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INTRODUCTION

Tasks and methodological guidelines for calculation-design works (design 
works) correspond to the curricula of specialties 1-70 02 01 and cover the most 
important sections of the Strength of Materials course that students study in the 
spring semester. Methodological guidelines allow students to study and apply 
theoretical material to solve problems using examples of calculating statically 
determined beams (that experience direct bending), an eccentrically loaded (short) 
column and a compressed column (for stability analysis).

The methodical instructions contain the demands for the design works execution 
and examples of tasks.

INSTRUCTIONS FOR EXECUTION OF CALCULATION-DESIGN WORKS

1. The necessary data for the execution of design works should be accepted 
according to the variant number and diagram number (diagrams and tables are 
given).

2. Design work is performed on standard sheets of A4 format (210 x 297 mm) 
and is executed in the following order: cover sheet, task for design work, calculation 
text, conclusions, list of literature.

3. Drawings and diagrams should be executed on separate sheets in accordance 
with the rules of graphics and scales. You must specify on the diagrams the 
numerical values and unites of measurement of specific dates, used (or has been 
gotten) in calculations.

4. The calculated values should be rounded to tenths or hundredths with the 
dimensions.

5. To check the correctness of the calculations, you need to use a certain 
software package (or programs) at the computing center of the Department of 
Computer Science and Applied Mathematics or by use of Internet Online 
Calculators.

1. SYMMETRICAL BENDING

1.1. Abstract concepts
For most building elements, bending is almost the most common type of 

deformation. A straight bar experiencing a bend is called a beam. Bending of beams 
causes forces (loads) that are perpendicular to the longitudinal axis of the beam, or 
couples (pairs of forces) lying in planes passing through this axis. If all loads act in 
the same plane, called a plane of forces, passing through the geometric axis of the 
beam and one of the principal central axes of inertia of the cross section, then such a 
bend is called a symmetrical bending. If only bending moments act in cross sections, 
then such a bend is called a pure bending. With a symmetrical bending, the 
longitudinal axis (the geometric location of the centers of gravity of the cross 
sections) from a straight line turns into a smooth curve line called the curved axis of 
the beam or the elastic line of the beam. The elastic line shows the vertical 
movements of the centers of gravity of the cross sections under the applied loads.
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1.2. Calculation of beams strength
In general, the calculation of beams for strength is reduced:
a) Calculation of the maximum normal stress. The strength condition is as 

follows:

а тгх= ^ ^ < \ а \  = К,max ЦГ L J

where M max -  highest bending moment (set by diagram M); Wx -  axial section 
moduli of beam cross section; R -  design strength of beam material.

According to the condition of strength, three types of problems can be solved. Of 
greatest interest is the design task -  determining the required section moduli of the 
cross section of the beam:

ЦГ — ^max
x R

b) Calculation on the highest shearing stress, the strength condition is used in the 
form:

61 S atl_ max^x. max

Tmax “  Ixb
where Qmax -  highest shear force (set by diagram Q); S™'max -  static moment of cut

off part of cross section with respect to (w.r.t.) neutral axis X: I  v-  axial moment of 
inertia of beam cross section w.r.t. principal central axis X; b -  the width of the beam 
cross section at the point level at which the T is defined.

Usually the calculation on shearing maximum strength in order to checking the 
strength of beams (the strength conditions) for critical (dangerous) points of critical 
cross sections is limited by Tmax. Critical sections are those sections in which the 
greatest shearing forces (Q) act, and critical points are points of cross section located 
on the neutral axis X. In cases where the strength condition is not met (overstressing 
> 2 5%), the cross section should be increased.

c) Principal stress strength calculation. Checking the strength of beams by 
principal stresses is reduced to compiling strength conditions using one of the 
strength theories. For beams made of ductile materials, a third or, most often, fourth 
theory of strength (as the most economical) is used. Thus, the strength conditions 
according to the third and fourth strength theories are as follows:

<Tr = л/бг2 + 4 x 2 < R ;

where Оr , ОT -  reduced stresses (or equivalent -  (7̂ ,  <7̂ v) for test section points; 
<T, T -  normal and shearing stresses for corresponding points.

The principal stresses should be checked for those sections in which the greatest 
or close to them, shear forces Q and bending moments M  are acted. The dangerous 
points of such sections are usually located where the width of the cross sections 
changes dramatically. So, for example, in I-beams, channels - these are the points of 
contact between the flange and web, the width (d) of which is an order of magnitude 
less than the width of the flange.
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1.3. Calculating the Stiffness of Beams
When checking beams for stiffness, the stiffness condition is used:

sW
where y mm-  maximum deflection of beam in span, cantilevers, etc.; [ f]  -  

permissible deflection value; / -  length of beam sections to be checked; к -  
coefficient, the value of which is specified by norms ( к = 100; 200; 400; 500; 1000). 

permissible deflection value.
It is better to use the universal method to define beam deflections, i.e.

- X
where y o',0o -  initial parameters, i.e. deflection and angle of rotation the section 

located at the origin, i.e. point O. The origin is most often located at the left end of 
the beam at the center of gravity of the cross section. The distance z from the origin 
point (p. O) to the section, for which v ,0  are determined. The distances an bn cr  -  
from the origin to the sections in which /и., F.4 qn -  qrompJ are applied respectively.
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Figure 1.1 -  Initial parameters method scheme

1.4. Self-Test Questions
1. What is the essence of the design methods for permissible stresses, collapsible 

loads and limit states?
2. What is meant by the plastic hinge and the plastic moment of resistance, how is 

its value determined?
3. Which sections and points in the section when calculating beams for strength (a -  

by normal stresses, b -  by shearing stresses, c -  by principal stresses): are considered 
critical (dangerous)?

4. Which beam cross sections are more rational?
5. What is meant by an elastic beam line (or deflection curve)?
6. What are the known methods for determining beam deflections?
7. What is the approximate differential equation of the elastic beam line?
8. What is the universal equation of the deflection curve?
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9. What do you mean by the initial parameters? How are their magnitude 
determined?

10. How the calculation for beams stiffness is realized?
11. What is the connection between the diagram of deflections and the diagram of 

moments?
12. How can be defined (analytically) the maximum moments and deflections of 

beams?

1.5. Task for design work "Calculation of statically defined I-beam for 
strength and stiffness"

Given: I-beam (to accept by diagram number) is loaded with external load (to 
accept numeric data taking into account number of variant). Design resistance of 
beam material: /?f=210 MPa, /?^=120 MPa; longitudinal elastic modulus -  E = 200 
GPa; allowable deflection -  [///] = 1/500 and 1/100 for consoles.

Required:
1) Determine the reactions at the supports;
2) Plot diagrams of shearing forces and the bending moments (Q, M);
3) Choose the section of a beam and check strength on shear and principal stresses 

with use of the third failure theory;
4) Determine principal stresses for one of dangerous points (p. 2);
5) Plot diagrams of normal, shear, principal and extreme shear stresses for 

dangerous section on principal stresses;
6) Plot diagram of deflections of a beam, having determine deflections of three 

sections: one section in span and two for a consoles;
7) Beam stiffness test;
8) Check correctness of plotting of diagrams Q. M, у by means of a computer and 

attach the printout.

1.6. Numeric load values for beams
Table 1.1.

Variant
number

Size 
ay m

Loading Index of loading

q, kN/m F,kN Л/, kN m Я F M

1 0,9 30 110 40 2 1,2 2
2 1,1 40 100 30 2 1 1
3 1,0 32 120 34 1 1 _ 1,2
4 0,8 34 90 36 1,2 2 1
5 1,1 30 70 32 2 1 2
6 1,0 36 80 38 1 2 1,2
7 1,2 38 90 28 1,2 1 1
8 0,9 40 100 30 2 2 2
9 1,0 30 110 32 1,2 1 1,2
10 1,1 40 80 30 1 2 2
11 0,9 34 90 40 2 1 1
12 1,2 36 65 38 1,2 2 1
13 1,1 38 70 32 1 1 2
14 0,9 40 75 30 2 2 1
15 1.2 42 80 28 1 1 1,2
16 1,1 44 60 34 1,2 2 1
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1.7. Diagrams of I-beams with loads
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Figure 1.2 -  Schemes of beams
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1.8. Example of I-beam strength and stiffness calculation
Given: I-beam (Figure 1.3) with length -  L=b m (д=1 m) is loaded with 

concentrated force -  F  = 40 kN, moment -  M  = 50 kN-m and distributed load -  <7=30 
kN/m. Design resistance of beam material: Rc = 210 MPa, Rsh = 120 MPa; 
longitudinal elastic modulus -  E = 200 GPa; allowable deflection -  [//7] = 1/500 and 
1/100 for consoles.

Figure 1.3 -  Design diagram of beam and load

Solution:
1. Define support reactions.
Compose the static equilibrium equation:

. .  i- о 2 n 4,25 • /чг + 8 • a a2 -  mJ/nA=0; 4,25 Fa+8qa-m-4RB a=0; RB = ----------------- --------- ;
4 a

Rb=90 kN.

£/Ия=0; -m -8qa2+Fa+4RAa =0; RA = —— ^ 9 a---- Q ;
4 a

Ra=70 kN.
Check: IY =0; RA+Rg-4qa-F= 0; 70+90-120-40=160-160=0.
2. Plotting o f  diagrams Q, M.
Determinate Л/ values in characteristic sections of a beam.

QcrO; £?л(іеа.)=0; 6 /4 ^0 = ^= 7 0  kN; Qc=F= 40 kN;
A/0= -m=50 kN-m; MA= -m= -50 kN-m; Mr= 0; M^= -Fa/4=-^00.25=  -10 

kN-m.
Define the position of the section (z0) in which Q=0.

Q , = R A-  qzQ = 0; z0 = — = -  = 2,33 m.

Then the value of the maximum moment for the section (z0) will be equal:

M tm = -m + R Azn- q ^ -  = -50 + 70-2,33 -  3 0 - ^ -  = 32 kN-m. 
z 2

3. Selection o f  section o f beam and check the strength.
We select section from strength condition on design resistance of beam material 

M
(permissible strength): <Tmax = — j*- < Rc
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The required section module is equal:
ЦГ — ^max 50 10'

Rc
-  238 cm

210106
According to tables of rolling profile we choose the I section of № 22. 
Geometrical characteristics of the accepted I section № 22 are:

У'
1

' 3  X

rr-r7s/
'Л

L — *— 1

6=2 2 cm;
6=12 cm; 
/=0,89 cm; 
</=0,54 cm; 
/д-2790 cm4; 
Wx=254 cm3;
octtf

.v.max = 143 cm \

Figure 1.4 -  Scheme of I section
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Figure 1.5 -  Diagrams of shear forces, the bending moments, deflections



Check of strength of beam on shear stress in point 3 (see Figure 1.5) for section 
A (on the right), where Qmax=70 kN.

70 10 143 10 
2790-10-8 -0 ,5410“

- = 66,4 108 Pa:

г = 66,4 MPa < R,„ = 120 MPa.
The strength condition on shear stress is satisfied.
Check of strength of beam on the principal stresses, using the third theory of 

strength.
We make check for points of adjunction of the web and flange of the double T 

section (point of 2, see Figure 1.4), in section A on the right where QA=70 kN; 
Ma=50 kNm.

The strength condition on the third theory of strength has appearance:
cr = Vor + 4 r 2 < Rc

For point 2: v, = — - t  = —  -0 ,8 9  = 10,11 cm; 
2 2

S”  =b t - —- = 12-0,89- 22 0-89 =112.7 cm';

M . • у, 50 -101 10.11-10<X, = ---= ------------------------ ;---
/ 2790-10-8

r, =-Qa ST.2 50-101-112.7-10"
I - d  2790 10-8-0.54-10-

= 181.2 MPa:

- = 52,4 MPa:

<7r = Vl81,22 + 4-52,42 = 209,5M Pa< R = 210 MPa.

The strength condition on the principal stresses is satisfied.
4. Determination o f the principal stresses for one o f dangerous points o f 

dangerous section in the graphic way.
Show the stress condition in point 2 of section A (on the right).

Figure 1.6 -  Stress condition in point 2
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Figure 1.7 -  Mohr's circle

In the system of coordinates -  « Т - G »  (figure 1.7) in scale is laying the straight- 
line segment: OK =(7 = 181,2 MPa; KK] = T =52,4 MPa, OK2= -52,4 MPa. Having 
connected points of Kt and K2 we receive diameter of required circle of stresses with 
the center in point C (on which can be drawn circle). Crossing of circle with axis ¢7 
gives two points A and B4 which characterize the principal stresses values. So, OB 
straight-line (in scale) represents the ¢7,=195 MPa, and OA -  ¢7,= -14 MPa. Having 
drawn straight lines through points of Kj and K2 until their crossing, P  -  the pole can 
be found. Having connected pole P and point #, we get direction of tension stress <7,, 
and points P  and A -  direction of¢7,. Then we transfer in parallel the direction of 
action of stresses ¢7, and ¢7, to the element presented in fig. 4 and show position of 
the principal platforms which are perpendicular to the corresponding stresses ¢7, and
0 \ .

5. Plotting o f diagrams o f normal, shear, principal and extreme shear stresses for  
critical section.

When determining values of principal stresses and extreme shear stresses have to 
be used the biaxial stress-strain theory.

= \I<j 2 + 4 Г ) :  x =±-V<r2 + 4 r2 = ± ~ a  :
¢7,J 2 2 2

where ¢7 and Г may be determined by known formulas for the corresponding

points (of section): <7 = —M x Q l

At the same time parameters Q, M, у  it is necessary to substitute in formulas 
taking into account their signs.
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Point 1 : <т = —M Y 50-103
Wy 254-104

= 196,8 MPa,

t = 0, because S c"{ =0; Ox =196,8 MPa,

a ,  = 0;

Point 2 :

г  min = ±—  = ±98.4 MPa.max,min ^

¢7 =
50-103 10,11-10-2 =181,2MPa,

2790-1 O'*
^  = TO-IO3-! 12,7-10^  = 

2790-10 -12 -10-2 
70 -10' -112,7 -Ю"6т«еЬ _

2790-10"* -0,54-10'
- = 52,4 MPa.

The further course of calculations is reduced in Table 1.2 and by the received 
results we plot diagrams of stresses (Figure 1.7).

Table 1.2.
The point of 

section
Y

cm
оси/.
^ х л
cm3

о
MPa

X
MPa

Vo2 + 4 t2
MPa MPa

<*3
MPa

m̂axjnm
MPa

1 11 0 196,8 0 196,8 196,8 0 ±98,4

2
flange 10,11 112,7 181,2 2,4 181,5 181,4 -0,15 ±90,8
web 10,11 112,7 181,2 52,4 209,5 195,4 -14,2 ±104,8

3 0 143 0 66,4 132,8 66,4 -66,4 ±66,4

2’
flange -10,11 112,7 -181,2 2,4 181,5 0,15 -181,4 ±90,8
web -10,11 112,7 -181,2 52,4 209,5 14,2 -195,4 ±104,8

Г 11 0 -196,8 0 196,8 0 -196,8 ±98,4

Diagram Diagram Diagram
a (MPa) t  (MPa) a3,a  (MPa) t* . (MPa)

j, b=12 cm j.

Figure 1.8 -  Diagrams of stresses in section A (on the right)
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6. Plotting o f a deflection diagram o f a beam.
We select the origin of coordinate system on the left end of a beam (point O). 

Next, we prolong q -  uniformly distributed load up to the right end of a beam and 
counterbalance it with the compensating distributed load of backward direction (see 
fig. 2.).

Having worked out universal equation of deflections for the last force section 
(zone BC) we write.

Where 0o and y Q initial parameters (a turning angle and a deflection of section in 
origin of coordinates) which we will determine from conditions of supporting 
sections:

At z=0,25a, y A =0

Е І х У л = Е І х у о + Е І х во 0 , 2 5 а - т ' = 0;

at z=4,25a, y B = 0,

Е 1 х У в = Е 1 х У о  + Е 1 х ' во - ^ 25а ~
m-(4,25a)2 RA (4af <?( 4 < _ 0

24
We solve the system of equations with boundary condition: у  4 =0; y B = 0.

E .  I x ■ yo + 0,25- E - I x в0 - 5— -f 52

E I x yo + 4 , 2 5 E r x eo - 50 4f 52
After simplification we receive:

= 0;

70-42
6

\E Ix -y0 + 0,25 £ - / ^  • 60 = 1,5625 KN-m3;

30-42
24

=  0.

[E • I x • y 0 + 4,25 • E • I x • в0 = 24,8965 kN • m \
From where:
Е І х в0 =5,8335 kN nr; E ■ l x • y0=0,1041 kN m3.
Checking:

Е Іх Ул= Е Іх y0 + E Ix 0o - 0 , 2 5 a 0)2 

Е І х Ув  = Е І х у0 + Е 1 х во -4 ,25а-т ' (4 2̂5а)І + ■

- = 1,5625-1,5625 =

RA (4af q (4 a ) \  
6 24

0;

= 771,5631 -  771,5625 = 0.
For plotting of a diagram of deflections of a beam, in our case, we will calculate 

deflections only of the following sections:
In section О (z=0):
E - Ix • у  о =0,1041 kN-m3; E I X =2- 10n -2790-10-8 =5580 kN-m3.

0,1041
5580

= 0,02 mm.

In section A (z=a/4):
Уа =°-
In section D (midspan, z=2,25a):
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m-(2,25a)2 RA (2a)' q (2  а)*
E I I y D= E I I yo + E I x 0o-2.25a-  2 ' 6 24

= —40kN -m3;

40 n -7-,y n = -------- = -0,72 cm.
5580

In section В (z=4,25a):
Ув= 0-
In section C (z=4,5a):

E I -yr = E ■ I, • y0 + E ■ lx ■ 0O -4,5a -  W-‘ (4' 5a) + ^  (4’25a)— i - (.4’-̂ 5a) +

+ ^  f f i ^  + i i 0 j 5 a ) ^ 01()41+ 4,5 _ j 0 ± 5 l + 70-4,25-_
6 24 2 6

30-4,254 90-0,253 30-0,254 0, „ lxt ,
24 6 24
812yr = ------ = 0,15 cm.

' c 5580

According to calculation the diagram of deflections of a beam is plotted (Figure 1.5). 
Note. In calculated-design work it is necessary to define deflections o f two 

sections in span o f  a beam, i.e. at z=2a; z=4a, fo r  more exact plotting o f deflection 
diagram.

7. Check o f  a beam on stiffness.
In span: 1=4 m, a =4 m;

У о ^ Л І
l 400 555

1
500'

On the right console:

Z c = 011 5 _ _ ^ <
/ 25 167

/ = -  = 0,25 m; 
4

/
/

1
100’

The condition of stiffness is satisfied. Finally we accept a double T section №22. 
8. Determination o f  safety factors fo r  strength and stiffness.

Safety factor on stresses:

-  on normal stresses:
K  =  Rc =  210 -1 ,07;

-  on shear stresses:

-  on principale stresses:

* ,= - & -  = — = 1,81; 
rm, 66,4max ’

К  d i = - N -  = i 00;
< r ^  209,5
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Safety factor on stiffness: Kr = ^ ° -’—=1,1: 
y r" Уп 0.72

. _{y c ]_ 0.25
Y< ,, П 1 S

2. STRENGTH OF SHORT POLUMNS 
ON EXCENTRIC COMPRESSION-TENSION

2.1. General information
In real designs, there are often cases where two or more internal force factors act 

in cross sections, causing two or more simple types of deformation. In such cases, 
structural elements experience complex deformation (combined stresses). The 
following types of combined stresses take place: unsymmetrical (oblique) bending; 
eccentric compression (stretching); torsion with bending, etc.

2.2. Unsymmetrical bending
Oblique bending occurs when the force plane passing through the longitudinal 

axis of the bar does not coincide with any of the principal axes of inertia of the cross 
section, or a simultaneous combination of two straight bends acting in mutually 
perpendicular planes.

With oblique bending, four internal force factors act in the cross sections of the 
beams: Qx, Qy -  transverse forces and Mx, M Y -  bending moments. However, as a 
rule, the influence of transverse forces is insignificant and neglected in calculations. 
When determining stresses and deflections during oblique bending, the principle of 
independence of forces is used. Thus, the total normal stresses are determined by the 
following formula:

where M x , M Y -  bending moments; л*, у  -  coordinates of the points at which the 
G (stress) is defined; I X,1Y-  the principal central moments of inertia of the cross 
section. It is more expedient to set the signs of supplemented stresses based on the 
deformation nature of the longitudinal layers of the beam.

The calculation for oblique bending strength is reduced to compiling the strength 
condition for a critical beam section:

r  w„ w,
where Wx ,WY -  axial moments of resistance (section modulus) of cross section 

during bending; Rc is the design compression (Rt -  tensile) strength of the beam 
material.

According to the condition of strength, as usual, three types of problems can be 
solved. The most interesting is the design task, since two unknown values are 
included in the strength condition: Wx ,WY . Therefore, when solving the design task, 
the ratio k=Wx /WY is preset. Then, the strength condition will take the form:
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<Tm» = - f i r ( M x +kMf )<R.

At the same time, the ratio of axial resistance moments of the cross section 
depends on the shape of the section. So, for example, for rectangular section it is 
k=h/b, for I sections -  k= 8-40; for channels, etc.

23. Eccentric compression
Eccentric compression occurs when the bar is loaded longitudinally by an 

eccentric force, i.e. at a distance from the geometrical center of the cross section. 
Deformation of eccentric compression is more characteristic of elements of building 
structures.

In any cross section of the bar, three internal force factors arise during off-center 
compression:

N= -F; M x = F  • y F ; MY = F • xF.
Therefore, the general case of eccentric compression is reduced to central 

compression (N) and net of oblique bending (Mx, MY\  which, as described in 
paragraph 2.2, can be represented as two pure uniaxial bends acting in mutually 
perpendicular planes. Taking into account the principle of independence of forces, 
normal stresses in the cross section of the bar are equal to the algebraic sum of 
stresses from each internal force factor:

(7 = a K + cr„ N+ СГ. = — +л/, A
м ху  | M YX'

Л I, ’
This formula allows us to determine stresses at any point in the cross section 

characterized by the coordinates: x, у , the resulting stress formula can be represented 
after transformation as:

F  „  x Fx  y Fy .<У- —” О + + ~i~)'
A  i i r

where F -  external load (with eccentric compression, the sign should be 
attributed, and with tension ix2 , iy2 -  squares of the principal radii of inertia of 
the cross section; x, у  are the coordinates of the point at which the stress is 
determined; xf , yF~  coordinates of the application point of the external load. At the 
same time, the coordinates of the points: x, y, xp, yF, should be taken into account 
with their signs.

The eccentric compression strength calculation is limited to compiling the 
strength condition for hazardous (critical) cross-sectional points. Positions of the 
critical points are determined by means of a zero line, i.e. the line at the points of 
which the normal stresses (a) are zero. To determine zero line position, segments cut 
off by zero line on coordinate axes are calculated:

a,  =

a,
y F
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According to the obtained segments, a zero line in the section is depicted, and by 
use of two tangents to the section parallel to the zero line the two most stressed 
(farthest) points of the cross section in the stretched and compressed zones are found. 

The strength conditions take the form:
,( \

УрУ 
• 21 +  -

<7 . = ------- 1+ -
y Fy < R .

where x, у  -  coordinates of critical points of section; Rh Rc are the design tensile 
and compression strength of the bar material, respectively. When solving the design 
problem (selection of sections), in the general case, it is necessary to neglect either 
the deformation of the central compression or the deformation of the pure cross
bending due to the difficulties of solving the cubic equation. At the same time, the 
obtained results are rounded up and finally checked according to the general strength 
condition. But in cases where it is possible to express cross-sectional dimensions 
through one unknown parameter (for example, "b"), the solution of the problem is 
somewhat simplified.

2.4. Self-Test Questions
1. What is meant by eccentric compression (tension)?
2. What simple deformations occur with (during) eccentric tension?
3. What is meant by the zero line? What are the zero line properties?
4. What methods are used to determine the position of the zero line during 

eccentric compression?
5. How do you establish hazardous (critical) points in sections during eccentric 

compression?
6. How is strength calculation and section selection performed?
7. Which is understood as the core of the section? How to build it?
8. In which cases do you plot a section core?

2.5. Design assignment: ’’Calculation of Eccentric Compressed Column”
Given: Column (accepted by diagram number) of complex cross section shape is 

subjected to eccentric compression by external load F  (load value and point of 
application are accepted by variant number, Figure 2.1). Design compression strength 
of column material Rc --=10 MPa, tensile resistance Rt = 1 MPa.

Required:
1) Determine the geometric characteristics of the cross section of the column;
2) determine the position of the zero line and critical cross-sectional points;
3) calculate the greatest compressive and tensile stresses;
4) select cross section dimensions based on strength;
5) plot diagram of normal stresses;
6) plot and investigate the core of the section;
7) check the correctness of the section core construction using the computer.

17



Cross-sectional diagrams of the column with application points F

-Qj---4
-ОІ—-N-Qi

---x
■Q|

—4 -Qi —4 
•Q|—-s

■Д

A
•4

■ 4A
~ 2- 4

-Qi

-Qi-- 4A

--4

-°i—■>
-Qi —4

, b , b y. b , b ^ b . > b „ b  ^ b  ̂b yb  .

Figure 2.1 -  Schemes of transverse sections of the column with points 
of application of force
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2.7. Numeric values of loads and their application points

Table 2.1.
Variant Number P ^  Point of application 

’ of force
1 450 1
2 480 j 2
3 490 3
4 460 1
5 440 2
6 430 3
7 420 1
8 470 2
9 410 3
10 550 1
11 530 2
12 540 3
13 505 l
14 515 2
15 525 3

2.8. Example of calculating an eccentrically compressed column
Given: Column of complex cross-section shape (diagram No.), subjected to 

eccentric compression by external load F=250 kN (variant No.). Design strength of 
the column material for compression R,= 10 MPa, for tension R( = 1 MPa.

Required: (see items 1-7).

Solution
1. Definition the geometry»o f the cross section o f the column.
Let's show the cross section of the column in scale and select the auxiliary axes of 

coordinates X, Y. We divide the section into two simple ones and determine the 
coordinates of the centers of gravity of simple sections, their area.

1. for the first section (semicircle):
Ah

X, = 36h— - = 3,436; y x = 0; 4 = 1 ,5762.
Ъп

2. For second section (rectangle):
x2 = 1,5b: y2 = 0; A2 = 6b1.
The axis X  coincides with the axis of symmetry of the section, therefore, it is one 

of the principal central axes of inertia.
Define the static moment of the cross-section with respect to (w.r.t.) the Y axis: 
s v = Si + S'’ = AlX] + A2x2 = 1,57ft2 ■ 3.436 + 6b2 ■ 15b = 14.386'.
The total area:
A = 4  + A2 = 1,57b2 A bb2 = 7,5762.
Determine the coordinate of the center of gravity of section xc:
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s r 14.38 Ь'
= 1,96.

A 7,5762
The principal central axes Xc, Yc are shown in the section diagram and the 

coordinates of the centers of gravity of simple sections relative to the principal central 
axes are determined:

= jc, -  xr = -0,46: = 0 .xc = a'j -  xc = 1,536; y(- = 0;
Let’s calculate the principal central moments of inertia of the entire section: 

я(2Ь)4 36(26)3
128 12

- = 2,396

/ Vc = I[c + /"  = / V] + x2q • Aj + / "  + 4  • A2 = 0,1 1 64 +(1,536)2 • 1,5762 +

+(0,46)2 -662 =9,264.
Define squares of radii of inertia.

0.326=:
' A 7,51b2

2b(3b)'
12

К 9.2 b* = 1,22 b2.
A 7,57 b2

2. Determination the neutral line (axis) position and critical section points. 
Coordinates of external load application point: x F = -1,96; y F =b.  Calculate 

the lines that are trimmed by the neutral line on the coordinate axes:
1,22 b2 
1,906

= 0,646;
>>

0,3262
= -0,326.

The neutral line is shown in Figure 2.2.
Find the position of critical points. Having drawn tangents to the section parallel 

to the zero line, we establish that the most stressed points of the section are points F  
and D, which are the most distant from the neutral line. Point F  has the highest 
compressive stress and point D has the highest tensile stress.

3. Calculation highest stresses.
Stresses in hazardous points shall be determined by the following formulas:

where x F = -1,96;

0,646

<TF =- ~ a + yFyF + ^ ) :
A rx iv

<?» = - > yF}:D + XfXc>):
A 1:

■F = b ii /*—
4 -  xc ) + 6

tg a  = = 2; a  =63,4'o.
0,326

^ = 1 ,1 6 + 0,4476 = 1,5476;

co sa  = 0,447;

y D = - 6  • sin a ; 

s in a  = 0,894;

20
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Fig. 2.1. Column cross-section, neutral line, and stress diagram

4. Selection o f cross-sectional dimensions based on strength 
Compose the strength condition for the critical point in the compressed area of the 

section:
F

/

n - f ,
< R C;

Rewrite the strength condition as follows:

<*>= — 1+I
( i 2

< R C.

Denote: к =-*? =
0,32 b2
1,226

= 0,26,

Then: ОF = -----
A 1 + т О ^ + ^ ) <л с.

Rewrite stress through unknown parameter "b":

O,  =  -

7,5762 
F

1 +  -
1

0,326'
-(62 + 0,26-l,9262) <Rr

-7,058 = - 0 , 9 3 - - <Д С,
7,5762 ’ ’ 62
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I0,93F /0,93 -250 -103 л
) = л -------- = * —-----------г-----= 15,3 cm.

\  Rc V Ю-Ю6
Compose the strength condition for the farthest point in the stretched area of the 

section:

Rewrite:
F

^ 7

l + p-OV.VD + k ' XFXo)

l + УрУd , xFxD <R..

<R„

° n = - 1,51 -b2 
F

1 +  -
1

0,32 /г
• (b • (-0,8946) + 0,26 • (-1,96) • 1,5476) <Rr

F
. 4,18 = 0,55—  < R ., Wherefrom: 

7,5762 62a O n cnu2

l0,55F 10,55 •:
’i “ V - T

250 103
106

:37,2 cm.

As the design value we take the greater value b = 37.2 cm.
Determine stresses at critical points of section and perform strength check.

, /

* ' = - 7

, . 2 -, \

i2 i2 ,* > У

250-103
7,57-37,2 10-

1+ -
, ( W

0,327.2 1,227.2

,2 \

= -1,7 MPa < /?c =10 MPa:

= --- 1+27½. XF̂ D I _ _ 250-103
7,57-37,22 -10^

j + 6(-0,8946) + (-1,96) • 1,5476 = 1 MPa < Л, = 1 MPa.
0,3262 1,2262

The stress diagram at eccentric compression is shown in Figure 2.2.
5. Plotting the diagrams o f normal stresses.
To plot the diagram a  we will use the graphical method, having previously plotted 

diagram о  for simple stresses. We construct the normal stress plots from pure 
uniplanar bends w.r.t. the principal central axes Xc and Yc. Values of stresses from 
moments: Mx= FyF and My= Fxf at points of section B, F, D, C are equal respectively: 

* _ F y F _ 250-103-37,2-(-37,2) 10-4
° M' ~ ~  i v Ув~ 2.39 -37,24 -10'*

я»,  = - ^ 1  = - ^ 75 MPa;
r„ F y F 250 TO3 -37,2 (-0.894 ) -10"

2.39 -37,24 -10'*= - - -yD= —

-0,15 MPa;

- = 0,57 MPa:
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, F x h 250 -103( - 1,9) -37,2 • 2,1 -37,2 ■ 10^ л „охлп
<C = -----— *n = -------------- - "■---------= 0,78 MPa;

9,2-37,2 10

F xf 250-103-(-1,9)2-37,22-10 
I v X f~ 9,2-37,24-10 8

F x f 250 -103 -(-1 ,9)-37,2 -1,547-37,2 -10

= -0,71 MPa:

- = 0,57 MPa.
Jl/’ I v D 9,2-37,24-10 8

By superimposing the diagram a M on the diagram a My , we find a zero point /, 
connecting it with the center of gravity of the cross section C we obtain the position 
of the neutral axis of the pure oblique bend. Summing up the ordinates of diagram 
a Mx and <TMv , at points F and D, we obtain an diagram of stresses of pure biaxial
bending (Jhb (Figure 2.3).

Then the diagram of normal stresses from central compression, at which 
N  = - F  can be plotted:

F  250-103 - = -0.24 MPa.
7,57-37.22 • KT*

Adding the diagram o bh and o N we get the diagram of normal stresses from 
eccentric compression (Figure 2.2). Through the zero point at the diagram <Уесссп сотр, we 
conduct the zero line at eccentric compression parallel to the neutral axis at pure oblique 
bending. For control it is necessary to compare the diagram Oeccen comp with the diagram
of normal stresses at eccentric compression obtained analytically (Figure 2.2).

6. Drawing and explore the section core.
To build a section core, define the lines to be trimmed by zero line:
1. Neutral line 1-1: ax = -1 ,9b; a v = °© .
Force application point coordinates (point 1):

i ] U22 h2 1,22-37,2 /2 л
X,- = —-  = -------- = ------------- = 23,9 cm; v = —— = 0.

a, 19b 1.9 av'

2. Neutral line 2-2: ax =°o; a v = - h .

/2 0,32-Zr
}> = — -  = --- ;------ = 12 cm.

F? b
xF = - — = 0;

2 a .
3. Neutral line 3-3: ax= 2,1 b; av= «>;

1,22b2 = -0 ,58b = - 2 1,6 cm.
ax 2,1b 

4. Neutral line 4-4: ax= <»: ay= b;

xF = - — = 0;
4 a.

0,32 b2 -12 cm.

By connecting the resulting points with straight or curved lines, we obtain the 
core of the section (Figure 2.3).
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Figure 2.3 -  Stress diagrams. Core of cross-section

To examine the core of the section, apply force alternately at points C, 1, 2, 3 
(Figure 2.4).

a) Force is applied in the center of gravity of the section (point C).

a  = - — = ------ — —^- = -0,24 MPa;
A 7,57-37,22 -10

b) Force is applied in the area of the section core (point 1), x F = 0,32b; yF = 0. 
Stresses at the end points of the section will be:

1 + ^ 250-10-V | 0,32 -(-1,9 b)
7,57b1 \  + 1,22 b2

= 0,12 MPa;
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1,51b2 1,22 6
c) Force is applied at the boundary of the core section (point2), 

*,,=0,646; у  F = 0.

F
(J c = -----E A

i + ^
v

250 10 ( , 0,64 6 (-1,9 b)\ л
1 + ----- — r— ?------ - = 0 ;

F
^ = ~ 7

i + i ^

7.57 b2

250 103 
’ 7,57b2

1,22 b2

. 0,64 6-2,1 Ь'. AC .1 + ----------- z—  = -0 ,5  MPa.
1,22 b1 1

d) Force is applied behind the core of the section (point 3), xF = 1, lb; y F -  0.

, + m

1,57 b2 V 1.22b2 1

250 10 3 
7,57-37,2 2 10

( i + = _o,69 MPa.
\  1,22 b2 )

Based on the obtained stress values, we construct their diagrams (Figure 2.4).
Stress diagram analysis, with different arrangement of compressive force F, 

shows that it is most favorable to load the column with a centrally applied 
compressive force, within of core. In order to obtain the stress of one sign at all 
points of the cross section, force should be applied in the zone of the core of the cross 
section.

Figure 2.4 -  Section Core Study
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3. STABILITY OF COMPRESSED MEMBERS

3.1. Concept of stability of the original form of equilibrium
It turns out that the bearing capacity of the compressed column can be exhausted 

due to the loss of stability, that is, as a result of curvature (bulging), which occurs 
before the column fails directly from compression deformation. From theoretical 
mechanics it is known that the equilibrium of an absolutely solid body is stable, 
indifferent and unstable. A similar phenomenon occurs in the mechanics of a 
deformable body (strength of materials), with the only difference that the type of 
equilibrium depends on the amount of external load applied. An example is the 
equilibrium of a central compression column. At a relatively small value of the 
compressive load F, the column undergoes compression and is in a stable equilibrium 
state, since having received a small curvature of the geometric axis due to a 
transverse "disturbing" force, the column quickly returns to its original position. 
As the compressive load F  increases, the column is slower to return to its original 
position after the "disturbance" and at some critical value Fcr a state of indifferent 
equilibrium occurs: after some curvature, the column acquires equilibrium in a 
curved state. There is a bifurcation of equilibrium: the rectilinear shape loses 
stability, and the curvilinear shape does not yet have time to acquire it, which 
theoretically becomes stable again at F > Fcr. However, this condition is practically 
unacceptable, since the column no longer works on compression, but on compression 
with bending, and therefore, large deflection and stress occur, which are 
interconnected with each other by a non-linear dependence. This leads to destruction.

The bending associated with the loss of equilibrium stability of the rectilinear 
initial form is called longitudinal, since it arises from the longitudinal load. 
The greatest value of the longitudinal compressive force to which the rectilinear form 
of the column is maintained is called the buckling (critical) force.

3.2. Euler's buckling force. Euler's formula
The formula for determining the value of the buckling force for a column hinged 

by both ends was first obtained by L. Euler (1744), so it was called the Euler’s 
formula, and the force is often called the Euler’s force. The formula is:

Fcr /2 ,

I.e. the value of the buckling force is directly proportional to the stiffness (El) and 
inversely proportional to the square of the length of the column (/).

For various cases of fixing the ends of compressed columns, the value of the 
critical force is determined by the formula in the form:

cr m 2'
where // -  the factor of the reduced length, and the value /l l -  lrcd is the reduced 

length.

3.3 Critical stresses. Slenderness ratio of a column (flexibility)
Taking into account the Euler formula, we get:

_ F cr _ л 1 E  • /  _ 7C • E 
в "~ ~ А  ~ ( Ц І ) г А ~ ~ * Г '
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where Я -  slenderness ratio of the column, depends on its geometric
i ____

dimensions; / = л//  / A -  inertia radius of cross-section of column. It follows from the 
obtained expression that the critical stress depends on the elastic constant of the 
material (E) and the flexibility of the bar ( Я ).

Given that critical stresses should not exceed the proportionality limit (<Трт), it is

easy to determine the ultimate flexibility, i.e. Gcr —
к 1 ' E 

A2 <<7,рг'

Unlike geometric flexibility, ultimate flexibility (Я ) depends on physical and 
mechanical properties of the material from which the column is made, i.e. modulus of 
longitudinal elasticity (E) and proportionality limit ( o pr).

The Euler’s formula applies when the actual flexibility (A = is greater than
i

the limited ( Apr). If the flexibility of the compressed column is less than the ultimate 
flexibility (Ac  Apr), then the critical stress and force are determined by the 
Tetmajer-Yasinskii’s formula -  empirical formula:

ocr =a-b-  A: Fcr= air • A,
where a and b are material-dependent coefficients (for example, for steel д=310 

MPa, />=1,14 MPa).

3.4. Stability analysis
The following stability condition is used for centrally compressed columns:

where N is the normal force from the design compressive load; The A -  cross- 
section area of the column: (p -  the stress reduction factor or coefficient that reduces 
the design compression strength R to a value that guarantees the stability of column.

The stability condition allows us to perform three types of calculation, similar to 
strength calculations. Greatest interest does have the design task, i.e. selection of 
sections according to the given load and design strength of material /?, length of 
column / and methods of fixing its ends:

<pR
The use of this inequality is complicated by the fact that it includes two unknown 

values -  A and (p. Therefore, the cross-section is selected by successive 
approximations. Initially, the value of the coefficient ^ - 0 .5  is set, the area A is 
determined, the section is designed so that the principal central moments of inertia 
are approximately equal: I x ~ I v (deviations of up to 10% are allowed). Then, 
flexibility A is determined, and the value of the coefficient (p is set according to the 
tables, taking into account interpolation procedure. After that, the actual stress is
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determined and compared with the design strength /?, taking into account the 
coefficient ¢). If the deviation is more than 5%, the calculation should be repeated.

3.5. Questions for self-test
1. What is meant by the loss of stability of the compressed column?
2. Define the stable and unstable state of the column.
3. Define the critical force.
4. What differential equation is used to derive the Euler’s formula?
5. How the critical forces and stresses are determined?
6. What effects do cross-sectional stiffness and column length have on critical 

force?
7. What is meant by the flexibility of the column? Give the formula for 

determining geometric flexibility.
8. What is meant by the reduced (free) length of the column? How is the length 

ratio for the various fixing conditions determined?
9. In which cases do you use the Euler’s formula?
10. When is the Tetmajer-Yasinskii’s formula used in calculations?
11. What is the calculation of sustainability?
12. What is meant by the stress reduction factor and how is its value determined?
13. How are column sections selected for (from stability conditions)?
14. What are the conditions of equal stability used for, and what is it?
15. Give a diagram of critical stress, refer to ( Gct -  Л ).

3.6. Assignment for calculation-design work "Calculation of compressed 
column for stability'9

Given: Steel column with length / (need to accept by variant number, Figure 3.1, 
3.2) loaded with longitudinal compressive load F. Design strength of column material 
Rc = 210 MPa; modulus of longitudinal elasticity of material E = 200 GPa.

It is required:
1) to select the dimensions of the cross section of the column (the cross section of 

the column should be taken according to the diagram number below);
2) to determine the value of the critical force and compare it with the given load F.

3.7 Column Attachment (Fixation) Diagram.

1.
F

►— — ,

A W w?

Figure 3.1 -  Schemes of fixing column
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3.8 Cross-sectional schemes of columns

l.

6.

n.

i.

12.

3. 4.

8. 9.

I

10.

13. 14. 15.

[

1

J
Figure 3.2 -  Schemes of transverse sections of composite columns

3.9. Numerical values of column length and loads

Table 3.1.
option column diagram /, m F,kN

1 3 2,4 450
2 1 2,4 480
3 2 3 490
4 3 3,2 460
5 1 2,6 440
6 2 2,5 430
7 3 3,2 420
8 1 3,3 470
9 2 2,9 410
10 3 2,6 550
11 1 3,3 530
12 2 2,8 540
13 3 2,85 505
14 1 2,45 515
15 2 3 525
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3.10. Example of stability calculation

Given: Steel column with length - /  = 4 m; loaded with longitudinal compressive 
load -  F=540 kN. Design strength of column material -  tfc=210 MPa: elastic modulus -  
£=200 GPa.

Figure 3 J  -  Design diagram of the strut and its cross section

Solution:
1. Cross Section Sizing.
First iteration. We accept = 0,5, then from the stability condition: 

F  540-103
4 = - - = 51,4 cm

<p,R 0,5-210-106 
According to the tables (grade of rolling profiles -  GOST 8509-93) we take two 

equal angles: 125x125x10, A|=24,3 cm2, A=48,6 cm2, I x =360 cm 4, zq=3A5 cm.
Now we define the geometric characteristics of the section:

Ix = l v = 2(1 x + a2 A}) = 2(360 + 2,82 • 24,3) = 1101 cm4;

^  = ^  = 4. 
\A  y 48,6

76 cm; ^ ^ 0 7 4 0 0  
I* 4,76
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<p\ =  0,89 -  0,89 ~ 0-86 • 8.8 =  0,864;
' 10

(p\ = 0,864 » q \  = 0,5.

Second iteration. Accept:
= Й  + = 0 5 ^ 0 8 6 4  =0

2 2
^  , F  540-103 104
Then: A7 = ----- =

By the table, we accept -  (p:

- = 37,7 cm 1
<p2R 0,682 -210 -106 

We accept two equal angles: 100 x 100 x 10, Ax = 19,2 cm 1, 
I x = 7v = 179 cm2,z0 = 2,83 cm.
Then define the geometric characteristics of the section:

I x = 2(1 x + a 2A,) = 2(179 + 2,1 T  • 19,2) = 539 cm4;

[77 /  539 , 0,7-400 _
I • = J —  = J ------- = 3,75 cm, Я = ------------ = 74,7.
m,n ^  A V 2 19,2 3,75

By the table, we accept -  ¢9:

<p2 = 0,81 -  °’ —~ a  75 • 4,7 = 0,782;^2 10
= 0,782 > <p2 = 0,682.

Third iteration. Accept:
j V t f f L  0-682 + 0.782 2

2 2
^  , 540-103-104Then: Д  =-

0,732-210-10
= 35,13 cm2.

We accept two equal angles: 110x110x8, /1, = 17,2 cm2 
7T = 198 cm4, z0 = 3 c/w.
Define the geometric characteristics of the section:
/ ,  = 2 ( / ,  + <гЛ,) = 2(198 + 2,52 1 7,2) = 611 cm4;

[77 [61T  „ „  , 0,7-400------=4,21 cm; A = ------------ = 66,5.
ra,n У A V 34,4 4,21

By the table, we accept -  ¢9:

¢7 := 0,86 — 0,86 ~ °-81 • 6,5 = 0,827.
3 10

^  = 0,827 > = 0,732 /Ae difference: 13,2 %.
Forth iteration. Accept:

Ъ  = = 0-732 + 0.827 = 0  78
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Then:
, 540-103 -104 „  2

A4 = ----------------- - = 33 cm .
4 0,78-210 106

We accept two equal angles 110x110x7, A] = 15,2 cm 2, 
I x = 176 cm4,z0 = 2,96 cm.

Define the geometric characteristics of the section:
/ ,  = 2(/,, + a2 A,) = 2(176 + 2,542 15,2) = 548,1 cm4;

„  0,7-400
25 cm; Л = — — = 65,9./ = m = 4m,n V 30,4 4,25

Л 0/1 _ л oi
By the table, we accept -  (p\ <pA= 0 , 8 6 - - 1— —  5,9 = 0,83.

Check out the strength:
^  = -5 4 0 , 1 0 1  

A 30,4-10^
(7 = 177,6 MPa><pR = 0,83-210 = 174,3 MPa.

177,6-174,3
Overstress is:

174,3
100 = 1,9 %, the discrepancy is acceptable.

We finally accept the cross section from two angles: 110x110x7. 
A  = 30,4 cm2,/ ,  = / v =548,1 cm4.

2. Critical Force Definition.
For the adopted column Л = 65,9 < Xcr — 100, therefore, we use the 
Tetmajer-Yasinskii’s formula to determine the critical force: 
o a.=  a -  bX = 310 -1,14 • 65,9 = 234,9 MPa,
Then:
F  =(7 •/1 = 234,9-106-30,4-10 4 = 714 kN.

The ratio factor Fcr/F  is:
714

F  540
= 1,32.

Table 3.2.
Flexibility of elements

л = ^ -
i

Coefficient ¢0
for ordinary steel (Grade C or 

A 107)

Flexibility

A = tLl
i

Coefficient (p 
for ordinary steel (Grade C 

or A 107)
0 1,00 120 0,45
10 0,99 130 0,40
20 0,96 140 0,36
30 0,94 150 0,32
40 0,92 160 0,29
50 0,89 170 0,26
60 0,86 180 0,23
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Continuation of table 3.2
70 0,81 190 0,21
80 0,75 200 0,19
90 0.69 210 0,16
100 0,60 220 0,15
110 0,52 230 0,13
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