УДК 534.838.4

ЭЛЕКТРОННО ПЕРЕСТРАИВАЕМЫЕ УЛЬТРАЗВУКОВЫЕ ПЬЕЗОКЕРАМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ

С МАГНИТОАКУСТИЧЕСКИМИ СЛОЯМИ

М.М. Карпук¹, Д.А. Костюк², Ю.А. Кузавко³, В.Г. Шавров³

¹Politechnica Kostalinska

Koszalin, Poland ²Брестский государственный технический университет Брест, Беларусь ³Институт радиотехники и электроники РАН Москва, РФ

Электромеханические преобразователи преобразуют электрическую энергию в механическую и наоборот. На средних частотах $(1\div100~\mathrm{MTu})$ эффективно используются пьезоэлектрические преобразователи (УЗП) как для излучения, так и для приёма акустических волн в целях научных исследований и измерительной техники. Но добротность даже низкодобротной пьезокерамики PKP-1 Q=60 оказывается всё ещё достаточно высокой для реализации коротких и сверхкоротких импульсов (длительность составляет $\tau = Q\cdot T$, где T—период акустических колебаний), так необходимых при технических измерениях в неразрушающем контроле и медицинской эхотомоскопии. Большую ценность при проведении ультразвуковых исследований и измерений приобрела бы возможность перестройки резонансных частот излучения и приёма [1].

Здесь мы рассматриваем развитие таких УЗП, существенной особенностью которых является наличие контактирующего с пьезоэлектриком (ПЭ) слоя магнитоакустического материала (МАМ). Под МАМ понимаем вещество, например гематит α — Fe_2O_3 , в котором экспериментально наблюдалась сильная зависимость скоростей объёмных продольных (до 10%) и поперечных (до 50%) волн от внешнего магнитного поля $\overrightarrow{\text{H}}$ [2]. Теоретические зависимости скорости поперечного и продольного звука

имеют соответственно вид $\widetilde{S}_t = S_t (1-\varsigma)^{1/2}$ и $\widetilde{S}_\ell = S_\ell (1-t\cdot\varsigma)^{1/2}$, где

 $t = S_t^2/S_\ell^2$, $\varsigma = 2 \cdot H_E \cdot H_{me} / [2 \cdot H_E \cdot H_{me} + H \cdot (H + H_0)]$ — параметр МУ связи; H_E , H_0 , H_{me} — эффективные внутренние поля обмена, Дзялошинского-Мория и магнитострикции.

Тем самым возникает реальная возможность перестраивать полем акустоэлектронные параметры преобразователя, т. е. резонансную частоту, полосу частот и длительность излучаемого импульса, амплитудно-частотную и фазочастотную характеристики, амплитуды излучения и приёма.

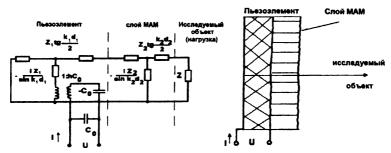
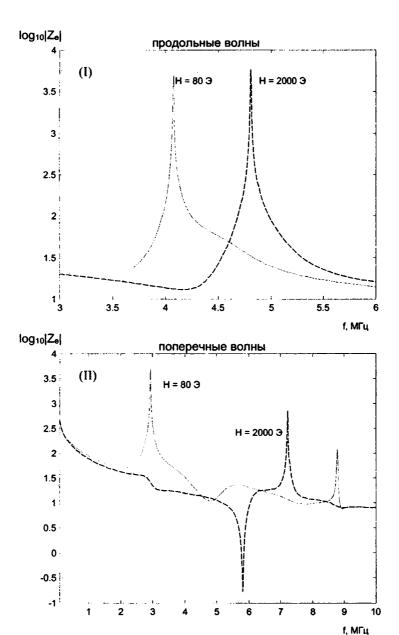



Рисунок 1- Конструкция УЗП и его эквивалентная схема. h - коэффициент преобразования

Конструкция рассматриваемого УЗП приведена на рис. 1, в котором ПЭ пластинка через слой МАМ контактирует с исследуемым объектом. Исходя из эквивалентной электрической схемы УЗП с нагрузкой, можно рассчитать его электрический импеданс

$$Z_e = \frac{1}{i \cdot \omega \cdot C_0} \cdot \left[1 - \frac{K^2}{\beta_1} \cdot \frac{tg\beta_1 - \frac{Z_2}{2Z_1} \cdot tg2\beta_2 + i \cdot \left(\frac{Z}{Z_2} \cdot tg\beta_1 \cdot tg\beta_2 - \frac{Z_0}{2Z_1} \right)}{1 + \frac{Z_2}{Z_1} \cdot ctg2\beta_1 \cdot tg2\beta_2 + i \cdot \left(\frac{Z}{Z_2} \cdot tg2\beta_2 - \frac{Z}{Z_1} \cdot ctg2\beta_1 \right)} \right],$$

где $\beta_1 = k_1 \cdot d_1/2$, $\beta_2 = k_2 \cdot d_2/2$, k – волновое число, ω – частота, C_0 – ёмкость УЗП, K – константа электромеханической связи, Z – акустический импеданс. Минимум $I_m Z_e$ определяет электрический резонанс УЗП (излучение), а максимум — механический резонанс УЗП (приём). В выражении величины $Z_2 = \rho_2 \cdot S_2(H)$ и $\beta_2 = \omega \cdot d_2/(2S_2(H))$ оказываются зависящими от поля, и то же самое распространяется на Z_e и резонансные частоты.

Численные расчёты выполнялись для продольных волн в структуре I — LiNbO₃ 36°, Y-срез — α -Fe₂O₃ — SiO₂ 32°, X-срез и для поперечных волн в структуре II — LiNbO₃ 36°, X-срез — α -Fe₂O₃ — SiO₂ 32°, X-срез в диапазоне частот $0\div10$ МГц, при этом частота механического резонанса ПЭ составляет в обоих случаях 5 МГц, а его толщины: I – $d_{17} = 0.74$ мм II – $d_{17} = 0.48$ мм. Толщина МАМ выбиралась также из условия реализации полуволнового резонатора на этой же частоте при H = ∞ и составила: I – $d_{27} = 0.68$ мм, II – $d_{27} = 0.42$ мм. На рис. 2 представлены зависимости |Z_e| от частоты. Откуда видно, что количество резонансов с убыванием H возрастает, а их частоты существенно управляются полем. Разработанное программное обеспечение позволяет вычислить все вышеуказанные акустоэлектронные параметры преобразователя.

ЛИТЕРАТУРА

- 1. V.Golovko, Y.Kuzavko, H.Roth. Ultrasound controlled piezoceramical transducers for medical diagnostic tomography. // Proceedings of Workshop on Design methodologies for signal processing. Zakopane. Poland, 1996
- 2. Е.А. Андрющак, Н.Н. Евтихиев, С.А. Погожев, В.Л. Преображенский. // Акустический журнал, 1981, Т.39, №6, с. 170–178