МЕЛИОРАЦИЯ И ГИДРОТЕХНИЧЕСКОЕ СТРОИТЕЛЬСТВО

УДК 631.61

ОПЫТ РАЗРАБОТКИ ВОДОСБЕРЕГАЮЩИХ РЕЖИМОВ ОРОШЕНИЯ В УСЛОВИЯХ ЮГА ЗАПАДНОЙ СИБИРИ

Валуев В.Е., Мешик О.П., Юрченко Н.Т.*

Учреждение образования «Брестский государственный технический университет», г. Брест, Республика Беларусь; * Омский филиал открытого акционерного общества «Сибирский научно-исследовательский институт гидротехники и мелиорации», г. Омск, Российская Федерация, mop@bstu.by

The obtained results can be used in solution of hydromeliorative and water problems.

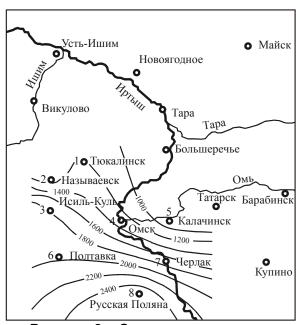
Введение

Для зон недостаточного и неустойчивого естественного увлажнения сельхозземель юга Западной Сибири, в которых только орошаемое земледелие способно обеспечивать на постоянной основе гарантированный валовый сбор и высокую урожайность зерновых, кормовых культур и овощей, до настоящего времени не осуществлена разработка водосберегающих режимов орошения ведущих сельхозкультур в контексте комплексной оценки природной тепловлагообеспеченности с использованием массовых материалов гидрометеорологических наблюдений в совокупности с немногочисленными, часто нерепрезентативными, экспериментальными данными.

Основная часть

В почвенно-биоклиматических областях юга Западной Сибири средняя многолетняя величина эвапотранспирации сельхозкультур составляет от 310 до 580 мм и более. Внутригодовое распределение водопотребления (от начала вегетации до ее завершения), в соответствии с суммами положительных среднесуточных температур воздуха ($\Sigma t_{>0^{\circ}C}$), осуществляется на основе значений биологического коэффициента водопотребления, установленного экспериментальным путем.

Параметры оросительного элемента гидромелиоративных систем устанавливаются с учетом обеспечения водопотребления ведущих сельхозкультур, наиболее требовательных к водному режиму как в сухие, так и во влажные годы [1]. В принципе, интегральным показателем естественной увлажненности сельхозземель является влажность почвенного слоя, откуда растения, помимо влаги, получают питательные вещества, снабжаются кислородом воздуха и др. В условиях мелиораций задаются и оперативно поддерживаются необходимые в конкретные фазы развития культурных растений минимальные ($W_{min\ i}$) и максимальные ($W_{max\ i}$) уровни (режимы) влажности почв. Почвенные влагозапасы на конкретном сельскохозяйственном поле являются производной от количества и характера динамики поступления в деятельный слой почвы влаги за счет выпадающих атмосферных осадков, почвенно-


грунтовых, склоновых и намывных вод. Причем количество влаги, аккумулируемой в почвенном слое, определяется соотношением (балансом) между ее приходом и расходованием на территории за расчетный период (i).

В естественных условиях имеет место большая пространственновременная изменчивость влагообеспеченности используемых в сельхозпроизводстве земель. Однако известны трудности накопления опытных данных, напрямую характеризующих естественную увлажненность сельхозземель в ее динамике и развитии. Нами использованы расчетные режимы влаго - и теплообеспеченности, на фоне которых складываются свойственные данному району (земельному массиву) условия, определяющие направления и виды гидромелиораций. Оценка количественных характеристик естественных условий увлажненности земель лежит на путях комплексного установления целого ряда гидролого-климатических показателей. Причем, такая оценка нами выполнена при использовании тепловоднобалансового подхода, дающего возможность рассмотрения балансов поверхностных и почвенно-грунтовых вод в их единстве с процессом формирования теплоэнергетических ресурсов климата исследуемой территории на основе метода гидролого-климатических расчетов профессора В.С. Мезенцева [2 и др.].

Формирование водосберегающих режимов орошения сельскохозяйственных культур осуществлено на базе моделирования динамики почвенных влагозапасов по предложенным ранее и адаптированнным к поставленной локальной задаче методикам [3 и др.]. В информационную базу данных нами включены, с одной стороны, полученные материалы тепловоднобалансовых расчетов по 8 характерным, наиболее информационно обеспеченным пунктам исследуемой территории, которые установлены на основе автоматизированных расчетов по оригинальным методикам и программам, с другой — средние многолетние почвенные влагозапасы 50 см слоя почвы на начало вегетации, а также карты пространственного распределения оросительных норм по ведущим для исследуемой территории сельхозкультурам (Р=75%) (рис. 1, 2).

Рисунок 1 – Оросительные нормы 75 % - ной обеспеченности для многолетних трав, м³/га

Рисунок 2 – Оросительные нормы 75 % - ной обеспеченности для яровых зерновых культур, м³/га

Оросительные нормы 75 %- ной обеспеченности изменяются по исследуемой территории и культурам в следующих пределах: $1400-2800 \text{ м}^3$ /га (многолетние травы), $1400-2750 \text{ м}^3$ /га (овощные культуры), $1000-2400 \text{ м}^3$ /га (яровые зерновые); 90 %- ной обеспеченности — $1850-4250 \text{ м}^3$ /га (многолетние травы), $1850-4250 \text{ м}^3$ /га (овощные), $1250-3500 \text{ м}^3$ /га (яровые зерновые). Минимумы приурочены к северо-восточной, максимумы — к южной частям исследуемой территории.

Разработанная методика и алгоритм моделирования динамики почвенных влагозапасов апробированы на возделываемых в условиях юга Западной Сибири сельхозкультур. Полученные основные параметры режимов орошения сопоставлялись с биологически оптимальными водными режимами. Основные параметры рациональных водосберегающих режимов орошения многолетних трав, овощей и яровых зерновых (75 и 90 % - ной обеспеченности), в качестве примера по пункту Омск – Степная, представлены в таблице.

Таблица — Основные параметры водосберегающих режимов орошения сельхозкультур (поливные нормы, м³/га, средние даты поливов) в пункте Омск — Степная

Наименование	P, %	Средние даты поливов дождеванием и поливные нормы, м ³ /га										
культуры		01.05	10.05	20.05	01.06	10.06	20.06	01.07	10.07	20.07	01.08	10.08
многолетние	75	400	250	150	100	150		200	200	200	200	
травы	90	400	250	200	200	200	300		250	300	250	
овощные	75	150	150	150	150	200	200	200	200	200	150	
культуры	90	250	250	200	200	250	250	250	250	300	300	150
яровые	75	300	200	150	150	150	250	100				
зерновые	90	350	300	200	200	200	300	200				

Полученные нами величины существенно отличаются от оросительных норм, устанавливаемых по традиционным методикам. Принципиальное отличие заключается в используемой методологии теоретических оценок и особенностях самих методик формирования основных составляющих режима орошения (оросительных, поливных норм, средних дат и сроков поливов, межполивных периодов).

Заключение

Изученность режимов орошения сельхозкультур, возделываемых на исследуемой территории, крайне низка. Черноземы обыкновенные, южные, а также выщелоченные и серые лесные почвы обладают достаточным плодородием, чтобы при оптимальном водопотреблении зерновых, овощных культур и многолетних трав устойчиво обеспечивать высокую их урожайность в засушливые годы. В связи с отсутствием необходимых экспериментальных данных по водосберегающим режимам орошения сельхозкультур в условиях юга Западной Сибири, авторы исследования использовали собственную информационную базу данных и осуществили независимое моделирование основных параметров водосберегающих режимов орошения. Предлагаемые взаимосвязанные методики комплексной оценки природной тепловлагообеспеченности для целей орошения сельхозземель и формирования водосберегающих режимов орошения сельхозкультур, апробированные в настоящем исследовании, по нашему мнению, перспективны и позволяют в дальнейшем организовать научно-исследовательские работы на направлении более полного

использования скрытых резервов оптимизации лимитирующих факторов (хозяйственно-экономических, эколого-мелиоративных и водохозяйственных) в условиях юга Западной Сибири.

Список цитированных источников

- 1. Эколого-социальные аспекты освоения водно-земельных ресурсов и технологий управления режимами гидромелиорации / П.В. Шведовский [и др.]. — Минск: Ураджай, 1998. — 363 с.
- 2. Режим влагообеспеченности и условия гидромелиораций степного края / Под ред. В.С. Мезенцева. М.: Колос, 1974. 240 с.
- 3. Волчек, А.А. Моделирование динамики почвенных влагозапасов в условиях гидромелиорации / А.А. Волчек, В.Е. Валуев, Н.Т. Юрченко // Совершенствование и реконструкция мелиоративных систем: труды ВНИИГиМ. М. 1990. Т. 78. С. 46–55.

УДК 631.347.3

ОЦЕНКА ЭФФЕКТИВНОСТИ И ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ДОЖДЕВАЛЬНОЙ ТЕХНИКИ

Васильев В.В., Шавлинский О.А.

Учреждение образования «Белорусская государственная сельскохозяйственная академия», г. Горки, Республика Беларусь, gms.baa@tut.by

The article deals with the assessment of efficiency and service reliability of modern sprinkling units. Higher efficiency and reliability of using drum and hose type sprinklers are recorded.

Введение

Наметившаяся в последние два десятилетия тенденция увеличения засушливости теплых периодов и крайне неравномерное выпадение и распределение атмосферных осадков приводят к объективной необходимости восполнения дефицита почвенной влаги практически для всех сельскохозяйственных культур, которые возделываются на автоморфных почвах различного механического состава. Основным мелиоративным мероприятием, восполняющим в течение вегетационного периода недостаток влаги для сельскохозяйственных культур, является орошение. Многочисленные научные и производственные исследования убедительно свидетельствуют о том, что орошение однолетних и многолетних трав, бобово-злаковых травосмесей, овощных и некоторых других сельскохозяйственных культур необходимо и экономически оправдано. Особенно высокую эффективность дает орошение дождеванием овощных культур и раннего картофеля.

Основная часть

Ситуация, сложившаяся в области использования оросительных мелиораций в республике, не соответствует современным запросам участников сельскохозяйственного производства. Согласно [1], на 01.01.2010 оросительные системы на площади 8,3 тыс. гектаров находятся в работоспособном состоянии, на площади 7,6 тыс. гектаров – нуждаются в реконструкции и восста-