^аДРАГАН В. И. (проф., к.т.н., первый проректор БрГТУ)

Локальная устойчивость плоских многогранников сетчатых куполов

1. Введение

Существующие приближенные методы расчёта куполов как сплошных оболочек, изложенные В. В. Горевым, М. Е. Лепницким, Е. И. Беленёй, так и аналитические, реализуемые при помощи МКЭ в расчётных программных комплексах в большинстве случаев не описывают геометрически нелинейный процесс деформирования сетчатых куполов. Таким образом необходима проверка местной устойчивости и изменения усилий в стержнях при деформировании сетчатого купола вне зависимости от выбранного метода расчёта.

Местная потеря устойчивости сетчатого купола наступает при «прощёлкивании» к центру кривизны фрагмента купола. Указанная проблема освещалась в различных работах К. Клёппеля, А.А. Журавлёва, W Matthees. Однако принятые допущения не всегда позволяют точно определить критическую узловую нагрузку. В работах В.А. Савельева, А.С. Вольмира рассмотрен процесс деформирования фрагмента купола с шарнирными и жёсткими узлами. Однако напряжённо-деформированное состояние жёстко-стержневых пологих многогранников, склонных к «прощёлкиванию», достаточно точно не описано. Все перечисленные методы применимы для сетчатых оболочек сферической формы.

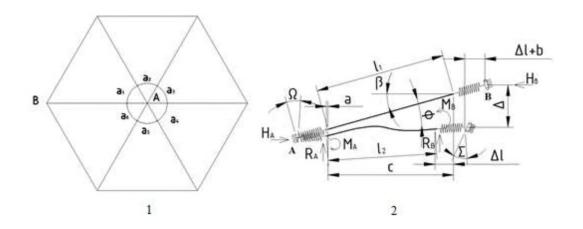
^bГЛУШКО К. К. (аспирант кафедры строительных конструкций)

^a VI Dragan@mail.ru, ^b konstantin.glushko@bk.ru

2. Построение математической модели

Метод, изложенный ниже, предлагается применить для исследования местной устойчивости и определения усилий и деформаций сетчатых оболочек, имеющих сферическую форму и регулярную решётку.

Допущения, принятые в расчёте: изменением углов (a_i) между стержнями, сходящимися в один узел, можно пренебречь за малостью этого углового перемещения (см рисунок 1); изменением длины проекции изогнутой формы стержня от действия изгибающего момента на хорду этого стержня можно пренебречь; деформирование стрежня происходит упруго; в ходе всего процесса деформирования пологой пирамиды потери устойчивости её стержней и стержней соседних пирамид не происходит узловая нагрузка неизменна по величине для каждого из узлов сетчатой конструкции.



1 - рассматриваемый фрагмент стержневой оболочки , 2 - и расчётная схема стержня AB

Рис. 1. Расчётные схемы стержневой пирамиды и отдельного стержня

Угол наклона оси стержня к касательной плоскости обозначим за β . При угловом перемещении хорды стержня произойдёт перемещение опор A и B. Угол ϕ отсчитывается от первоначального направления хорды в направлении действия нагрузки. При этом произойдёт приращение продольной силы N, поперечной силы Q и моментов M. Сумма проекций внутренних сил равна реакции опор R_i :

$$R_{i} = N \sin(\beta - \varphi) + Q \cos(\beta - \varphi) \tag{1}$$

где N-продольная сила, вызванная линейными перемещениями опор, Q – сумма поперечных сил в стержне, вызванных относительным смещением опоры B от опоры A, поворотов опор A и B. Поскольку углы β, φ – малые, а величины $(\beta - \varphi)^n$ являются малыми величинами n-го порядка и близки к нулю. Таким образом можно принять, что $\cos(\beta - \varphi) \approx 1$, $\sin(\beta - \varphi) \approx (\beta - \varphi)$. Уравнение (1) можно представить в следующем виде:

$$R_{i} = N(\beta - \varphi) + Q \tag{2}$$

Первоначально следует выразить изменение длины стержня Δl через перемещения опор:

$$\Delta l \approx \Delta l_N - a - b \tag{3}$$

где Δl_N - изменение длины хорды стержня при изменении угла ϕ и неподвижных опорах A и B, a, b — перемещения узлов A и B из-за силовой отпорности опор A и B. Выражение для определения Δl_N , полученное K. Клёппелем для неподвижных опор:

$$\Delta l_N = c\varphi(\beta - \frac{1}{2}\varphi) \tag{4}$$

где c - проекция длины l стержня AB на касательную плоскость (м),

Для определения перемещений опор a и b используем расчётную схему (рис. 1). Так, опоры A и B представлены пружинными, последовательно соединённых с рассматриваемым стержнем. Запишем перемещения a, b, Δl следующим образом:

$$k_1 a = \frac{EA\Delta l}{c} b = k_1 \Delta l = N \tag{5}$$

Заменим жёсткости опор на податливости $\delta_A = \frac{1}{k_1}$, $\delta_B = \frac{1}{k_2}$, выражение (5) может быть переписано в другом виде:

$$\Delta l = c\varphi(\beta - \frac{1}{2}\varphi)/1 + \frac{EA}{c}(\delta_A + \delta_B)$$
 (6)

где A — площадь поперечного сечения стержня .(м²), E — модуль упругости материала стержня (Па).

Для удобства использования формул введена переменная $\xi = \varphi/\beta$ выражающую долю угла поворота φ от β . Продольная сила N запишется при рассмотрении деформированной схемы следующим образом:

$$N = EA\beta^{2}\xi(1 - \frac{1}{2}\xi) / \left(1 + \frac{EA}{c}\left(\delta_{A} + \delta_{B} + \delta_{u}\right)\right)$$
 (7)

где δ_u - узловая податливость (м/H). Изгибающие моменты можно вычислить путём суммирования моментов, которые возникают от угловых перемещений торцов стержня. Рассмотрим вертикальное перемещение опоры B на рисунке 2.

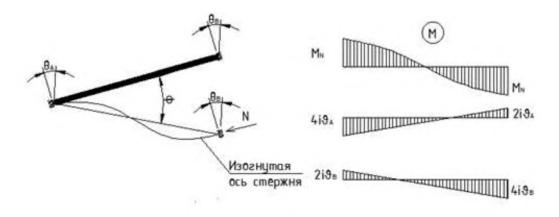


Рис. 2. Схема деформации стержня при перемещении заделки и эпюры моментов при перемещении заделки и поворотах заделок

При вертикальном перемещении опоры B, хорда стержня поворачиваться на угол φ . Вместе с тем из-за податливости опор A и B происходит поворот заделок, вызванный моментами на торцах стержня. Здесь и в последующих выражения i — погонная изгибная жёсткость стержня. Полагая прямую пропорциональность углов поворота от момента, можно выразить угол поворота заделки через момент и моментную податливость заделки как $\mathcal{G}_A = M_A r_A$, $\mathcal{G}_B = M_B r_B$. Суммируя значения моментов на каждой из опор, можно составить следующую систему уравнений:

$$\begin{cases} M_A = 6i\varphi - 4iM_A r_A - 2iM_B r_B + Nc(\varphi - M_A r_A) \\ M_B = 6i\varphi - 4iM_B r_A - 2iM_A r_A + Nc(\varphi - M_B r_B) \end{cases} \tag{9}$$

 $6i\varphi$ — величина изгибающего момента при взаимном перемещении жёстких заделок на угол φ . Решая систему (9), можно получить значения моментов на торцах стержня:

$$M_{A} = \beta \xi \frac{(6i + Nc)(1 + 2ir_{B} + Ncr_{B})}{(1 + 4ir_{A} + Ncr_{A})(1 + 4ir_{B} + Ncr_{B}) - 4i^{2}r_{A}r_{B}}$$

$$(10)$$

$$M_{B} = \beta \xi \frac{(6i + Nc)(1 + 2ir_{A} + Ncr_{A})}{(1 + 4ir_{A} + Ncr_{A})(1 + 4ir_{B} + Ncr_{B}) - 4i^{2}r_{A}r_{B}}$$

Узловая нагрузка на узлы пирамиды равна сумме проекций продольных и оперечных сил в стержнях. Местная потеря устойчивости фрагмента сетчатого купола с количеством n стержней в одном узле не произойдёт, если значение критической нагрузки превысит значение расчётной узловой нагрузки.

$$P = nEA\beta^{3} \frac{\xi \left(1 - \frac{1}{2}\xi\right)}{1 + \frac{EA}{c_{1}}\left(\delta_{A} + \delta_{u}\right)} (1 - \xi) + \frac{n\beta\xi \left(\frac{6i}{c} + N\right)\left(2 + 2i(r_{A} + r_{B}) + Nc(r_{A} + r_{B})\right)}{\left(1 + 4ir_{A} + Ncr_{A}\right)\left(1 + 4ir_{B} + Ncr_{B}\right) - 4i^{2}r_{A}r_{B}} > P_{y3}$$
(11)

Из-за сложности использования формулы (11) необходимо ввести допущение о том, что стержни второго яруса купола, следующие за верхним ярусом, защемлены жёстко и поворотом опорных узлов второго яруса купола можно пренебречь.

Расчётная схема для определения отпорностей опорных узлов рассматриваемого фрагмента показана на рисунке 3.

На разрезе 1-1 показаны перемещения хорд стержней OB и GB. При деформации контура ABCC'B'A', каждая из угловых точек перемещается на величину a. Максимальный порядок величины a равняется 10^{-3} -10^{-5} м, угловое перемещение хорды стержня GB - 10^{-3} -10^{-5} рад. Влияние поперечных сил в стержнях второго яруса, возникающие из-за углового перемещения хорд стержней GB и FB на величину перемещения a будут несоизмеримо малы, по сравнению с влиянием продольной силы, возникающей в стержне BO, в силу малости углового отклонения хорды стержня GB. При рассмотрении более сложной задачи в виде деформирования выпуклой сетчатой конструкции с числом ярусов больше двух, влияние каждого последующего яруса на величину a будет уменьшаться. Таким образом величину силовой отпорности δ_A можно определить с высокой точностью, рассматривая только лишь растяжение стержней опорного контура ABCC'B'A'.

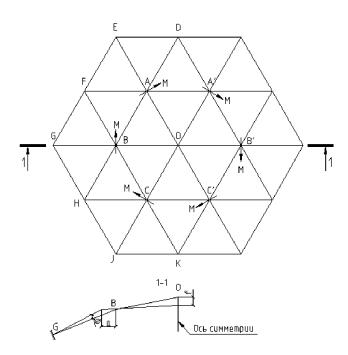


Рис. 3. Расчётная схема фрагмента сетчатой конструкции

Из того же рисунка 3 можно определить и величину жёсткости упругих заделок в узлах *А*, *В*, *С*, *С'*, *В'*, *А'*. Прикладывая сосредоточенные моменты, как показано на рис. 2, можно определить величину реактивного вектор-момента, выраженного через величину угла поворота торцов стержней. С небольшой допускаемой погрешностью при решении поставленной задачи стоит принять сетчатую поверхность плоской, спроецированной на проекционную плоскость.

Угол поворота торцов стержней BO и GB равен θ , угол поворота стержней FB, HB и симметричных им стержней равен $\theta' = \theta \cos \frac{\pi}{3} = \frac{1}{2}\theta$ в рассматриваемом примере с проекционной сетью в виде правильных треугольников. Стержни типа AB, BC, BB' испытывают чистый изгиб. На рисунке 4 показано сложение эпюр отдельных моментов, действующих на торцах стержня BB', имеющего погонную жёсткость $\frac{i}{2}$.

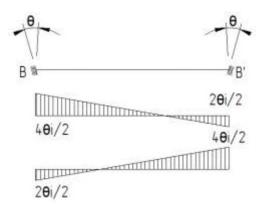


Рис. 4. Определение величин моментов в стержне ВВ'

Результирующий момент в точке B стержня BB' равняется M_{BB}^B , $=i\theta$. Рассуждая подобным образом, можно определить моменты в стержнях типа AB: $M_{AB}^B=i\theta$. Моменты в точке B в стержнях FB, HB, GB можно определить путём суммирования значений эпюр моментов от поворота торца в точке B и от вертикального перемещения точки B. В силу симметрии поперечные силы в стержнях FB, HB равны. Поскольку узел B находится в равновесии, то значение поперечной силы в стержне GB равно сумме поперечных сил в стержнях FB, HB. Уравнение равновесия узла B может быть записано в следующем виде:

$$\frac{6i\theta - 12i\varphi}{c} + 2\frac{3i\theta - 6i\varphi}{c} = 0 \tag{12}$$

Отсюда следует, что $\varphi = \frac{1}{3}\theta$. Значения моментов в точке В стержнях FB, HB можно определить следующим образом:

$$\begin{cases}
M_{FB}^{B} = 2i\theta - 6i\varphi = 2i\theta - 6i\frac{1}{3}\theta = 0 \\
M_{GB}^{B} = 4i\theta - 6i\varphi = 4i\theta - 6i\frac{1}{3}\theta = 2i\theta
\end{cases}$$
(13)

Реактивный момент M можно определить, суммируя моменты в точке B во всех соединяемых в ней стержнях в плоскости GBO:

$$M = i\theta + 2i\theta\cos\frac{\pi}{3} + 2i\theta = 4i\theta \tag{14}$$

Из выражения (14) следует, что момент, величиной $4i\theta$, поворачивает упругую заделку на угол θ . Сосредоточенный момент в точке B, равный моменту в точке B в стержне BO, величиной $i\theta$, способен повернуть заделку на угол $\frac{\theta}{4}$, поэтому жёсткость упругой заделки можно вычислить следующим образом:

$$r_B = \frac{4\theta}{M_{BO}^B} = \frac{4}{i} = \frac{1}{0.25i} = \frac{1}{mi}$$
 (15)

Повторяя подобный вывод для отыскания упругих жесткостей заделок стержней в верхнем фрагменте сетчатого купола, построенного на гранях икосаэдра, гексаэдра, октаэдра и тетраэдра, можно вычислить значение коэффициента m, стоящего при i в формуле (15). В таблице 1 приведены значения величины m.

T C 0 1 D	1 1	••
Таблина / Г Величина	коэффициента	жёсткости заделки стержня
1 desima 2.1. Desim mila	коэффиционта	жесткости заделки стержил

Способ образования сетчатой конструкции	m
Проецирование узлов сети из равносторонних	0.25
треугольников	0.23
Проецирование сети на гранях икосаэдра	0.196
Проецирование сети на гранях гексаэдра	0.178
Проецирование сети на гранях октаэдра	
Проецирование сети на гранях тетраэдра	0.172

С учётом выражения (15) можно переписать для жёстких узлов формулы (10), пренебрегая влиянием распора на величину момента в стержне и принимая, что $r_A = \infty$ (поворота заделки в зенитном узле не происходит).

$$\begin{cases}
M_A = 6i\beta\xi \frac{m+2}{m+4} \\
M_B = 6i\beta\xi \frac{m}{m+4}
\end{cases}$$
(16)

В случае, если узловая податливость является значительной и пренебрежение ей может привести к неверным результатам, выражение (10) можно записать следующим образом:

$$\begin{cases}
M_A = 6i\beta\xi \frac{m + 2imr_u + 2}{(m+4)(m+4imr_u + 4) - 4ir_u} \\
M_B = 6i\beta\xi \frac{m+2}{(m+4)(m+4imr_u + 4) - 4ir_u}
\end{cases}$$
(17)

Принимая узловую моментную податливость равной нулю и при малых перемещениях пренебрегая влиянием продольной силы на значение изгибающего момента, можно упростить формулу (11):

$$\frac{P}{nEA} = \beta^3 \frac{\tilde{N}}{D} + \frac{12\beta \xi}{\lambda^2} \cdot 0.28 > \frac{P_{y3}}{nEA}$$
 (18)

где $\widetilde{N} = \xi \left(1 - \frac{1}{2}\xi\right) (1 - \xi)$ - функция деформирования, график которой изображён на рис. 5, $D = 1 + j \left(\delta_A + \delta_u\right)$ - коэффициент уменьшения продольной силы, $j = \frac{EA}{c}$ - погонная жёсткость стержня на растяжение-сжатие, λ - гибкость стержня сетчатой конструкции при рассмотрении его как шарнирно опёртого на неподвижных опорах, 0,28 — минимальный из результатов отношения $\frac{m+1}{m+4}$, при величинах m, взятой из таблицы 2.1.

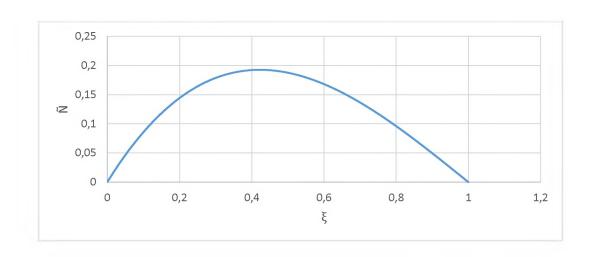


Рис. 5. График функции N

При невозможности рассмотрения узлового элемента как абсолютно твёрдого тела при изгибе, узловую податливость необходимо всё же учитывать:

$$\frac{P}{nEA} = \beta^3 \frac{\tilde{N}}{D} + \beta \frac{12}{\lambda^2 i} \frac{m(1+ir_u) + 2}{(m+4)(m+4imr_u + 4) - 4ir_u} > \frac{P_{y3}}{nEA}$$
 (19)

где r - моментная податливость узлового элемента.

3. Выводы

Из изложенный выше зависимостей следует:

- 1) получена формула для вычисления критической нагрузки на узел для сетчатых конструкций с упругими узлами, загруженными равной по величине узловой нагрузкой,
- 2) процесс деформирования стержней пирамиды не будет связан с прямо пропорциональным приращением усилий в стержнях при заданном приращении нагрузки
- 3) произведено сравнение экспериментальных и теоретических значений внутренних сил и перемещений фрагмента сетчатого купола с упруго-податливыми узлами при узловой нагрузке,
- 4) полученные результаты позволяют с достаточно высокой точностью описать процесс деформации пологих многогранников в составе сетчатого купола, производить расчёт на местную устойчивость.

Ссылки

- 1. Металлические конструкции: учебное пособие: в 3 т. / В.В. Горев [и др.]. 3-е изд., стер. М.: Высш. школа, 2004. Т. 2: Конструкции зданий. 528 с.
- 2. Лепницкий, М.Е. Купола (расчёт и проектирование): практическое пособие / М.Е. Лепницкий, М.Е. Дьяков. Ленинград: Стройиздат, 1973. 129 с.
- 3. Беленя, Е.И. Металлические конструкции: учебное пособие / Е.И. Беленя. 6-е изд., перераб. и доп. М.: Стройиздат, 1986. 560 с.
- Klöppel, K. Zur Berechnung von Netzkuppeln / K. Klöppel, R. Schardt // Der Stahlbau.
 1962. № 5. P. 129–136.
- 5. Журавлёв, А.А. Устойчивость пирамидальных элементов сетчатого купола / А.А. Журавлёв // Межотраслевые вопросы строительства / ЦИНИС, реферат. инф. М., 1972. Вып. 4. С. 66-70.

- 6. Журавлёв, А.А. Местная устойчивость куполов с треугольными ячейками / А.А. Журавлёв, В. В. Мартинец // Межотраслевые вопросы строительства / ЦИНИС, реферат. инф. М., 1971. Вып. 8. С. 8-10.
- Matthees, W. Experimentelle und theoretische Untersuchung des Trag- und Stabilitätsverhaltens einschaliger räumlicher Gelenknetzwerke im elastischen Bereich / W. Matthees, P. Wegener // IVBH Kongressbericht. - Berlin, BRD: Bundesanstalt für Materialprüfung, 1972. - S. 473 – 478.
- Савельев, В.А. Влияние начальных несовершенств и неравномерности загружения на устойчивость сферического купола с жёсткими узлами / В.А. Савельев // Строительная механика и расчёт сооружений. 1971. № 5. С. 32–34.
- 9. Савельев, В.А. Теоретические основы проектирования металлических куполов: автореф. дис. . . . д-ра техн. наук: 05.23.01 / В.А. Савельев. М., 1995. 39 с.
- 10. Вольмир, А.С. Устойчивость деформируемых систем / А.С. Вольмир. 2-е изд., перераб. и доп. М.: Наука, 1967. 948 с.
- 11. Борисевич, А.А. Строительная механика / А.А. Борисевич, Е.М. Сидорович, В.И. Игнатюк. 2-е изд., перераб. и доп. Мн.: БНТУ, 2009. 756 с.

Local stability of flat polyhedrons of mesh domes

Abstract

The dependences for determining the stress-strain state of a fragment of a mesh dome. These formulas are valid for the case of constant-largest hub load on a mesh dome. Experimentally determined tense and strained state of the dome fragment. The proposed method has a good agreement with the experimental results.

Keywords: stress-strain state, fragment, mesh dome.