Карницкий Н.Б.

УЧЕТ ФАКТОРОВ НАДЕЖНОСТИ ПРИ ВЫБОРЕ ОПТИМАЛЬНОЙ СХЕМЫ ЭНЕРГОИСТОЧНИКА

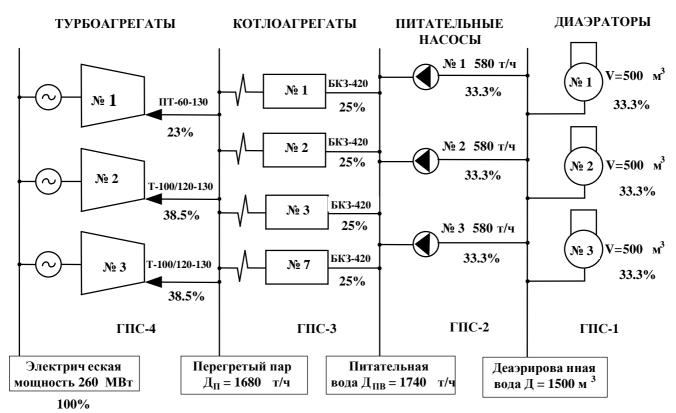


Рисунок 1. Структурная схема Минской ТЭЦ-4 (очередь 14 МПа).

Таблица 1

Иерархический								
уровень	Состав задач							
ТЭК региона	Обоснование путей и способов обес-							
	печения надежности топливоснабжения ТЭС							
Электроэнергети-	Определение требуемых значений							
ческая система	показателей надежности энергобло-							
	ков и неблочных ТЭС по отпуску							
	электроэнергии							
Система энерго-	Определение требуемых значений							
снабжения города	показателей надежности ТЭС по от-							
(предприятия)	пуску электроэнергии и теплоты.							
ТЭС	Выбор структуры технологической схемы энергоблока и неблочной ТЭС. Определение требуемых значений							
130	показателей надежности основного оборудования (котел, турбина, электрогенератор) и вспомогательных							

В современных условиях при проектировании ТЭС (тепловых электрических станций) используются в основном эмпирические методы оценки надежности энергообъектов. Современные же методы технико-экономического обоснования надежности ТЭС при их проектировании и модернизации

систем

практически не применяются. Наиболее сложное положение складывается применительно к проектированию ТЭС с новыми типами оборудования, по которому отсутствуют данные о наработке на отказ, времени восстановления и других показателях надежности отказавших деталей узлов, агрегатов.

Задачи, решаемые при оценке и оптимизации надежности ТЭС, сведены в таблицу 1.

Наибольшие успехи при решении задач, указанных в таблице 1, достигнуты при применении метода наименьших сечений, базирующегося на теории марковских процессов.

Выбор уровня надежности работы ТЭС является экономической задачей, поскольку увеличение надежности ТЭС приводит к росту ее стоимости. Определение оптимальной надежности ТЭС заключается в выборе такого уровня надежности, дальнейшее которого уже экономически нецелесообразно

$$\max \Im_{(\mu)} = \max \sum_{t=0}^{T_p} [P_t(\mu) - 3_t(\mu)] \frac{1}{(1+E)^t},$$
 (1)

где $\mathcal{G}(\mathbf{n})$ — чистый дисконтированный доход; $P_t(\mathbf{n})$ — результаты, достигаемые на t-ом шаге расчета; H — надежность отпуска тепла и электроэнергии; t — номер шага расчета; Tp — расчетный период; E — норма дисконта; $P_t(\mathbf{n})$ - $3_t(\mathbf{n})$ = $3_t(\mathbf{n})$ — эффект, достигаемый на t- ом шаге.

Максимальному значению интегрального эффекта соответствует оптимальное значение надежности отпуска энергии.

Карницкий Николай Борисович. Заведующий кафедрой «Тепловые электрические станции» Белорусская государственная политехническая академия (БГПА). Беларусь, г. Минск.

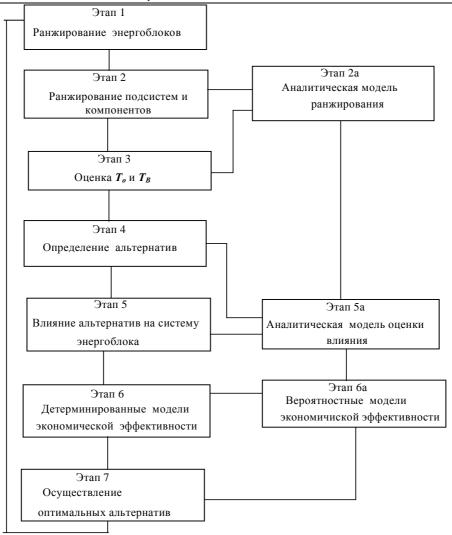


Рисунок 2. Процесс обоснования и принятия решений по оптимизации готовности энергоблоков (агрегатов) электростанций в энергосистеме.

В качестве критерия эффективности могут быть использованы: индекс доходности, срок окупаемости и др.

Методика экономического обоснования структурной надежности энергоисточника включает несколько этапов /2/:

- составление расчетной структурной схемы энергоисточника;
- задание информации о надежности элементов схемы;
- определение зависимости располагаемой мощности энергоисточника от состояния элементов схемы;
- расчет показателей надежности энергоисточника;
- экономическое обоснование уровня надежности энергоисточника.

Нами ранее были предложены к использованию первые четыре этапа и опубликованы в Рекомендациях по оценке показателей надежности ТЭС /3/.

На рис. 1 в качестве примера приведена исходная структурная схема I очереди 140 ата Минской ТЭЦ-4, которая согласно /3/ затем преобразована в блок-схему, позволяющую резко сократить число вариантов расчетов без потери точности вычислений. В табл. 2 приведены исходные данные $T_{\rm o}$ (время наработки на отказ) и $T_{\rm B}$ (время восстановления работоспособности) для расчета показателей надежности котлов и турбин очереди 140 ата ТЭЦ-4, а также результаты расчетов показателей надежности работы этой очереди в период 1987—1996 гг.

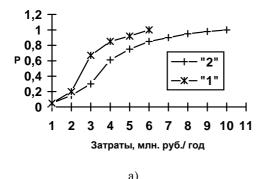
Наряду с детерминированными моделями расчета показателей надежности в ряде случаев настоятельно необходимо использовать и вероятностные. На подобных оценках базируются все обоснования риска, в том числе и в энергетике. Процедура вероятностной оценки риска ТЭС включает шесть последовательных этапов. Аналитический процесс принятия решений на основе вероятностной оценки риска приведен на рис. 2. Как показывает практика, большинство решений, связанных с работой электростанций, должны учитывать прежде всего их надежность, которая составляет 70-80 % суммарной величины экономического эффекта.

В качестве примера оценки риска приведено обоснование установки дополнительного котла I очереди (р = 14 МПа) Минской ТЭЦ-4 /4,5/.

На первой очереди этой станции были установлены три котла БКЗ-420-140НГМ (станционные №1-3), одна турбина ПТ-60-130 (ст. №1) и две турбины Т-100-130 (ст. №2,3).

Положив в основу методику, основанную на логиковероятностных (булевых) методах, выполнен расчет готовности тепловых схем. Стоимостные данные по вероятностным затратам для обоснования установки дополнительного котла приняты в ценах 1991 года.

Рассмотрению подлежали две альтернативы:


Установка дополнительного котла.

Статус-кво (получение энергии от системы).

Распределение замещающей мощности принято логарифмическим нормальным с фактором неопределенности $\lambda_{max}/\lambda_{cp} = \lambda_{cp}/\lambda_{min} = 3$.

Данные о T_B и T_O , определенные по результатам отказов котлоагрегатов и турбоагрегатов (очереди 14 МПа) Минской ТЭЦ-4 за период 1987—1996 гг. и расчетные значения эквивалентных коэффициентов готовности $K_{2,com}$

	Котлоагрегат БКЗ-420-140 НГМ								оагрегат 0-130/13						
Годы	ст. №1		ст. №2 с		ст.	. №3 ст. №7		ст. №1		ст. №2		ст. №3		K , rom	
	T_B	To	T_B	To	T_B	T_{O}	T_B	T_{O}	T_B	To	T_B	T_{O}	T_B	T_{o}	
1987	74,7	2001	62	7814	50	7029	-	-	40	7403	31	8155	-	-	0,9805
1988	48	6842	61,2	1954	37,8	1984	-	-	-	-	-	-	-	-	0,9808
1989	9,5	4189	21	6558	15,3	2689	-	-	-	-	1	-	67	2525	0,9864
1990	38	7019	98	7484	52,5	3621	-	-	71,5	3929	-	-	-	-	0,9852
1991	63,6	2449	-	-	-	-	-	-	11	5876	72	8429	68	4052	0,9817
1992	23,2	3225	ı	-	7,2	3553	-	-	61,8	3611	14,5	1600	20	2184	0,9862
1993	-	-	22	5123	18,8	2408	-	-	387	7693	15,8	2667	-	-	0,9828
1994	13	3728	21,6	2486	7	4843	32,3	403	27,4	1156	-	-	-	-	0,9732
1995	-	-	25,8	2554	ı	-	56,8	2721	-	-	16,5	1983	20	3406	0,9871
1996	-	-	4,65	3675	-	-	-	-	-	-	-	-	10	4211	0,9986

Вероятности распределения замещающей энергии, стоимости дополнительного топлива на отпуск электроэнергии и стоимости замещающей электроэнергии также являются логнормальными и основаны на распределении замещающей мощности. Издержки производства при полной неопределенности их поведения потребовали равномерного вероятностного распределения. Затраты на топливо, из-за снижения экономичности в варианте "статус-кво", характеризуются нормальным распределением и поэтому используется детерминированная оценка. Оценка риска, т.е. суммарные затраты в вероятностной форме, находится на основе дискретной вероятностной алгебры.

В результате расчетов оценка риска для альтернатив 1 и 2 выражается кумулятивными функциями распределения на рис. 3, а.

Там же представлены плотности распределения (рис.3, б). Анализ кривых свидетельствует о том, что суммарные затраты в альтернативе 1, соответствующие максимальной плотности вероятности, составляют около 3 млн руб. в год. Для альтернативы 2 суммарные затраты соответственно превышают 4 млн руб. в год.

В альтернативе 2 (без установки котла) имеется более длинный "хвост" плотностей вероятностей (низковероятный максимальный ущерб), которого нужно избегать.

Вышесказанное предопределило решение по выбору альтернативы 1 (установка дополнительного котла) в противовес альтернативе 2. Данное теоретическое обоснование было принято за основу и, как следствие, на указанной ТЭЦ в 1993 году был установлен дополнительный котел БКЗ-320-

Риунок 3. Кумулятивные функции полезности: (б): плотности распределения для альтернатив 1 и 2.

140НГМ (ст. № 7), т.е. спустя 16 лет после установки последнего котла первой очереди.

Как же сказалась установка дополнительного котла на показателях надежности неблочной части І очереди МТЭЦ-4? Проанализируем динамику изменения коэффициента готовности неблочной части ТЭЦ до 1993 года и после пуска котла N 7 (1993 год). При наличии на І очереди ТЭЦ трех котлов БКЗ-420-140 средний коэффициент готовности за семь лет (1987—1993 гг.) составил 0,97602, а при установке дополнительного котла увеличился на 0,01512 (15,2 %) и составил 0,99114 (анализируемый период 1994—1996 гг.).

Приведенные в статье примеры показывают, что простое увеличение идентичного оборудования в схемах ТЭС не всегда приводит к однозначному повышению их надежности. Для окончательного принятия решения необходимо использовать наряду с детерминированными вероятные модели оценки риска, получающих все большее распространение в мировой практике.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Попырин Л.С. Методы обоснования надежности тепловых электростанций // Вестник электроэнергетики. 1997. -N 1. C.28-39.
- Попырин Л.С. Инженерная методика расчета и экономического обоснования структурной надежности источников тепла // Теплоэнергетика. 1992.- N 12. C.12-19.
- 3. Борушко А.П., Борушко Г.А., Карницкий Н.Б. Рекомендации по оценке показателей безотказности, ремонтопригодности энергетических блоков (агрегатов) электростанций. М.:СПО ОРГРЭС. 1991. 48 с.

- Карницкий Н.Б. Синтез надежности и экономичности теплоэнергетического оборудования ТЭС. - Мн.:ВУЗ -ЮНИТИ.- 1999. – 227 с.
- Борушко А.П., Борушко Г.А. Вероятностная оценка риска на тепловых электростанциях // Известия академии наук. Энергетика. - 1992. - N 3. - C.111-120.

УДК 621.311

Новосельцев В.Г.

КОМБИНИРОВАНИЕ СИСТЕМ ЦЕНТРАЛИЗОВАННОГО И МЕСТНОГО ТЕПЛОСНАБЖЕНИЯ

Существующие системы централизованного теплоснабжения действуют следующим образом: вода подогревается на ТЭЦ или котельной до температуры 90....150 С и затем подается в нагревательные приборы у потребителя по теплосетям; после этого охлажденная вода возвращается на ТЭЦ или котельную для подогрева. Основной недостаток этих систем - большие потери тепловой энергии при ее транспортировке по теплопроводам (они могут достигать 15....50% в зависимости от расстояния до потребителя теплоты и качества тепловых сетей).

Так как величина теплопотерь прямо пропорциональна температуре теплоносителя при том же качестве теплоизоляции, то, уменьшая температуру теплоносителя в тепловой сети, теплопотери можно снизить. Недостатки этого способа: увеличение размеров нагревательных приборов у потребителя из-за снижения температурного напора увеличение расхода теплоносителя.

Возможно отказаться от схемы централизованного теплоснабжения и применить децентрализованную схему. По этой схеме у потребителя установлен подогреватель воды. Недостатки этого варианта: существующие системы централизованного теплоснабжения в данном случае не востребованы, в существующих зданиях применение этой системы связано с большими затратами.

Возможно применение мини-ТЭЦ, но необходимы значительные денежные затраты на постройку мини-ТЭЦ и частично новых теплосетей.

Для усовершенствования систем централизованного теплоснабжения возможно комбинирование их с системами местного отопления. Предлагается транспортировать по тепловым сетям теплоноситель с пониженной температурой порядка 50....90 °C, а у потребителя устанавливать доводчик, устройство для подогрева воды до необходимых потребителю параметров, при которых создается нормальный температурный режим помещения. [1]

Возможны следующие варианты схем:

- 1. с доводчиком (рис.1)
- 2. с тепловым насосом (рис.2)
- 3. с элеватором и доводчиком (рис.3)
- 4. с пароводяным насосом-подогревателем (рис.4)
- 5. с газовым водонагревателем (рис.5).

На рисунках 1-5 были приняты следующие обозначения:

- 1 центральный источник теплоты;
- 2 доводчик;
- 3 тепловые сети;
- 4 потребитель теплоты;
- 5 тепловой насос;
- 6 испаритель;
- 7 компрессор;
- 8 конденсатор;
- 9 дроссель;
- 10 элеватор;

11 – дополнительный нагревательный прибор;

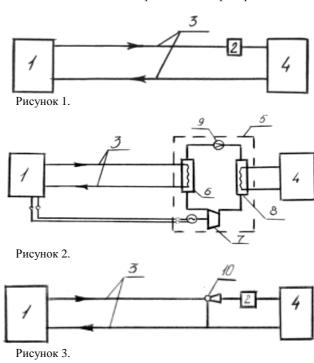


Рисунок 4.

- 12 паровой котел;
- 13 пароводяной насос-подогреватель.

В качестве доводчика возможно использование газового водонагревателя (газовой колонки, применяемой для целей горячего водоснабжения), газового котла, огневого газоводяного водонагревателя с пульсирующим горением жидкого или газообразного топлива, пароводяного насосаподогревателя, в ряде случаев электроподогревателя, электрокотла и др.

Газовая колонка применяется как первый, самый простой и дешевый вариант схемы с доводчиком и работает в кратковременном режиме. При ее применении в качестве доводчика

Новосельцев Владимир Геннадьевич. Аспирант каф. водоснабжения, водоотведения и теплоснабжения. Брестский политехнический институт (БПИ). Беларусь, г. Брест, ул. Московская, 267.