest (remain) simple beams of 

multi-span beams. 

Let’s consider the statically determinable multispan beam shown in Fig. 3.38, a. 

Floor-by-floor diagrams of the beam shown in Fig. 3.38, b. 

The support reaction 
CR  relates to the beam ВСD, so we start plotting of the in-

fluence lines from the movement of load by this beam. And we plot influence line of 

CR  just as in the simple beam in according with the dependencies (3.1), (3.2)  

(see i.l.
BR  in Fig. 3.37). Then we consider the movement of the unit load, for exam-

ple, on the beam DSТ. When passing through the hinge joint D the ordinate of the in-

fluence line 
K2 21 /l l  remains unchanged. 
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h) 

 
 
 

Fig. 3.38 
 

When the load is located on top of the support S it is fully accepted by this sup-

port and all other forces across the whole multi-span beam including the reaction RC 

is equal to zero (the zero ordinate under the base B). Let’s consider now during the 

motion of the load on the beam DSТ the influence line of reaction
CR . This part refers 

to underlying at a floor-by-floor diagram of the beam. That should vary linearly. 

Connecting the points obtained by depicting the ordinates under the supports of D 
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and S of that beam, a straight line and continue that line to the console beams SТ  

(Fig. 3.38, c). During the movement of the load on the beam ТU the procedure for 

plotting of the influence lines RC is the same as well as when the load moves on the 

beam DSТ. The last thing to do is to consider the movement of the load on the beam 

АВ, which is the main and located at the diagram below the beam ВСD that refers to 

the required force. As the force from the load on to the underlying beams is not 

transmitted upward (on the upper beams), so the line of influence of RC on this site 

will be zero (Fig. 3.38, c). 

Influence lines of bending moment and shear force in sections К1 and К2 of the 

beam ВСD are constructed similarly (Fig. 3.38, d, e, f, g). When plotting the influ-

ence lines for shear force and moment in the cross-section К2 (Fig. 3.38, f, g) we need 

to be aware that this section is located on the console beam ВСD and during the mo-

tion of the load on this beam the influence lines are plotted the same as for console 

beam (Fig. 3.36). 

Plotting of the influence lines for shear force and moment in the section К3 must 

begin with consideration of the movement of the load on the beam DSТ, and since the 

cross-section is in the span of the beam, the procedure for plotting the influence lines 

of forces in the section К3 is the same as for the section К1 in the simple beam in  

Fig. 3.37. During the movement of load on the topside beam ТU the influence lines in 

the section К3 are constructed on the basis of conditions of interaction and work of 

simple beams in multi-span beam that was discussed above. During the movement of 

the load on the bottom beams АВ and ВСD the internal forces in the section К3 will 

be missed. Fig. 3.38, h shows the influence line for shear force in the section К3. 

Similarly the influence lines are plotted for two support reactions and shear- 

(moment)-influence lines in two cross-sections for beams with specific dimensions 

that are represented in Fig. 3.39.  
 

3.7.4. Determination of the Reactions and Internal Forces - Shear,  

          Moment along the Influence Lines From External Loads 

For the static determinate systems, that have influence lines having partly-linear 

type of changing, the general expression for the determination of forces on their in-

fluence lines (i.  l.) by the action of concentrated forces, uniformly distributed loads 

and concentrated moments have the form: 





t

k
kk

s

j
jj

n

i
ii mqyFS

111

tg ,          (3.5) 

where: n, s, t – accordingly, the number of concentrated forces Fi, uniformly distrib-

uted loads qj and concentrated moments mk;   yi – the ordinate of the influence line 

under concentrated force; Ωj – area of influence line under a uniformly distributed 

load; 
k

tg   – the tangent of the slope of the plot influence lines under the concentrat-

ed moments relative to the reference axis. 
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Fig. 3.39 
 

Concentrated forces Fi and uniformly distributed load qj are taken positive if they 

act downwards, and concentrated moments mk are positive if they act in clockwise 

direction; The ordinate
i

y  and the area Ωj of the influence lines are taken with the 

signs of influence lines respectively under the forces and uniformly distributed loads, 

аnd tg
k

  is positive for an increasing function of influence lines (see, for example, 

plots of BCD and TU for the influence line of RC, shown in Fig. 3.38, c) and negative 

for decreasing functions (part DST on the same i. l.). 

The important factor in determining the forces from external loads is the follow-

ing property of the straight part of the line of influence:  

- at the straight part of the influence line the force from the system of loading 
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can be determined by the product of the resultant of this system of loading on the or-

dinate of influence line under the resultant 

S = R yR.         (3.6) 

The considered property simplifies the determination of forces from the action of 

any loads acting on straight parts of the lines of influence, as long as you can easily 

find the resultant of these loads and their points of application. Thus, in case of a uni-

formly distributed load its resultant force is equal to the product of the intensity of the 

load on the length of the part and is applied to the middle of this area. It is enough to 

determine the forces on the linear parts of the lines of influence and the loads distrib-

uted in a triangular and trapezoidal dependencies. The load that is distributed over the 

trapezoidal dependencies should be divided into uniformly distributed and triangular, 

or on two triangular loads. 

 

 

 

 

 

 

 

 

Fig. 3.40 
 

For example, the force S from the loads shown in Fig. 3.40, can be calculated ac-

cording to the expression: 

       1 1 2 2 3 3 4 40,5 0,5 0,5S q a y q b y q c y q c y    . 

Let’s compute the internal forces, for which the line of influence have been plot-

ted in the beam in Fig. 3.38, from external load, that is presented at the same figure. 

And then we will compare them with the values that were taken from diagrams of the 

forces that were plotted for the same beams from the action of the same load in  

Fig. 3.35: 

RD = 9,40,333 + 9,40,667 + 24,40,982 – 50,491 = 15,587 kN; 

RF = 24,40,333 + 51,333 = 9,595 kN; 

M1 = – 1,11,551,55/2 – 9,40,517 – 9,41,033 + 24,40,489 – 50,244 = –12,808 kNm; 

Q1 = 9,40,25 – 5,41,10,625 – 1,11,550,108 – 9,40,072 – 9,40,143 + 24,40,068 – 

 – 50,034 = – 3,139 kN; 

M2 = 9,41,033 + 9,40,517 – 24,40,489 + 50,244 = 11,487 kNm; 

Q2 = – 9,40,333 – 2,04,40,315 + 50,158 = 7,427 kN. 

A comparison of the values of forces, obtained along the influence lines and taken 
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from the figures: 

Designation of 

the forces 

Values of forces obtained  

according to 

The discrepancy between the results 

the diagrams the i.l. absolute relative, in % 

        RD 15,587 15,587 0 0 

RF 9,595 9,6 0,005 0,052 

M1 12,812 12,808 0,004 0,030 

M2 11,49 11,487 0,003 0,026 

Q1 3,142 3,139 0,003 0,088 

Q2 7,413 7,427 0,014 0,194 

 

3.8. Features of the Calculation of Three-Hinged Arches on Vertical Loads 

Three-hinged system that has two disks that are connected to each other with 

hinge joint is represented by the curved rods, is called a three-hinged arch. In three-

hinged arches, there are four components of reactions at the supports, just as in the 

three-hinged frames, that are determined by the four equilibrium equations of the arch 

as a whole and its separate parts (Fig. 3.41, а): 

;0 AM   ;0 BM   0;left

C
M      .0X  

In this case only vertical loads act on the three-hinged arch, horizontal reactions 

(arch thrust) to the left and right are equal to each other, and vertical reactions are de-

termined similarly as the reactions at the support in a simple beam, loaded with the 

same load (Fig. 3.41, b). 

Internal forces in the cross-sections of the arches are determined on the basis of 

the same approaches that are used in the frames and which are reviewed in sections 

3.1–3.4. 

Forces in sections of three-hinged arches can be determined by the formula: 

kkk yHMM  o ;  kkkk HQQ  sincoso  ; 

)cossin( o
kkkk HQN   ,             (3.7) 

where o
kM , o

kQ   bending moment and shear force at the cross-section k of the simple 

beam (see Fig. 3.41, b), having the same span and loaded with the same load, just as 

the arch; Н  the magnitude of the horizontal reactions of the arch; φk – the tangent 

angle to the axis of the arch in cross-section k w.r.t. horizontal axis x; yk  the y coor-

dinate of the center of cross-section k w.r.t. horizontal axis x, passing through a sup-

port (see Fig. 3.41, а). 

Note that for a given coordinate system with the origin at the left support of the 

arch (Fig. 3.41, а) sin k  fot the semi-arch left is positive and for the right is nega-

tive; cos k  for the both semi-arches is positive. 

As an example, let’s consider the arch of parabolic shape, shown in Fig. 3.41, а. 

Let’s compute the internal forces in the cross-sections К1 and К2 of the arch. 
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First, let's determine the reactions at the supports from a given (set) external load: 

;0 A
M       ;0205,18)34(17812106)83(212 

B
R     3,32

B
R  kN; 

;0 B
M     ;0205,1)34(3881014)83(1812 

A
R      33,7AR 

 
kN; 

0;left

C
M       ;044)83(812107,33  H      25,36H  kN. 

Check the correctness of finding the reactions at the supports: 
 

  ;0Y            ;04381083123,327,33         ;06666   

0;right

C
M     ;0103,32425,365,8)34(78210     0.323323   

Determine the ordinates for the cross-sections and the parameters of the slope an-

gles of the tangent lines to the horizontal line for the cross-sections: 

Section К1:     xK1 =4 m;        56,2)420(4
20

44
)(

4
21121





KKK

xx
f

y l
l

 m; 

48,0)4220(
20

44
)2(

4
tg

2121





KK
x

f
l

l
 ;  

1sin 0,4327K  ; 
1cos 0,9015K  ; 

Section К2:     xK1 =15 м;    3)1520(15
20

44
)(

4
22222





KKK

xx
f

y l
l

 m; 

2 22 2

4 4 4
 tg ( 2 ) (20 2 15) 0,4;

20
K K

f
l x

l



      

2sin 0,3714;K  
 2cos 0,9285.K   

3) Determine the internal forces in the cross-sections by the formulas (3.7): 

Section. К1:            8,10412321247,330

1 KM  kNm; 

      
7,1523127,330

1 KQ
 
kN; 

      
1256,225,368,1041 KM  kNm;  the stretched fibres are at the bottom; 

      
532,14327,025,369015,07,151 KQ  kN; 

      
473,39)9015,025,364327,07,15(1 KN  kN; 

Section К2: 

     
25,5325,36)5,3342853,32(2 KM  kNm;  the stretched fibres are 

at the top; 

043,2)3714,0(25,369285,0)3483,32(2 KQ  kN; 

  226,389285,025,36)3714,0()3483,32(2 KN  kN. 

Considering the fact that the axes of the arches are curvilinear, the diagrams of 

forces in the arches also vary in curvilinear relationships, and an accurate representa-

tion of their shape is quite difficult. Diagrams of the internal forces in arches are usu-

ally ploted up by several ordinates, dividing the spans of the arches into several parts 

and calculating the ordinates of the diagrams in the extremumes, connecting them 

with the smooth curves.  

It is necessary to calculate the ordinates of the diagrams of internal forces and in 

the typical cross-sections – under concentrated forces and moments. The more the 

will be calculated ordinates the more accurate we can depict the diagram of the 
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forces.  

Fig. 3.41 presents the results of the calculation of the arch by dividing the span 

into ten equal parts. Presented values of the forces in the calculated and characteristic 

cross-sections can be used for self-study of calculation procedure of the arches, con-

sidering that the results for showed arche are already known.  
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3.9. Determination of the Forces in Truss 

Statically determinable hinged truss is a geometrically invariable system, calcu-

lating scheme of which consists of straight rods connected at the joints of the hinge 

(Fig. 3.42). The number of degrees of freedom are defined by the formula  

W = 2J − R − С0 , and have to be equal zero. As the joint transfer of the loads the rods 

of hinged trusses work only in tension-compression mode. We can provide roof truss 

rafters with rigid connection elements at the joints to the design diagram, where dur-

ing the joint transmission of the load values of the bending moments and shear forces 

in the rods are unimportant (and accordingly can be neglected). Rigid joints on the 

design diagram of these trusses are replaced by hinged joint. 

Let’s determine the basic concepts for trusses. The distance between supports is 

called the span of the truss (l), the vertical dimension – the height of the truss (h). 

A set of elements (rods) of the truss that make up its upper and lower contours, 

called respectively the upper (top) and lower (bottom) chords of the truss (Fig. 3.42). 

The rods located between the panels and connecting them is called the lattice of the 

truss. Rods of the lattice are divided into bracing and vertical posts. The distance be-

tween adjacent joints of chords of truss (in horizon) is called panels. Chords are di-

vided into the truss top chord and bottom (lower) chord of a truss. 

The transfer of loads to the joints of trusses is carried out through so-called trans-

fer (transmission) beams, in the real structures it may be overlaps on girders, beams; 

roof slabs, etc. On the disigne schemes the transmission beams are represented as a 

simply beams with a spans equal to the length of the panels of the loaded zones of the 

trusse. 

The general method of determining the internal forces in the rods of statically 

determinable trusses is method of sections. Truss (Fig. 3.43, a) is cut by through or a 

closed cross-section into two or more parts so that the rod is splited, in which we de-

fine the force. After this we consider the balance of one of the parts, the action on 

which by the dropped part(s) of the truss is replaced by unknown longitudinal forces. 

We usually direct these longitudinal forces from the joints (sections), which corre-

sponds the stretching of the rods (Fig. 3.43, b). 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3.42 Scheme of the truss and its elements 
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From the equations of equilibrium we determine the longitudinal force and estab-

lishe the true sign of the forces (if the force turned out negative, then it will be di-

rected in the opposite direction and the rod will have a compression). Method of 

cross-sections for the trusses is implemented by methods: of cutting of joints, moment 

points and projections. 

Method of cutting of joints. A truss joint is cut out by the closed cross-section 

cut. Forces in the splited rods, which connect in the joint, unite into the system of 

forces converging at one point, for the balance of which it is possible to make two in-

dependent equations in the form of sums of projections of forces on two axes: 

Σ 0X  ;    Σ 0Y  ;   or        Σ 1 0Z  ;    Σ 2 0Z  .            (3.8) 

Direction of these axes can be chosen arbitrarily, with exception of their parallel-

ism. From the rational point of view of calculation we should select the direction of 

the axis so that, each of the equations (3.8) could consist of only one unknown force. 

We can cut such joints whose number of unknown forces doesn't exceed two and 

these forces are not directed along the same straight line. In some cases there is ne-

cessity of cutting the joints with a large number of unknowns forces – for example, if 

it is helps to find the force in at least one of the rods (if in the three rods hinged joint 

two of rods are directed along the same straight line, we can find the force in the third 

rod, (see joints 2 and 7 in Fig. 3.44), or allows us to find the dependence between 

some of the forces that will be used in further calculations. 
 

 

 

 

 

 

 

а) the scheme of the truss and possible variant      b) cut out considered part of the  

     of cross section                truss   
 

      Fig. 3.43 Usage of the method of sections 
 

 

For example, for a truss on the Fig. 3.44, a, we can cut the joint 1 (Fig. 3.44, b), 

from consideration of equilibrium of which we can find: 

   Σ 0Y  ;  1 3 sin 0S P   ;     
1 3

sin

P
S


  ; 

  Σ 0X  ;    1 2 1 3 cos 0S S    ;   
1 2 1 3 cos cos

sin

P
S S Pctg  


       . 

The angle α and the trigonometric functions sin  and cos  are found from ge-

ometric considerations. 
 

P
1
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2
S

3
S

4
S

5
S

6S



57 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3.44 

 

 

 
 

Fig. 3.44 Design scheme of the truss 
 

Then we cut out the joint 2 (Fig. 3.44). In the rod 1–2 we 

apply the already known force 1 2S Pctg   . From consider-

ation of equilibrium of the joint we will find: 

Σ 0X  ;  2 4 0Pctg S   ; 2 4S Pctg   ; 

Σ 0Y  ;  2 3 0S P   ;  2 3S P  . 

 The further procedure of the calculation of the truss in-

volves the cutting of joints 3 and 4, from the equations of equi-

librium of which we will find the forces in the rods 3–4,  

3–5, 4–5 and 4–6. Cutting out the joint 7, from the equation  

Σ Y = 0 we get result in finding the forces in the rod 7–6 (in this 

case it will be zero). To determine the forces in the remaining 

rods a method of cutting joints is not applicable, as in each of 

the remaining joints converge more than two rods with un-

known forces. 

Method of cutting of joints allows us to formulate the signs (characteristics) of 

"zero" rods, which make it easy to find the rods in which forces are equal to zero: 

1) in two-rod unloaded joint, in which the rods do not lie on the same line  

(Fig. 3.45, position 1), forces in both rods are equal to zero:     

Σ Z1=0;     2 cos 0S   ;     2 0S  ; 

Σ Z2=0;     1 cos 0S   ;      1 0S  ; 

2) in three-rod unloaded joint, in which two rods are collinear, and the third at an 

angle to them (Fig. 3.45, position 2), the third force in the rod is zero, and the forces 

in the first two rods are equal to each other: 

Σ 0Y  ;    3 sin 0S   ;           3 0S  ;    

         Σ 0X  ;  1 2 0 0S S    ;     1 2S S ; 

1S


2S

2z



1S
2S

3Sy

x

1S
2S

2z



1z P

1z1)
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3)

Joint 1 Joint 2 

Scheme of a truss and loadings 
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b)
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3) in two-rod joint, in which the rods do not lie on the same line and external 

force is applied in the direction of one of the rods (Fig. 3.45, position 3), the internal 

force in the second rod is equal to zero, and the force in the first is equal to the men-

tioned external force:      

Σ 

1 0Z  ;    2 cos 0S   ;  2 0S  ; 

Σ 2 0Z  ;    1 0S P   ;  1S P  . 

The advantage of this method is its simplicity. The disadvantages are: 

1) often we can not immediately (without preliminary sequential calculation of 

the number of joints and sometimes it is rather large number) find the forces in the 

rods inside the truss; 

2) during the process of sequential cutting of the joints the calculation of descrep-

ancy which transfers from the previous joint to the next, gradually accumulating and 

increasing. 
 

Method of moment point. The truss is divided into two parts. The parts is cut out 

in such a way (if that's even possible), that the axis of all cut rods with unknown forc-

es, except one (in which we look for the force), intersect in one point; this point is 

adopted as moment point and w.r.t. this point the sum of the moments of all forces is 

calculated for the considered part of the truss; from the resulting equation we deter-

mine the required force.  

For example, for the truss in Fig. 3.44 for determining the forces in the rod 4–6 it 

is necessary to make cross-section I–I and consider the equilibrium of the left part of 

the truss. The moment point for force S4-6 will be the point at joint 5, in which the 

remaining three rods (cut in section I–I) intersect, this are the rods 5–6, 5–7 and 5–9. 

The required force we will find from the equation: 

;0
5 leftM  

4 62 0P d P d S h       ;  4 6

3d
S P

h
   . 

The force in the rod 6-8 we will find, after making a cross section II–II and consider-

ing the equilibrium of the left part of the truss. Considering the fact that the moment point 

in this case will also be point of node 5, in which the axises of the rods 5–9 and 7-8 inter-

sect with other, which were cut by the section II–II together with the rod 6–8: 

      
;0

5 leftM   
6 8 6 82 cos sin 0P d P d P d S h S d             ; 

6 8

2

cos sin

d
S P

h d 
  


. 

 

Method of projections. The truss is divided into two parts. The parts is cut out 

such a way (if that's even possible) that all rods with unknown forces, except one (in 

which the force is looked for), would parallel to each other. For the considered part of 

the truss we constitute the sum of projections on the axis perpendicular to the men-

tioned parallel rods. From the final equation we determine the required force. 

For example, for a force on the Fig. 3.44 for determining the force in the rod 7–8 

we can use the earlier made cross-section II–II; where rods 6–8 and 5–9 (parallel to 

each other) were cut out together with the rod 7–8. Therefore, if we constitute the 
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equation of the projections of all forces, for example, for the left cut out side of the 

truss on the axis 1Z , that is perpendicular to the rods 6–8 and 5–9, some unknown 

forces in these rods will not be included in considering equation of equilibrium (their 

projections on the axis 1Z  is zero); the equation will have only one unknown 

force 7 8S  , which we will find from the solution of the equation: 

Σ 

1 0Z  ;  7 84 cos sin 0P S    ;  7 8 4 ctgS P    . 

Similarly, we can find the force in the rod 3-4 (Fig. 3.44, a), after drowing the 

cross-section III–III and forming the sum of projections of all the forces on the verti-

cal Y-axis (rods 3–5 and 2–4 are horizontal) for the left cut out part of the truss:  

Σ 0Y  ;  3 42 sin 0P S    ;  
3 4

2

sin

P
S


   . 

Advantages of methode of the moment point and the projection methode is that in 

most cases, with their help the forces in the rods can be expressed only through the 

external loads and the supporting reactions (without expressing through other forces).  

Using this methods of the moment point, the projections and cutting out the joints 

together we can find the forces in all rods for most trusses. 
 

3.10. Determination of Displacements in Flexible Systems 

Determination of displacements in framework structures (rod systems) from the 

action of external loads is convenient to perform according to the Mohr’s formula*. 

For flexible systems (frames, beams) in this case, usually take into account only the 

bending moments (due to non-significance influence of the shear and longitudinal 

forces on the values of displacement in such systems). Mohr’s formula in this case 

takes the form: 

1 0

;
ln

Pi
iP

M M d x

EJ
       (3.9) 

Where: 
i

M  – bending moments in the system from the actions of a unit force, that 

is applied in the section (point) for which determines the displacement, in the direc-

tion of the desired (i-th) displacement; МP – bending moments in the system from the 

action of a given load; E J – the flexural rigidity of rods in the system; n – the number 

of divided parts of the system to calculate the Mohr’s integrals; l – the lengths of this 

parts. 

The procedure for determining the displacements by the Mohr’s formula:  

1. Bending moments are determined in the system from the action of a given load 

and diagram МP is plotted. 

2. In the cross-section (point) for which determins the displacement, in the  

direction of the desired displacement a unit force is applied; depending on the form of  
 

* This formula was first derived by J.C.Maxwell in 1864 and applied in design practice by O.Mohr 

in 1874 
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determining displacement this "force" may be different: 

а) if we determine the linear (horizontal, vertical, in any direction) displacement, 

then a unit concentrated force Р = 1 is applied (Fig. 3.46, а); 

b) if there is a mutual convergence (divergence) of the two points, then two unit 

forces are applied to these points, directed along the straight line connecting these 

points towards each other (from each other) (Fig. 3.46, b); 

c) If determining the rotation angle of the cross-section, then we apply a unit 

concentrated moment m = 1 (Fig. 3.46, c); 

d) If we determine a mutual angle of rotation of the two cross-sections (change 

in angle between sections), then two unit moments are applied to these two sections 

which are directed towards each other (Fig. 3.46, d). 
 

   а)         b)      c)       d) 

 
 

 

 

 
 
 

Fig. 3.46 

3. From the action of unit force (that is applied according to the paragraph 2) we 

will find out the bending moments in the borders of each cheng of load distance or 

we plot a diagram iM .  

4. We calculate the desired displacement according to the Mohr’s formula (3.9). 

The calculation of the Mohr’s integrals can be performed by halp of: 

а) direct integration (that is not always simple); 

b) by the rule of Vereschagin; 

c) By trapezoid formula;  

d) By Simpson's formula; 

e) By numerical method. 

Note that the computation of Mohr’s integrals by the rule of Vereschagin, accord-

ing to the formulas of trapezoids and Simpson is often called the "multiplication of 

diagrams".  

The rule of Vereschagin. To calculate the Mohr’s integral 

0

l

PiM M d x

EJ  on a part 

of constant rigidity, in which the character of diagrams iM  and МP do not change, we 

need to multiplicate the area of one of the diagram Ω by the ordinate, that is taken 

under the center of gravity of this diagram in front of the other diagram cy  (if one di-

agram is curvilinear, then we have to compulsory take the area of the curvilinear dia-
gram): 

0

1 1
.

l

ci P
M M dx y

EJ EJ
             (3.10) 

Thus, for the diagram, which area is taken, we must be able to calculate this area 

and be able to find (know) the position of its centre of gravity. 

?
wert

A  , ?A B 
1

? 

1P 1m

A B
1

1

2

1m

1, 2
? 

A

1P

1P

1m

https://translate.academic.ru/cheng%20of%20load%20distance/ru/en/
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The rule of signs: if the center of gravity of "multiplied" diagram and the corre-

sponding ordinate from the other diagram are located on one side of the axis of the 

rod (stretched fibers are on one side of the rod), the result of "multiplication" is taken 

with the "plus" sign. 

Here are some examples of application of the rule of Vereschagin. 

For diagrams presented on Fig. 3.47, the computation of the Mohr’s integral by the 

rule of Vereschagin can be done in four different ways, which give the same result: 

а)            b)    c) 

 

 

 

 

 

 

 

 
 
 

Fig. 3.47 

а) during the calculation of the area of this diagram (М1) and splitting of it (to 

quick and easy determination of the positions of the centers of gravity) into the rec-

tangle a×l and the triangle ((b − а)/2) × l  (Fig. 3.47, а) we obtain:  

0

21
1 11

( ) ( )
2 2 3

l
cM M dx

a l b a l c
EJ EJ

 
      

 
 ; 

b) At the calculation of the area of the diagram М1 and spliting it into two trian-

gles (a×l)/2 and (b×l)/2 (Fig. 3.47, b) we obtain: 

0

21 1 2 1
;

2 3 2 3

l
a l b lM M dx

c c
EJ EJ

     
       

    
  

c) At the calculation of the area of the diagram М2 (because both diagrams М1 and 

М2 are linear, it does not matter the area which one to take) (Fig 3.47, c) we can write: 

 
0

1 2 1 1

2 3
,

l
M M dx c l

a b a
EJ EJ

   
      

      or  
2 11

32 3
.

c l
a b

EJ

   
    
   
   

  

                        If  diagram М1 can be split into   If  diagram М1 can be split into  

 a rectangle and triangle;        two triangles. 

The trapezoid formula – used for "multiplying", only the linear diagrams (Fig. 3.48): 

1 2

0

l
M M dx

EJ


 

 1 2 1 2 2 1 1 22 2 )
6

l
a a a b a b b b

EJ
        . (3.11) 

а
1С 2С

а

l
3
2 l

3
1

а 1С 2С

c
3
12

c

b

l
3
1 l

3
1 l

3
1

b

c
3
1c

3
2

b

l
3
1 l

3
2

C
ccc

l l l

1M

2M

b a

 
1 2 1

3 3 3
a b a a b   



1a

2a

1b

2b

1M

2M

l

Fig. 3.48 
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The Simpson's formula can be used to compute Mohr’s integrals by the appro-

priate "multiplying" of linear diagrams, and diagrams, one of which is curved (chang-

es according to the parabolic law) (Fig. 3.49). The Simpson's formula has the form: 
 

0

1 2

l
M M dx

EJ
  1 2 1 2 1 24 .

6

l
a a c c b b

EJ
      (3.12) 

 

The rule of signs. In the Simpson's and trapezoid 

formulas, multiplications of ordinates are taken with 

the "plus" sign if the ordinates are on one side of the 

axis of the rod on both diagrams. The sign "minus", 

if these ordinates are from different sides of the axis 

of the rod. 

Recommendations to the calculation of Mohr’s integrals in the framework and 

beams systems: 

– for diagrams of internal forces (bending moments) with the linear nature of the 

change and the simple form (rectangular, triangular), it is proposed to use the rule of 

Vereschagin; 

– For diagrams of the internal forces having the linear nature of change, but more 

complex shape (trapezoidal), it is recommended to use the trapezoid formula; 

– For diagrams of internal forces, one of which is curved, we must use the Simp-

son's formula. 

We should note that the Simpson’s formula is the most general and can be applied 

to all cases. 

It should be noted that if we use such methods to compute the Mohr’s integrals we 

must satisfy the following requirements: 

– the rigidity of the rod in this area must be constant;  

– The dependencies of changing of both diagrams (the nature of their changes) 

must not have change within the area, or, otherwise, within the section of "multiply-

ing" the diagram must not have inflections (discontinuity), “jumps”, and transitions to 

other dependencies of changing the internal forces. 

If one of these requirements is not satisfied, then the diagram should be divided 

into smaller parts, and this must be done so that these requirements are met. The 

boundaries of the considered parts of framework are the points (sections) of the frac-

ture (break) and branching of rods, applications of concentrated loads (forces, mo-

ments), the actions of the reactions, the beginning and the end of distributed loads. 

The calculation of displacement from the action of the set loads by the Mohr’s 

formula (3.9) is made by summing up the results of the calculation of the Mohr’s in-

tegrals with the considered ways in all parts of the system. 

Let’s consider the finding of the vertical displacement of point C from the action 

of given loads in the three-hinged frame shown in Fig. 3.50. 
 

q

1b

1a
1с

2b
2c2a

2l 2l

1M

2M

Fig. 3.49 

https://translate.academic.ru/discontinuity/ru/en/
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Fig. 3.50 

The calculation of the reactions at the supports and plotting of the diagram of 

bending moments in the frame are performed on the basis of approaches described in 

sections 3.1–3.3. Diagram of bending moments from the action of a given load is 

shown in Fig. 3.50, b.  

As we determine the vertical displacement of point C, so at this point in a vertical 

direction we apply a single concentrated force and direct it down, assuming that the 

point C will shift down.  

From the action of this force we plot a unit diagram of the bending moments 1M  

(Fig. 3.50, c ). After that, we allocate areas of the frame of continuity of the plot, 

within which the rigidity of the rods is constant and both of the diagrams change con-

tinuously (Fig. 3.50, d), and then we calculate the desired displacement according to 

the Mohr’s formula (3.9): 

vert 1
1

1 2,5 2,5 2 5
0

2 3 6

P
C P

M M ds

EJ EJ

 
          

 


 

a) b) 

c) d) 

kN 

kN 

kN 

kN 

kN 

kN 

m 

kN·m 
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q = 2 kN/m

P = 4 kN

3 m 2 m

m =10 kN·m 2
,5

 m
1

,5
 m

2,5 5 6,5 8 2 8 8
9,5 4 16,75 24 2 24 10 0 24 2 10 0

6 3 6 6 6 6 6 6EJ EJ

   
                    

    
 

1 14 2 2 2 4 2 2 1 14 2 2 2 10, 333
14 4 0 6 14 .

2 3 3 6 2 3 3 2 3 3EJ EJ EJ EJ

      
                   

     
 

Note that on parts I, V and VII the calculation was carried out using Veresh-

chagin rule (3.10), for area IV – by trapezoid formula (3.11), and in parts III and VI 

according to the formula of Simpson (3.12). In the part II a unit diagram of bending 

moments (Fig. 3.50, c) is zero, so the result of calculating the Mohr’s integral – zero. 

The value of the displacement is positive, therefore, the point really moves down. 
 

 

3.11. Tasks for Independent Solutions 

To plot the diagrams М, Q and N in frames (tasks 3.1–3.10) and in beam  

(task 3.11). 

    3.1                  3.2 

 

 

 

 

 

 

 

 

 
 

    3.3                 3.4 
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 3.7        3.8 

 

 

 

 

 

 

 

 

 

 

 

3.9          3.10 

 
 

3.11 
 

 

 

 

 
 

 

3.11.2 To determine the horizontal displacement of the point B in the frame pre-

sented in task 3.2 from the action of applied load there, taking the rigidity of all rods 

of the frame as constant (EJ = Const). 

3.11.3 To determine the mutual angle of rotation of sections 1 and 2 of the frame 

presented in problem 3.3 from the action of applied load there, taking the rigidity of 

all rods of the frame as constant (EJ = Const). 

The answers to these tasks according to the results of their solution are presented 

in the section "Answers to tasks for independent solutions" (p. 67–70). 
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Answers to Tasks for Independent Solutions 

Section 2. Kinematic analysis of structures 

2.1. W = 0; the system is statically determinable and geometrically invariable.  
2.2.  W = 0; the system is instantaneously variable.  
2.3. W = 0; the system is statically determinable and geometrically invariable. 
2.4. W = 0; the system is instantaneously variable.  
2.5. W = 0; the system is statically determinable and geometrically unchangeable.    
2.6.  W = 0; the system is invariable.  
2.7.  W = 0; the system is unstable (variable).  
2.8.  W = 0; the system is statically determinable and geometrically invariable.     
2.9.  W = –1; the system is statically indeterminat and geometrically invariable.  
2.10.  W = 0 the system is statically determinable and geometrically invariable.     
2.11.  W = 0; the system is instantaneously variable.  
2.12. W = 0; the system is statically determinable and geometrically invariable.  

Section 3. Calculation of statically determinable systems 

3.1.  
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Continuation of the answers to the tasks  

3.7             and   3.8 
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3.12.  

 

 

 

 

 

 

 

 

 

Diagram of longitudinal forces in a beam under the action of the given loads is 

zero. 

3.13. Diagram of bending moments from external 

loads is presented in the answer to the task 3.2, the unit 

diagram of the bending moments is shown on the right. 

The horizontal displacement of point B equals 

66,667/EJ (left). 

3.14. Diagram of bending moments is given in the 

answer to problem 3.3, a unit diagram of the bending 

moments is shown below to the left. Mutual angle of 

rotation of the angle of cross-sections 1 and 2 is equal 

to 2,953/EJ. 
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