(1-2 курсы) проявляют творческую заинтересованность и активность в подготовке материалов и презентаций для конференции. Они из тех, кто не боятся компрометации в глазах товарищей. Из такой среды и вырастают будущие ученые и изобретатели. Особого внимания заслуживает и то, что некоторые студенты владеют практикой изготовления своими руками наглядной агитации: экспонатов, макетов, плакатов. В то же время очень важно, что оформлять статьи необходимо в соответствии с современными требованиями. А как много значат для самих студентов их публичные выступления и организаторские навыки! Похвала преподавателей-руководителей и награждение дипломами различных степеней «окрыляют» молодых людей. Результат кафедральных научных конференций — студенческие научные работы на Республиканский конкурс.

Необходимо конечно же шире практиковать поощрение студентов за их творческую заинтересованность и активное участие в научно-исследовательской работе.

Многие выпускники нашего вуза, кто проявлял активность, занимался творчеством и наукой, «не сидел под лавкой», сейчас в своей трудовой деятельности самостоятельно решают сложные задачи и проявляют новаторство. В этом и проявляется польза, важность и эффективность студенческих научных конференций. И еще — публичные выступления придают позитивный настрой и способствуют движению вперед к новым достижениям научно-технического прогресса.

Янчилин П.Ф.

ТЕХНИКО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА ГЕЛИОУСТАНОВКИ «ЛУЧ»

Брестский государственный технический университет, м.т.н., ст. преподаватель кафедры теплогазоснабжения и вентиляции

Наиболее перспективным в ближайшее время направлением использования солнечной энергии является подогрев воды в системах отопления и горячего водоснабжения. Значительный потенциал энергосбережения в данной области связан с тем, что на нужды теплоснабжения сегодня приходится около половины от всего объема потребления ТЭР в Беларуси. Реализованные в РБ проекты по применению гелиоводонагревателей на базе отечественных разработок показывают, что использование солнечных коллекторов эффективно не только в регионах с теплым климатом, но и в районах с низкими температурами и невысокими значениями солнечной радиации.

Применение в гелиосистемах в качестве теплоносителя низкозамерзающей жидкости на основе глицерина — этилен-гликоля или пропилен-гликоля с присадками, защищающими теплопроводы от коррозии, позволяет эксплуатировать системы круглый год.

В научно-исследовательской лаборатории «ПУЛЬСАР» БрГТУ разработана под руководством профессора, д.т.н. Северянина Виталия Степановича гелиоустановка «ЛУЧ». Основными особенностями этой установки являются расщепление параболоида вращения на отдельные конусы и состоящий из них гелиоконцентратор (в виде группы концентрических конусов, имеющих общий фокус на теплоприёмнике), и ориентирование на Солнце механизмом слежения.

Целью технико-экономической оценки является сравнение технических параметров и стоимости предлагаемой и известных гелиоустройств (таблица 1). Так как разработанная гелиоустановка «ЛУЧ» предназначена для «небольших» потребителей теплоты, то сравнивать её будем с аналогичными известными серийно выпускаемыми устройствами — плоскими и вакуумными солнечными коллекторами.

У всех различных производителей гелиооборудования подбор и расчёт необходимого количества солнечных коллекторов зависит от нужд потребителя (отопление, ГВС) и количества самих потребителей (человек) [1].

Таблица 1. Технико-экономическая оценка различных гелиоустройств.

таблица 1. технико-экономическая оценка различных телиоустронетв.							
Тип солнечного коллектора	Гелиоустановка «ЛУЧ»	Вакуумированны й стеклянный трубчатый КСЭ	Плоский КСЭ				
Система слежения за Солнцем	Вращение вокруг двух осей	Не требуется	Не требуется				
Эффективность использования прямого СИ	1	0,67	0,67				
Эффективность использования рассеянного СИ	0,1	1	0,7				
Рабочая температура теплоносителя, °C	50-130	90-250	30-70				
Коэфф. теплопотерь A_1 за счёт теплопередачи, $BT/M^2 \cdot {}^{\circ}C$	3,0-5,0	0,85-1,2	3,4-4,2				
Коэфф. теплопотерь A_2 за счёт излучения, $B_T/M^2 \cdot {}^{\circ}C^2$	0,01-0,02	0,008-0,01	0,009-0,01				
Стоимость за единицу (стандартная площадь поверхности одного модуля 2,5 м ²)	2000	1680 €	790 €				
Стоимость стандартного набора для приготовления ГВС для 2-4 чел	6000-7000 €	5760 €	3930 €				

Для примера взяли стандартный набор от фирмы Meibes (Каталог продукции Meibes 2016 г.) предназначенного для приготовления санитарной горячей воды в частном доме для семьи из 4-6 человек за счёт солнечной энергии посредством плоских коллекторов (рисунок 5). Данный пакет необходимо включить в состав котельной в качестве узла приготовления горячей воды на основе ёмкостного водонагревателя. Состав этого набора и общая стоимость показаны на рисунке 6.

Исходя из этого можно сделать вывод, что разработанная гелиоустановка «ЛУЧ-3» с площадью апертуры $4.9~\text{m}^2$ аналогична площади $5.02~\text{m}^2$ плоских коллекторов и, соответственно, схожа по теплопроизводительности.

Можно сделать вывод, что разработанная гелиоустановка «ЛУЧ-3» с системой концентрации с площадью апертуры 4,9 м² аналогична гелиоустановкам площадью 5,02 м² из плоских коллекторов и, соответственно, схожа по теплопроизводительности. Подключение гелиоустановки к системам теплоснабжения потребителей осуществляются по стандартным схемам с применением серийно выпускаемого гелиооборудования.

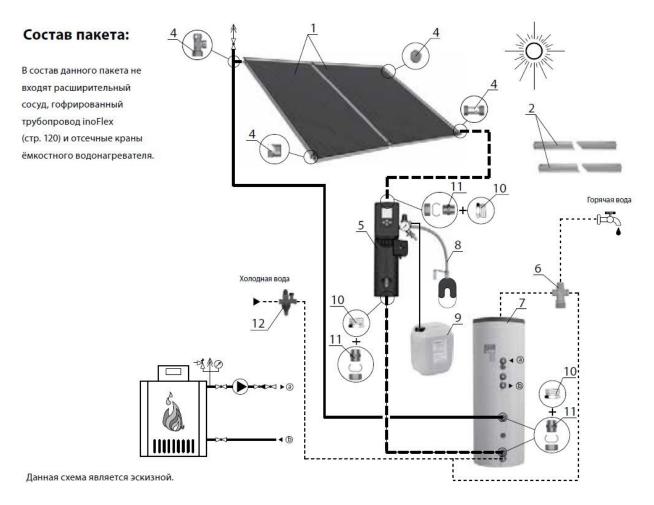


Рисунок 5 – Схема приготовления ГВС

№ ПОЗ.	артикул	Название	Цена, евро/ед.	Кол-во,	Стоимость, евро
1	45311.2	Плоский солнечный коллектор Meibes MFK 001, 3/4", площадью 2,51 м²	739,11	2	1478,22
2	45311.102	Базовый комплект крепёжных реек TRP N2 MFK для 2-х солнечных коллекторов MFK 001/002		1	106,68
3	45311.107	Базовый монтажный комплект на базе универсальных анкеров (<0°) для установки первых 2-х коллекторов MFK 001/002		1	206,18
4	45311.201	Соединительный набор для плоского солнечного коллектора MFK 001 (переход на трубу InoFlex 1/2")	34,55	1	34,55
5	45719.21	Однотрубная солнечная станция S 3/4" с регулятором и насосом Grundfos Solar 15-65		1	569,73
6	69050.5	Термостатический смеситель (защита от ожогов)	74,71	1	74,71
7	14598	Бивалентный водонагреватель ESS-PU 300, ёмкостью 300л, 10 бар, жёсткая теплоизоляция, съёмный кожух.	1171,61	1	1171,61
8	66326.13	Группа подключения расширительного бака к гелиосистеме.	41,27	1	41,27
9	83007048	Туfосог L, канистра 20л.	126,00	1	126,00
10	90652.1	Футорка 3/4" HP x 1/2" BP	2,43	4	9,72
11	46104 FL	Концевой фитинг для гофротрубы FixLock Ду 16 x 1/2" HP	7,83	4	31,32
12	6925B.80 PE	Группа безопасности для бойлера Ду 20 мм, 8 бар	79,00	1	79,00
Розничная стоимость оборудования:					3928,99

Рисунок 6 – Состав и стоимость набора приготовления ГВС

Список используемых источников:

1. Варианты использования гелиоустановки «ЛУЧ». П.Ф. Янчилин. Вестник Брестского государственного технического университета. — 2017. — № 2: Водохозяйственное строительство и теплоэнергетика. — С. 61—66.