ОБОСНОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ СИСТЕМ ГАЗОСНАБЖЕНИЯ

Медведева О.Н.

Государственное образовательное учреждение высшего профессионального образования «Саратовский государственный технический университет», г. Саратов, Российская Федерация, medvedeva-on@mail.ru

The article contains algorithm of the scientific substantiation of optimum parameters of reservoir systems liquefied petroleum gas, provides guidance on the choice of performance and the volume of LPG reservoirs.

Введение

В настоящее время широкое применение находят системы энергоснабжения потребителей с использованием сжиженного углеводородного газа (СУГ), применение которого в качестве энергоносителя для бытовых и хозяйственных нужд, технологических процессов и установок в полной мере отвечает социальным, экологическим и санитарно-гигиеническим требованиям. Указанное обстоятельство, в сочетании с высоким уровнем автономности и инженерного сервиса, обусловливает широкие перспективы применения СУГ в качестве первичного энергоресурса для населенных пунктов и сопутствующих им объектов АПК и социальной инфраструктуры, удаленных от опорных пунктов энергоснабжения.

Основная часть

Эффективная организация снабжения потребителей сжиженным газом от подземных резервуарных установок с естественной регазификацией продукта требует научного обоснования технологических параметров указанных установок. При заданной величине паропроизводительности резервуаров G_{pacy} к таким определяющим параметрам относятся: геометрический объем резервуаров V_p , их количество в групповой установке n, расчетный уровень заполнения резервуаров газом перед очередной заправкой $\phi_{\it pacu}$ [1] и другие. Для разработки алгоритма по выбору расчетных эксплуатационных параметров резервуарных установок воспользуемся следующими исходными предпосылками. При заданном температурном напоре между грунтом и сжиженным газом Δt резервуарная установка обеспечивает расчетную паропроизводительность при соответствующем уровне заполнения резервуаров газом. При этом подразумевается, что заправка резервуаров производится своевременно при достижении расчетного уровня заполнения. Если по каким-то причинам (погодным или дорожным условиям) своевременная заправка газом не может быть обеспечена, резервный объем газа в резервуарах должен гарантировать пятисуточную эксплуатацию установки при работе на пониженном режиме газопотребления в объеме 70 % от номинальной величины [2]. Приведенный алгоритм реализует следующая система уравнений:

$$G_{pacy} = f(V_p, n, \alpha, \phi_{pacy}, \Delta t, \lambda_{ep}); \tag{1}$$

$$G_{ocm} = f(V_p, n, \alpha, \phi_{ocm}, \Delta t, \lambda_{ap});$$
(2)

$$0.7G_{pacy} \cdot 24 \cdot \tau = V_p \cdot n \cdot \rho_{\kappa} (\phi_{pacy} - \phi_{ocm}), \tag{3}$$

где α — коэффициент тепловой интерференции резервуаров при групповом размещении; λ_{ep} — теплопроводность грунта, $\mathrm{BT/(M \cdot K)}$; ρ_{\varkappa} — плотность жидкой фазы сжиженного газа, кг/м³; ϕ_{ocm} — остаточный (резервный) уровень заполнения резервуаров газом.

Результаты для групповых установок, оборудованных вертикальными подземными резервуарами оптимального типоряда, представлены в табл. 1.

Таблица 1 – Расчетные эксплуатационные параметры резервуарных установок

Расчетные параметры	Количество резервуаров в установке п, шт						
установки	1	2	3	4	5	6	
РПВ - 1.3, G _{расч} , кг/ч	3.1 59.8	5.5 55.2	7.2 49.8	8.2 45.8	9.3 41.2	10.2 37.5	
ф _{расч} , %	26.7	25.4	24.0	23.8	21.1	19.3	
ϕ_{ocm} ,%							
РПВ - 1.7, G_{pac4} , кг/ч	3.2 55.2	5.7 51.0	7.4 46.0	8.4 42.3	9.6 38.2	10.5 34.8	
$\phi_{\it pac}$, %	29.2	27.6	25.7	25.1	22.4	20.4	
ф _{ост} ,%							
РПВ - 2.3, $\; G_{_{pac4}}$, кг/ч	3.3 8.3	5.9 44.6	7.7 40.3	8.7 37.1	9.9 33.6	11.0 30.8	
ф _{расч} , %	28.3	26.7	24.5	23.8	21.4	19.6	
ф _{ост} ,%							
РПВ - 3.0, $G_{\it pacu}$, кг/ч	3.4 40.2	6.2 37.2	7.9 33.7	9.1 30.9	10.5 28.2	11.6 26.1	
ф _{расч} , %	24.2	22.9	21.2	20.4	18.5	17.1	
ϕ_{ocm} ,%							
РПВ - 3.8, $\; G_{\it pacy}^{} $, кг/ч	3.6 30.9	6. 28.7	8.4 26.1	9.5 23.9	10.9 22.1	-	
ф _{расч} , %	17.8	16.9	15.8	15.3	14.0	-	
ϕ_{ocm} ,%							
РПВ - 4.7, <i>G</i> _{расч} , кг/ч	3.8 20.5	6.8 19.2	8.8 17.5	9.9 16.1	-	-	
φ _{расч} , %	9.4	9.2	8.8	8.7	-	-	
φ _{ocm} ,%							

Как видно из табличных материалов, расчетная паропроизводительность может быть обеспечена несколькими вариантами резервуарных установок. Так, например, производительность $G_{\text{расч}}$ =7 кг/ч обеспечивает установка из двух резервуаров объемом по 4,7 м³ при расчетном уровне заполнения 19 %, установка из трех резервуаров объемом по 3,8 м³ при расчетном уровне заполнения 27 %, установка из трех резервуаров объемом по 3,0 м³ при расчетном уровне заполнения 33 % и т.д. При одинаковой паропроизводительности установки с резервуарами большего объема требуют больших капвложений, вместе с тем с увеличением объема резервуаров снижаются затраты по эксплуатации резервуарных установок за счет уменьшения годового количества заправок.

Примем в качестве целевой функции задачи удельные (на единицу паропроизводительности) затраты в сооружение и эксплуатацию резервуарных установок

$$3 = \frac{1}{G_{pacy}} (K + N \sum_{t=1}^{T} (1 + E)^{t},$$
 (4)

где K – капитальные вложения в резервуарную установку, руб; \mathcal{U} – годовые расходы по эксплуатации резервуарной установки, руб/год; t – расчетный год эксплуатации; T – срок службы установки; E – коэффициент эффективности капвложений, 1 /год.

Капитальные вложения в варианты резервуарных установок определялись по данным сметно-финансовых расчетов. В составе эксплуатационных расходов учитывались: отчисления на капитальный и текущий ремонты установок, стоимость их обслуживания, стоимость заправок резервуаров [2]. При заданных значениях $G_{pacч}$ и n оптимальный объем одиночного резервуара находится из условия 3_{min} . Влияние неопределенности конвертирования стоимостных факторов в расчетах учитывается с помощью двух уровней функции затрат. Как показывают результаты, с учетом неопределенности исходной информации диапазон равноэкономичных объемов резервуаров для индивидуальных установок (n=1) включает в себя два типоразмера резервуаров РПВ-3,0 и РПВ-2,3. Групповые установки при n=2 включают в себя резервуары РПВ-1,7. Групповые установки при n=3 — резервуары РПВ-1,7 и РПВ-1,3. Оптимальный объем резервуаров в групповой установке при n=4, 5, 6 составляет 1,3 м³, что соответствует минимальному объему резервуаров для оптимального типоряда.

Заключение

Как показывает анализ результатов исследований, применение установок на базе подземных вертикальных резервуаров РПВ-3,8 и РПВ-4,7 в системах с естественной регазификацией СУГ экономически нецелесообразно. При равенстве затрат в сооружение и эксплуатацию установок предпочтение следует отдавать резервуарам большего объема, которые обеспечивают более высокую паропроизводительность (табл. 2).

Таблица 2 – К выбору оптимального объема резервуаров сжиженного газа

 1 1	<u>, , , , , , , , , , , , , , , , , , , </u>			
Количество резервуаров в групповой установке n , шт.	1	2	3	4 и более
Оптимальный объём резервуара (V_p) $_{opt}$, м 3	3,0	2,3	1,7	1,3

Внедрение результатов исследований в проектную и эксплуатационную практику повышает экономичность и надежность систем газоснабжения на базе резервуарных установок сжиженного газа с естественной регазификацией.

Список цитированных источников

- 1. Шамин, О.Б. Паропроизводительность подземных резервуарных установок сжиженного газа с вертикальным размещением резервуаров / О.Б. Шамин// Совершенствование архитектурных решений строительных конструкций, технологий и организации строительства: Межвуз. научн. сб. Саратов: СГТУ, 1997.
- 2. Курицын, Б.Н. Системы снабжения сжиженным газом / Б.Н. Курицын. Саратов: СГУ, 1988. 196 с.