- внедрения: Информ. сб. / ЦБНТИ Минводстроя СССР.-М., 1990.- Вып.4.-С.11-15.
- Лебедев А.В. Методические рекомендации по изучению режима и баланса влаги в зоне аэрации в целях составления прогноза питания грунтовых вод. - М.: Недра, 1972.-172c.
- 10. Маслов Б.С. Режим грунтовых вод переувлажненных земель и его регулирование. М.: Колос, 1970.- 232с.
- 11. Мезенцев В.С., Карнацевич И.В. Увлажненность Западно Сибирской равнины. Л.: Гидрометеоиздат, 1969.-168с.

УДК 556.13(476)

Волчек А.А.

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ КОЛЕБАНИЯ СУММАРНОГО ИСПАРЕНИЯ НА ТЕРРИТОРИИ БЕЛАРУСИ

Суммарное испарение — один из основных расходных элементов водного баланса речных водосборов, причем его роль становится определяющей в зоне неустойчивого и недостаточного увлажнения. При решении большого круга научных и практических задач используются вероятностные закономерности и статистические характеристики пространственно-временных колебаний суммарного испарения. Поскольку колебания величин испарения, как и других элементов водного баланса, представляют собой стохастический процесс, то и описывать их необходимо вероятностными методами.

С целью количественной оценки изменчивости суммарного испарения на территории Беларуси, нами исследовались их основные статистические характеристики измеренных с помощью почвенных испарителей величин суммарного испарения за вегетационный период для трав (таблица 1).

Поскольку объем большинства выборок не превышает

15...20 лет, описание вероятностной структуры полей суммарного испарения нами осуществлено с некоторыми погрешностями. Для повышения надежности оценки статистических параметров проанализирована возможность объединения статистически однородных рядов суммарного испарения в один пространственно-временной ряд. Основным условием при объединении рядов явилась их статистическая однородность при которой обнаруживается хорошая сходимость пространственной и временной кривых распределения. При объединении рядов месячных величин испарения с различных типов подстилающей поверхности в один вариационный ряд принят 5 — процентный уровень значимости. Это позволило получить ряды среднемесячных величин суммарного испарения до 70 годопунктов. Статистические параметры обобщенных кривых обеспеченности приведены в таблице 2.

Таблица 1

Значение величин суммарного испарения на территории Беларуси по данным почвенных испарителей

		g,		зна-	зна-	вари-		асим-		
Месяц	Культура	Средняя величина, мм	Среднеквадрати- ческая ошибка, %	Максимальное чение, мм	Минимальное чение, мм	Коэффициент в: ации (Сv)	Среднеквадрати- ческая ошибка, %	Коэффициент ас метрии (<i>Cs</i>)		
1	2	3	4	5	6	7	8	9		
Метеостанция Минск										
Май	Травы	109	21,1	140	80	0,19	22,1	0,03		
Июнь	Травы	110	30,7	164	73	0,28	22,9	0,58		
Июль	Травы	110	37,1	169	46	0,34	23,6	-0,04		
Август	Травы	94	47,7	193	21	0,51	26,2	0,43		
Сентябрь	Травы	49	18,7	77	25	0,38	24,2	0,15		
Октябрь	Травы	24	6,7	34	10	0,28	24,1	-0,38		
Метеостанция	- Василевичи									
Май	Травы	81	21,6	119	49	0,20	17,3	0,29		
Июнь	Травы	82	29,2	151	36	0,36	16,5	0,29		
Июль	Травы	87	26,8	131	35	0,31	16,8	0,07		
Август	Травы	59	16,0	110	38	0,27	15,8	1,18		
Сентябрь	Травы	35	9,6	50	20	0,28	15,8	0,12		
Октябрь	Травы	21	5,0	29	13	0,24	17,1	0,43		
Метеостанция	- Шарковщина									
Май	Травы	91	22,8	120	46	0,25	18,2	0,64		
Июнь	Травы	85	13,9	118	64	0,16	17,6	0,86		
Июль	Травы	81	17,5	118	51	0,22	17,0	0,36		
Август	Травы	74	29,4	141	35	0,40	18,6	0,70		
Сентябрь	Травы	40	11,7	58	22	0,29	18,1	0,07		
Октябрь	Травы	24	6,4	30	5	0,27	18,9	-1,27		

Волчек Александр Александрович. Отдел проблем Полесья НАН Беларуси, заместитель директора по научной работе. Беларусь, г. Брест, бульвар Космонавтов, 21.

Статистические параметры объединенных временных рядов суммарного испарения для различных сельскохозяйственных культур

Месяц	Культура	Средняя ве-	Среднеква-	Коэффи-	Средне-	Коэффици-
		личина, мм	дратическая	дратическая циент вариа- к		ент асим-
			ошибка, %	ции (Cv)	ская ошиб-	метрии
					ка, %	(Cs)
1	2	3	4	5	6	7
Май	Травы	90	25,0	0,28	10,2	0,04
Июнь	Травы	90	27,6	0,31	9,4	0,53
Июль	Травы	85	28,0	0,33	9,3	0,67
Август	Травы	69	30,0	0,43	9,9	1,55
Сентябрь	Травы	40	12,7	0,32	9,4	0,70
Октябрь	Травы	22	6,0	0,28	9,9	-0,25

Таблица 3

Сопоставление годовых норм испарения с суши, полученных по водному балансу и другими методами, мм.

Метеостанция	Водный	Оль	декоп	Ольд	цекоп	Ti	орк	Буд	Будыко Константі		гантинов	Мезе	нцев	Буд	ыко
		(варі	иант I)	(вар	иант						(метод		(комплекс.		
				I.	I)							ГКР)		метод)	
	баланс	E ,	⊿ , %	E ,	∆ , %	E ,	⊿, %	E ,	⊿ , %	E ,	⊿ , %	E ,	∆ , %	E ,	∆ , %
		MM		MM		MM		MM		MM		MM		MM	
Шарковщина	492	398	-19,1	522	6,1	377	-23,4	485	-1,4	470	-4,5	554	12,6	527	7,1
Витебск	551	423	-23,2	538	-2,4	382	-30,7	490	-11,0	450	-18,3	569	3,3	550	-0,2
Полоцк	518	408	-21,2	536	3,5	379	-26,8	490	-5,4	460	-11,2	569	10,5	532	2,7
Минск	596	423	-29,0	581	-2,5	392	-34,0	530	-11,0	486	-19,5	598	0,3	622	4,3
Слуцк	571	411	-28,0	550	-3,7	393	-31,1	520	-8,9	485	-15,1	574	0,6	570	-0,2
Волковыск	509	428	-15,9	523	2,8	396	-22,2	490	-3,7	450	-11,6	548	7,8	535	5,1
Горки	600	409	-32,8	556	-7,3	380	-36,6	495	-17,5	455	-24,2	592	-1,3	594	-1,0
Бобруйск	542	439	-19,0	538	-0,7	388	28,4	505	-6,9	490	-9,6	572	5,5	540	-0,4
Костюковичи	561	409	-27,1	553	-1,4	380	-32,2	515	-8,2	480	-14,4	577	2,9	563	0,4
Могилев	583	432	-25,9	571	-2,1	388	-33,4	520	-10,8	478	-16,8	581	-0,4	583	0,0
Пинск	574	422	-26,5	545	-5,1	408	-28,9	515	-10,3	495	-13,8	575	0,2	578	0,7
Брест	551	429	-22,1	529	-4,0	409	-25,8	495	-10,2	567	2,9	560	1,6	550	-0,2
Гомель	601	438	-27,1	551	-8,1	396	-34,1	520	-13,5	480	-20,1	585	-2,7	563	-6,3
Василевичи	592	449	-24,2	549	-7,3	399	-32,6	510	-13,9	521	-12,0	585	-1,2	593	0,2
Брагин	542	407	-24,9	519	-4,2	386	-26,4	580	7,8	495	-8,7	552	1,8	538	0,7
Среднее знач.	559	422	-24,5	544	-2,7	390	-30,2	511	-8,6	484	-13,4	572	2,3	563	0,7

Максимальные величины суммарного испарения приходятся на июнь, и колеблются от 70 до 106 мм, в отдельные годы они достигают от 25 до 190 мм. Коэффициенты вариации колеблются в пределах 0,28...0,43. Значения коэффициентов асимметрии лежат в очень широком диапазоне: 0,25...1,55. Для более точного вычисления коэффициентов асимметрии, естественно, полученных рядов недостаточно. Однако, принимать коэффициент асимметрии равным нулю, как иногда рекомендуется преждевременно. Процессу испарения более соответствует трехпараметрическое гамма-распределение, так как ($Cs \neq 0$).

Сопоставляя полученные коэффициенты вариации суммарного испарения (Cv=0,28...0,43), с коэффициентами вариации осадков (Cv=0,34...0,80) [1], речного стока (Cv=0,30...1,88) [2], подземного стока (Cv=0,09...0,25) [3], почвенных влагозапасов (Cv=0,10...0,44) [4], можно сделать вывод, что изменчивость величин суммарного испарения как для месячных, так и для годовых интервалов, соизмерима с изменчивостью других элементов водного баланса.

Ограничивающим моментом является малый объем исходной выборки, вследствие чего неизбежно искажение статистических модельных представлений структуры испарения в точке. В рядах испарения имеются пропуски, отмечается нестационарность наблюдений во времени и неоднородность рядов. Поэтому, использование экспериментальных данных

при исследовании пространственной структуры полей суммарного испарения не дает желаемых результатов. Для практических целей необходимо определить не структуру испарения в окрестностях отдельных метеостанций, а поле испарения как стохастическое формирование в целом. Создается ситуация, при которой, имея четкую методику исследования поля испарения, непросто ее реализовать на практике. Поэтому, в ряде случаев целесообразнее отказаться от наблюденных величин, а использовать рассчитанные величины, что и сделано в настоящей работе.

С методологической точки зрения можно выделить три направления (метода) количественной оценки суммарного испарения: статистические, балансовые и физические (рисунок 1). Детальный анализ методов определения суммарного испарения и возможность их использования выполнен в работе [5]. Методы определения суммарного испарения, не требующие дополнительных измерений, сопоставлялись между собой. В качестве критерия точности приняты годовые нормы испарения, полученные общепринятым методом водного баланса. При расчете годовых норм суммарного испарения по методу водного баланса использованы нормы осадков с поправками к показаниям осадкомера [6]. Сток принят по карте модуля среднего годового стока Беларуси и Верхнего Приднепровья [7]. Величины суммарного испарения, вычислен-

Рисунок 1. Граф-схема основных методов определения суммарного испарения.

ные различными методами, находятся в довольно широком диапазоне, размах колебаний для ряда пунктов достигает 100 мм (таблица 3). Методы Э.М. Ольдекопа (вариант II), гидролого-климатических расчетов [8] и комплексный дают близкие результаты, которые хорошо согласуются с величинами суммарного испарения, вычисленными по водному балансу. Методы М.И. Будыко и А.Р. Константинова дают, хотя и несколько заниженные, но вполне приемлемые результаты.

В настоящей работе, для контроля восстановленных величин суммарного испарения, использован комплексный метод, по методу гидролого-климатических расчетов рассчитаны месячные величины суммарного испарения. Это позволило оценить величины суммарного испарения и их изменчивость.

На рисунке 2 представлена карта годового суммарного испарения на территории Беларуси. Годовая величина суммарного испарения изменяется в небольших пределах и составляет 520...590 мм, увеличиваясь с севера к центру страны, величина суммарного испарения достигает максимального значения и затем убывает к югу, так как на севере оно ограничено тепловыми ресурсами, а на юге — водными. Внутригодовое распределение суммарного испарения для всей рассматриваемой территории характеризуется максимумом в июне (100...120 мм/мес) и минимумом в декабре, что соответствует экстремальным значениям теплоэнергетических ресурсов.

По методу гидролого-климатических расчетов определены месячные величины суммарного испарения за конкретные годы. Это позволило оценить изменчивость суммарного испарения, которая сравнительно невелика по отношению к стоку и атмосферным осадкам и составляет (Cv=0,08...0,18), т.е. в среднем (Cv=0,11). Несколько большие значения коэффициентов вариации для теплого (Cv=0,13) и вегетационного (Cv=0,15) периодов. Коэффициенты вариации месячных величин суммарного испарения принимают еще большие значения, достигая (Cv=0,34). С увеличением сухости климата коэффициенты вариации также возрастают. Во внутригодовом разрезе наибольшая изменчивость наблюдается в июле (Cv=0,26). Причина этого заключается в том, что к этому вре-

мени весенние влагозапасы уже, как правило, израсходованы и суммарное испарение определяется, в основном, режимом выпадения атмосферных осадков. Кроме того, нами вычислены коэффициенты пространственной вариации суммарного испарения с последующим осреднением их по месяцам за все годы расчетного периода. Результаты вычислений приведены в таблице 4.

Пространственная изменчивость суммарного испарения несколько ниже, чем временная и гораздо меньше изменчивости других элементов водного баланса. Во внутригодовом разрезе пространственная изменчивость закономерно возрастает, достигая максимума в июле, подобно как и временная изменчивость, а затем - убывает.

Характерной особенностью суммарного испарения является его неупорядоченность, турбулентность, большая зависимость от географических условий, что затрудняет его описание, как непрерывного процесса во времени и по территории (в каждой точке пространства и в каждый момент времени). Поэтому, нами использован аппарат корреляционных функций с установлением связей типа [2]

$$R(M_{\alpha}M) = R(x_{\alpha}; y_{\alpha}; h_{\alpha}; t_{\alpha}; x, y, h, t), \tag{1}$$

где M_o – исходная точка с координатами ($x_o; y_o; h_o$);

M – текущая точка с координата-ми (x, y, h, t).

Для стационарных полей, введя (7) - переменную (сдвиг во времени), представим корреляционную функцию в полярных координатах. При этом, для равнинных территорий разностью отметок местности можно пренебречь. Тогда

$$R(M_o M) = R(x_o; y_o; \rho; \alpha; \tau), \tag{2}$$

где ρ - расстояние между метеостанциями.

Пространственные корреляционные функции (ПКФ) однородных и изотропных полей не зависят от координат полюса, а также от направления

$$R(M_{\rho}M) = R(\rho;\tau). \tag{3}$$

Требования однородности и изотропности вызывают необходимость предварительной оценки статистической

Коэффициенты пространственной вариации суммарного испарения на территории Беларуси

<i>Сv</i> /год	Май	Июнь	Июль	Август	Теплый период	Год
Cv, max	0,28/1974	0,24/1963	0,36/1959	0,35/1959	0,19/1959	0,16/1976
Cv, min	0,09/1965	0,12/1969	0,14/1949	0,10/1977	0,56/1978	0,05/1978
<i>Cv</i> , cp	0,17	0,20	0,21	0,20	0,11	0,10

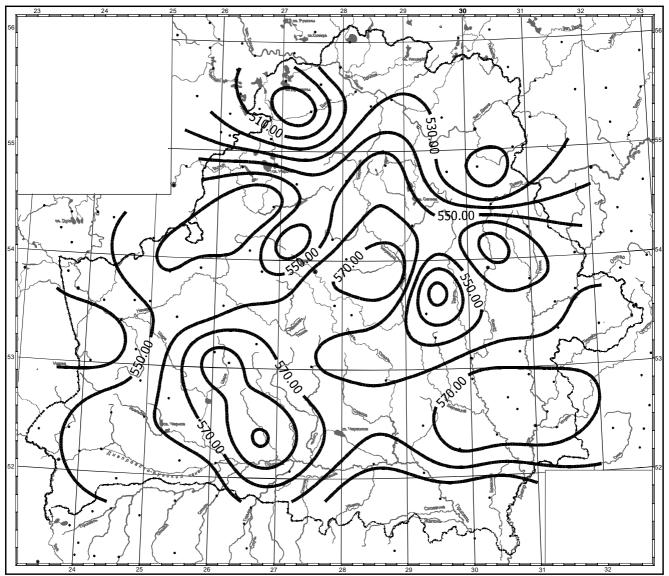


Рисунок 2. Карта годового суммарного испарения на территории Беларуси, мм.

структуры исследуемых полей испарения. Зафиксировав ($\mathfrak o$ и получив ПКФ, как ($R(M_oM)=R(\rho)$), в поле эмпирических точек наводится корреляционная функция (по точкам средневзвешенных значений коэффициентов корреляции и соответствующих средних арифметических значений расстояний для каждой градации). Полученные линии принимаются за истинные зависимости ($R(M_oM)=R(\rho)$), отвечающие природе пространственной корреляционной связности суммарного испарения на территории, в целом.

Исследования ПКФ выполнены дифференцированно по территории Беларуси. В зависимости от способа группировки данных рассмотрены следующие варианты: Беларусь, в це-

лом, а так же территории, схожие по условиям формирования стока: (Балтийский склон, Черноморский склон), испытывающие преимущественное влияние господствующих воздушных масс - поле ориентировано в направлении северовосток океана), поле ориентировано в направлении запад океана), поле ориентировано в направлении запад ориентировано в направлении запад ориентировано в направлении северозапад ориентировано в направлении континентальных воздушных масс), поле ориентировано в направлении северозапад объектор объектор

Балтийский и Черноморский склоны рассматриваются только в пределах Беларуси. Предполагается также, что характер анизотропности на исследуемой территории и в выделенных градациях узлов не изменяется. Практически расчеты

Таблина 5

Статистические характеристики пространственных корреляционных функций суммарного испарения на территории Беларуси

Параметр						Интері	зал осре,						
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
Беларусь, в целом													
$R(\theta)$	0,72	0,67	0,75	0,70	0,71	0,56	0,63	0,58	0,65	0,78	0,81	0,55	0,62
$\overline{\alpha}_2 * 10^{-3}$	0,92	0,95	0,63	0,51	1,06	1,19	1,34	1,47	0,98	1,19	0,99	0,97	1,08
r	0,49	0,52	0,38	0,24	0,47	0,39	0,57	0,48	0,40	0,61	0,52	0,34	0,42
Поле ориентировано в направлении северо-восток ого-запад													
$R(\theta)$	0,71	0,69	0,76	0,69	0,68	0,51	0,60	0,59	0,65	0,78	0,79	0,53	0,59
\alpha ₂ *10 ⁻³	0,85	0,93	0,68	0,34	0,94	0,91	1,28	1,35	0,94	1,21	0,82	0,85	0,96
r	0,47	0,53	0,37	0,16	0,42	0,28	0,53	0,47	0,41	0,66	0,46	0,30	0,36
Поле ориентировано в направлении запад восток													
$R(\theta)$	0,71	0,64	0,78	0,73	0,75	0,60	0,62	0,62	0,65	0,78	0,80	0,61	0,66
\overline{\alpha}_2 *10⁻³	0,83	0,79	0,95	0,80	1,16	1,47	1,36	1,96	1,09	1,38	0,94	1,47	1,33
r	0,35	0,39	0,45	0,29	0,46	0,43	0,48	0,53	0,32	0,51	0,46	0,46	0,44
		По	ле орие			равлении	1 северо-	-запад⋯	юго-вос	ток			
$R(\theta)$	0,75	0,69	0,77	0,75	0,72	0,63	0,68	0,59	0,67	0,79	0,84	0,57	0,64
$\overline{\alpha}_2 * 10^{-3}$	1,11	1,14	0,70	0,84	1,27	1,59	1,43	1,63	1,06	1,07	1,16	0,96	1,20
r	0,58	0,57	0,44	0,42	0,54	0,59	0,63	0,55	0,46	0,63	0,62	0,35	0,50
				1	Балт	ийский (склон						
$R(\theta)$	0,64	0,60	0,75	0,61	0,62	0,50	0,58	0,57	0,61	0,75	0,67	0,47	0,51
$\overline{\boldsymbol{a}}_{z}*10^{-3}$	0,71	0,50	0,81	0,15	0,78	0,84	1,02	1,46	0,74	1,17	0,87	1,09	0,57
r	0,41	0,27	0,50	0,07	0,32	0,25	0,41	0,42	0,29	0,61	0,36	0,38	0,18
					Черно	морский	і склон						
$R(\theta)$	0,81	0,74	0,78	0,78	0,79	0,65	0,69	0,58	0,72	0,88	0,93	0,70	0,72
$\overline{\alpha}_{2}*10^{-3}$	1,20	1,17	0,56	0,58	1,16	1,62	1,85	1,49	1,43	1,50	1,18	1,21	1,46
r	0,58	0,65	0,40	0,33	0,57	0,63	0,74	0,46	0,58	0,83	0,84	0,52	0,68

велись для трех секторов, в которые включались пары метеостанций, когда углы между прямыми, соединяющими их центры, и северным направлением (при движении к нему по часовой стрелке), лежали, соответственно, в пределах $0...60^{\circ}$ (или $180^{\circ}...240^{\circ}$), $60^{\circ}...120^{\circ}$ ($240^{\circ}...300^{\circ}$), $120^{\circ}...180^{\circ}$ ($300^{\circ}...360^{\circ}$).

Статистическая структура полей суммарного испарения не остается постоянной в течение года. Если случайное поле $(\xi(\rho))$ представлено в виде независимых составляющих $(\xi(\rho)=\eta(\rho)+\delta(\rho))$, где $\eta(\rho)$ – мелкомасштабная, $\delta(\rho)$ – крупномасштабная составляющие, то его корреляционная функция, обладающая свойством аддитивности по отношению к независимым составляющим поля, может быть представлена как $(R_{\xi}(\rho)=R_n(\rho)+R_{\delta}(\rho))$.

При выявлении характера внутригодовых соотношений между мелкомасштабной и крупномасштабной составляющими выполнены расчеты для месячных интервалов и характерных периодов осреднения: вегетационного (май – август), теплого (апрель – октябрь), а также для года, в целом. Для этих случаев рассчитаны ПКФ в диапазоне расстояний между метеостанциями до 700 км. Аналитическая аппроксимация ПКФ осуществлялась как по всей совокупности точек, так и по средневзвешенным значениям парных коэффициентов корреляции для градаций расстояний через 50 км. Количество парных коэффициентов корреляции, по которым рассчитаны ПКФ, находится в пределах от 78 до 861, что соответствует большим выборкам.

По эмпирическим коэффициентам корреляции (R_{jk}) и соответствующим им парным расстояниям между метеостанци-

ями (ρ_{jk}) получены эмпирические ПКФ. Они аппроксимированы линейными зависимостями типа

$$R_{ik}(\rho) = R_{ik}(0) - \alpha_{2}\rho_{ik}, \qquad (4)$$

характеризующими закономерность убывания эмпирических коэффициентов корреляции (R_{jk}) с увеличением расстояния (ρ_{jk}) между пунктами наблюдений. Величина $(R_{jk}(\theta))$, которой определяются значения ПКФ, при $(\rho_{jk}=\theta)$, как правило, отлична от единицы. Она обусловлена наличием в наблюденных данных случайных ошибок, а также микроклиматических $(\eta(\rho))$ различий в расположении метеостанций. Хотя эти различия в каждом пункте вызывают систематическое расхождение, при рассмотрении поля суммарного испарения на большой территории они выступают как случайные. Именно этими различиями, в основном, и определяется, имеющий место значительный разброс коэффициентов корреляции относительно средних величин. При отсутствии ошибок измерения и микроклиматических различий имело бы место $(R_{jk}(\theta)=1)$. В действитель-ности выполняется условие

$$R_{jk}(\rho) = \frac{R_{jk}(0)}{1 + \eta_M^2}, \qquad (5)$$

где η_{M} - мера ошибки случайных погрешностей в исходных ланных.

Таким образом, при $(R_{jk}(\theta) < 1)$ можно оценить, какая доля изменчивости поля определяется естественной изменчивостью рассматриваемых элементов на территории, а какая возникает за счет случайного размещения метеостанций, погрешностей наблюдений. В зависимости (4)

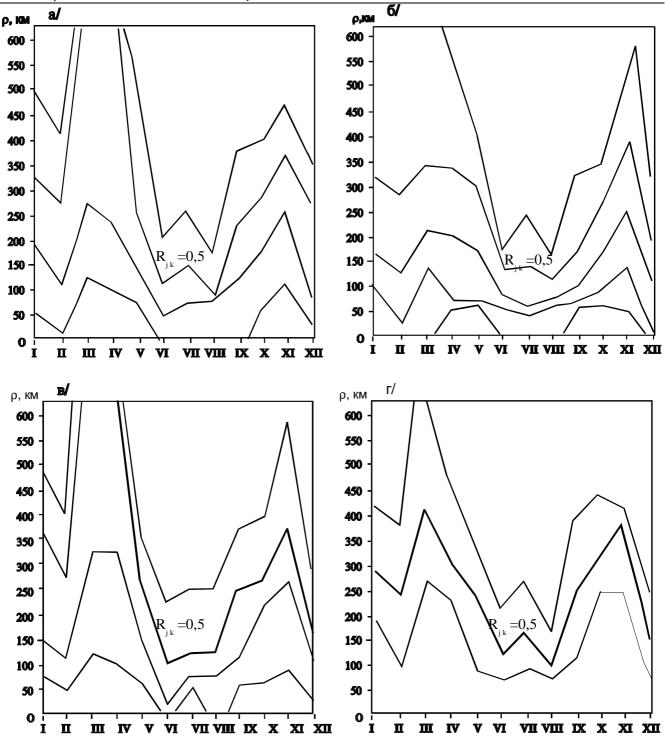


Рисунок 3. Годовой цикл пространственных корреляционных функций месячных величин суммарного испарения (R_{jk}) при шаге интерполяции (ΔR_{jk} =0,1):

- а) Беларусь в целом;
- б) поле ориентировано запад...восток;
- в) поле ориентировано северо-восток...юго-запад;
- г) поле ориентировано северо-запад...юго-восток.

$$a_2 = (\frac{dR(\rho)}{d\rho})$$
 по физическому смыслу представляет

градиент поля, т.е. показывает величину изменения $\Pi K \Phi$ на единицу расстояния.

Приведение эмпирической ПКФ к теоретической, точнее, к откорректированной функции осуществляется путем деления

каждого члена уравнения (4) на $\mathbf{\textit{R}}_{jk}(\mathbf{\textit{0}})$. В результате чего ПКФ получает вид

$$\mathbf{R}_{jk}(\boldsymbol{\rho}_{jk}) = \mathbf{I} - \overline{\boldsymbol{\alpha}}_{z} \boldsymbol{\rho}_{jk}, \qquad (6)$$

где $\overline{\pmb{\alpha}}_{\scriptscriptstyle \mathcal{E}}$ - приведенный градиент ПКФ поля.

Результаты вычисления величин $R_{jk}(0)$, приведенного градиента ПКФ поля суммарного испарения ($\overline{\alpha}_{j}$), а также

коэффициентов корреляции функции (4) представлены в таблице 5.

Годовой цикл эмпирических ПКФ месячных значений суммарного испарения представлен на рисунке 3. Чтобы заведомо не упрощать картину принятием каких-либо гипотез о виде ПКФ, годовой ход представлен не по аппроксимирующим функциям, а изокоррелятами, полученными путем интерполяции эмпирических коэффициентов корреляции. Годовой ход ПКФ поля суммарного испарения определяется годовым ходом осадков. Для всех месяцев характерно большое рассеивание коэффициентов корреляции относительно линии регрессии и большая " срезка " коррелированности, при ($\rho = 0$). Последнее свидетельствует о значительном суммарном вкладе локальной неоднородности и ошибок определения сопутствующих параметров. Наибольшая связь ПКФ поля суммарного испарения наблюдается в зимние и весенние месяцы, когда испарение определяется только тепловыми ресурсами климата, которые имеют большую пространственную связность. По мере уменьшения почвенной влаги связанность поля суммарного испарения уменьшается и достигает своего минимума в июне. Затем, по мере увеличения дождей и уменьшения количества тепла, а также транспирации растений, связность поля увеличивается. Проверка однородности ПКФ поля суммарного испарения показала, что при доверительных вероятностях 0,68 и 0,95 они однородны только для полей суммарного испарения Черноморского склона в периоды осреднения - февраль, июнь, июль, октябрь, ноябрь, а также в вегетационный и теплый периоды и для года, в целом.

Учет пространственно-временных колебаний суммарного испарения позволяет уточнить потребности в воде при мелиорации больших территорий. Что, в свою очередь, сокращает потребности в водных ресурсах в целом водохозяйственного комплекса страны.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Валуев В.Е., Волчек А.А., Лукша В.В., Мешик О.П., Цилиндь В.Ю. Статистическая структура полей атмосферных осадков на территории Беларуси// Статистический и прикладной анализ временных рядов: Труды международной научной конференции (SAATS-97). Под ред. В.М. Мадорского и Н.Н. Труша / Министерство образования Республики Беларусь. Белорусский гос.университет. - Брест, 1997. – с. 75-83.
- Волчек А.А., Плужников В.Н. Пространственновременные колебания элементов водного баланса (на примере Белоруссии)// Водные ресурсы, 1991. - №5. – с. 21-29.
- Дрозд В.В. Подземное питание рек в бассейне Немана. В кн.: Комплексное использование и охрана водных ресурсов. – Минск: Наука и техника, 1968. – с. 90-96.
- Валуев В.Е., Волчек А.А. Способ оценки пространственно-временной изменчивости почвенных влагозапасов// Мелиорация и водное хозяйство.-1990.-№ 8. – с. 20-26.
- Волчек А.А., Марчук В.Н. О методах определения суммарного испарения// Деп. рукопись в ЦБНТИ Минводхоза СССР, №459, 1987. – 30с.
- 6. Справочник по климату СССР. Л.: Гидрометеоиздат, 1968. Вып. 7.- Ч.IV.-264 с.
- 7. Ресурсы поверхностных вод СССР. Л.: Гидромеоиздат, 1968. Т.5. Ч.1. 718 с.
- 8. Режимы влагообеспеченности и условия гидромелиораций степного края/ Под ред. В.С. Мезенцева. М.: Колос, 1974. 240 с.

УДК 556.166«321»(476)

Лукша В.В., Цилиндь В.Ю.

ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОГО СТОКА ВЕСЕННЕГО ПОЛОВОДЬЯ МАЛЫХ РЕК БЕЛАРУСИ ПРИ ОТСУТСТВИИ ДАННЫХ ГИДРОМЕТРИЧЕСКИХ НАБЛЮДЕНИЙ

Малая река, как объект природы, согласно ГОСТ 19179-73 [1] — это река, бассейн которой располагается в одной географической зоне, и гидрологический режим ее под влиянием местных факторов может быть не свойствен для рек этой зоны. При исследовании стока малых рек мы используем следующее определение: малая река для территории Беларуси — это река, имеющая размер водосборной площади менее 2000 км² и протяженность не более 200 км.

Основной задачей исследования явилось построение физико-математических моделей зависимостей максимального годового стока малых рек Беларуси от определяющих его факторов. Необходимость разработки данных моделей назрела из-за отсутствия приемлемых региональных зависимостей определения максимального расхода воды рек весеннего половодья и недостаточной точности результатов расчетов по стандартным методикам СНиП 2.01.14-83 "Определение расчетных гидрологических характеристик" [2]. Данная задача реализовывалась с привлечением изученных основных стокоформирующих параметров 110 бассейнов малых рек Беларуси. Площади водосборов (A) исследованных рек колеблются от 6,0 км² (р. Без названия - с. Кальсберг) до 1480 км² (р. Нарочь – с. Нарочь), при A_{cp} =482,5 км² и Cv=0,82 (коэффи

циент вариации (Cv) определялся для ряда основных стокоформирующих параметров 110 бассейнов исследуемых водосборов по стандартной методике). Их суммарная водосборная площадь равна 53,071 тыс. км², что составляет приблизительно 25% от 207,6 тыс.км² – территории Беларуси. Средняя высота водосборов (H_{cp}) – 185,5 м, при их колебании от 132 м (р. Вить – с. Борисовщина) до 305 м (р. Свислочь – с. Заречье). Средний уклон исследуемых малых рек ($I_{p.}$) – 1,48‰, при Cv=1,48 и диапазоне колебаний от 0,05% (р. Скема – с. Микольцы) до 20,6‰ (р. Гайна – с. Гайна). Кроме перечисленных выше характеристик малых рек, нами использованы дополнительные сведения: средний уклон площади водосбора; густота речной сети; заозеренность, заболоченность, залесенность и распаханность земель. Вышеназванные стокоформирующие параметры водосборов малых рек Беларуси приняты согласно "Ресурсам поверхностных вод СССР" [3] и "Основным гидрологическим характеристикам" [4,5].

Республика Беларусь находится в зоне переменного естественного увлажнения, где наиболее распространены реки с наибольшими расходами воды в весенний период. Следует отличать такие фазы водного режима как половодье и паводок. Весеннее *половодье* рек Беларуси характеризуется еже-

Цилиндь Валерий Юзефович. Начальник информационно-вычислительного центра.

Лукша Владимир Валентинович. Ассистент каф. сельскохозяйственных гидротехнических мелиораций. Брестский политехнический институт (БПИ). Беларусь, г. Брест, ул. Московская, 267.