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Abstract

The problem of the prediction the early age effective elastic properties of cement-based composites is one of the most important and at the same
time complicated problems of concrete technology. Cement-based composites consist of a large number of randomly distributed phases with different
geometric shapes and sizes at each structural level.

Currently, there are two common approaches to modeling the effective elastic properties of cement-based composites — analytical and numerical
homogenization. Most of the researches of the effective properties of cement-based composites focused their attention on the effective medium theory
as a part of analytical homogenization, in which all composite phases are considered as spherical inclusions leading to relatively simple computational
models for prediction. This significant assumption affects the accuracy of predicting the effective properties, since it is a well-known fact that the real
geometric shape of most phases of cement-based composites differs from spherical. One of the drawbacks of the effective medium theory is that
solutions for non-spherical inclusions can only be received for a regular geometric shape representing an ellipsoid.

At the same time, one of the advantages of numerical homogenization based on finite element analysis is the possibility of calculating elastic
properties for an arbitrary geometric shape of inclusions.

The purpose of the study is multiscale modelling the effective elastic properties of cement-based composites, using a combination of analytical and
numerical homogenization, considering the geometric shape of the phases at each heterogeneous level, close to their real shape in the structure of
composites.
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9O®EKTUBHbIE YNPYTME CBOUCTBA LEMEHTHbIX KOMMNO3WUTOB B PAHHEM BO3PACTE
B. B. KpaBueHko

Pedepar

lMpobrema oueHkM 3hdEKTUBHBIX YNPYrX CBOCTB LIEMEHTHbIX KOMMO3UTOB B paHHEM BO3PacTe SBMSETCA OHOW U3 BAXHENLUMX 1 B TO e BpeMS
CnoXHbIx npobnem TexHomorun GeToHa. LiemeHTHble KOMMO3WTbI COCTOST W3 BOMbLUOTO KOMMYECTBA Cry4alHO pacnpedeneHHbIX a3 pasnuyHoi
reoMeTpr4eckoi hopMbl M Pa3MEPOB Ha KaxGOoM W13 3reMEHTapHbIX YPOBHEN CTPOEHWS UX CTPYKTYPbI.

B HacTosLLee Bpems CyLLeCTBYIOT ABa PAcnpOCTPaHEHHbIX NOAX0AA K MOAENMPOBaHNIO 3(h(EKTUBHBIX YNPYIUX CBOVCTB LIEMEHTHBIX KOMMO3UTOB —
aHanuTYeckas 1 YMCneHHas roMoreHn3aLys. bonbLLMHCTBO NPOBEAEHHbIX MCCeRoBaHNi 3 MEKTUBHBIX CBOMCTB LIEMEHTHBIX KOMMO3WTOB OCHOBAHbI Ha
MONOXEHNAX Teopun 3PDEKTUBHON CPeabl, OTHOCALLENCS K aHanMTMYECKO rOMOTeHU3aLmK, B KOTOPbIX BCE (hasbl KOMMO3WUTA PaccMaTpuBaloT Kak
cdepuyeckie BKIIOYEHWS, YTO MO3BOMSET MOMY4MTb OTHOCUTENBHO MPOCTbIE PacyeTHble MOAENW AMA WX OLEHKW. OTO CYLLECTBEHHOE AOMyLieHue
0OKa3blBaeT BAMSIHWME HA TOYHOCTb MPOrHO3MPOBaHMS CBOIICTB, MOCKOMbKY XOPOLLO M3BECTHO, YTO peanbHas reoMeTpuyeckas dopma 6onbluMHCTBa (a3
LEMEHTHbIX KOMMO3WTOB OTNNYaeTcs OT cepuyeckoir. OpHMM M3 HEmOCTaTKOB Teopun 3(PEKTUBHON Cpefbl SBMSETCA TO, YTO PELUEHMS
Ans Hecthepuyecknx BKIKOYEHMIA, MOTYT ObITb MOMYYeHb! TOMLKO ANs MPaBUIBbHONA reOMETPUYECKON (hOPMbI B BIAE annvncouaa.

B TOe Bpems OgHUM M3 NPEVMYLLECTB YNCTIEHHON FOMOTEH3aLMM HA OCHOBE KOHEYHO-3MIEMEHTHOTO aHanaa SBNSeTCs BO3MOXHOCTb OnpeaeneHms
YNPYruX CBOVICTB [11S1 IPOWU3BONLHO FreOMETPUHECKOI POPMbI BKIHOYEHNIA.

[laHHoe 1ccnepoBaHe OPUEHTMPOBAHO HA MOLenpoBaHue 3 dEKTUBHbIX YNPYriX CBOWCTB LEMEHTHbIX KOMMO3WTOB Ha OCHOBE MHOTOYPOBHEBOI
CXEMbI VX CTPYKTYPbl, MCTIONb3YS 4NS UX OLEHKM KOMOWMHALMIO aHanMTUYECKON 1 YYCTIEHHON rOMOreHM3aLmn, paccMaTprBas reomeTpudeckyto popmy das
Ha KaXAOM 3reMeHTapHOM reTeporeHHOM YpoBHe, Brn3Kyo K UX pearibHO (hopme B CTPYKTYPE LIEMEHTHbIX KOMMO3WTOB.

KnioueBble crnoBa: LEMEHTHbIN kameHb, GETOH, aHanuUTMYeckas U YNCNEHHAs rOMOreHU3aLms, MHOTOYPOBHEBAs CTPYKTYpa, reoMeTpuyeckas
topma.

Introduction

The elastic properties are crucial parameters, along with the com-
pressive and tensile strengths, for describing the mechanical behavior of
cement-based composites at an early age.

Modeling the elastic properties is the most complicated task in con-
crete technology. The reason is that, cement-based materials are three-
phase composites consisting of a porous cement paste, the interfacial
transition zone (ITZ), and aggregates [1]. In turn, cement paste itself is a
composite with an extremely complex and heterogeneous structure
formed during the hydration process.

It causes the fact, that modern approaches to modelling the elastic
properties of cement-based composites involve a multiscale technique.
This technique includes separate modelling the elastic properties at dif-
ferent scales depending on the microstructural morphology and sequen-
tial upscaling of properties from the underlying level to the upper one.
A homogenization scheme is implemented at each level for predicting the
effective elastic properties.

The key parameter of the homogenization is a representative ele-
ment volume (REV), which is defined as the smallest volume element that

has the same behaviour as the full-scale material [2]. Two scales can be
well identified in the REV: the microscopic scale (or local scale) which
represents the scale of inclusions, and the macroscopic scale (or overall
scale) which represents the scale of the REV itself.

There are two principal ways for homogenization the elastic proper-
ties of composites:

1. Analytical homogenization (also called mean-field homogeniza-
tion) based on the continuum mechanics, involving two class of effective
theories: effective medium theory (EMT) and differential effective medium
theory (DEMT) [3].

2. Numerical homogenization based on the finite element analysis
(FEA)' [4].

" The numerical homogenization also involves the Fourier transform ap-
proach, which is not discussed here.
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The analytical homogenization assumes that the microscopic strain
fields are linked to the macroscopic ones throw the following linear de-
pendency [5, 6]:

&g =A: (g);r=12,...,n, (1
where &, — is the second-order strain tensor of the phase r;

A, —is the fourth-order strain concentration tensor of the phase r;

(&,-)y —is the second-order macroscopic strain tensor;

V —is the REV,

(*)y - is the average of a field f over the REV,

(Frv =51, Fev;

x — is the position of an arbitrary point in the REV;

n —is the number of phases;

«:» —is the double dot product.

The equation (1) describes the so-called localization problem in the
homogenization theory.

Following the Hill-Mandel lemma, it leads to the macroscopic consti-
tutive elastic law (a,-)y = Cpom * {&)v, Which along with the equa-
tion (1) brings out the next expression:

(ar>V = (Cr : £r>V = <(Cr A <£r)V)V =
=(C, : A, >V : (ET)V| (2)
where (@), — is the second-order macroscopic stress tensor;
Crom — is the fourth-order effective elasticity tensor;

C,- —is the fourth-order elasticity tensor of the phase r.
This in turn, yields the EMT homogenization model [5, 6]:

Chom = err ((Cr : Ar) , (3)
where f,. —is the volume fraction of the phase r.

The most common solution of the localization problem, widely ap-
plied to cement-based composites, is the ellipsoidal inhomogeneity inclu-
sion (also called the Eshelby's inclusion) embedded in a reference medi-
um subjected to some uniform strain at infinity (£4,) [5]:

& =A: &, (4)
-1
A, =[1+S,:(C"¢C D], (5)
where I - is the fourth-order unit tensor;
C, - is the fourth-order elasticity tensor of a reference medium;
C,- —is the fourth-order elasticity tensor of the phase r;
S, —is the Eshelby tensor of the phase r, which depends on its ge-

ometric shape and elastic properties of a reference medium.
Taking the average of (4), we have:

<£r)V = <Ar : goo)V = <Ar)v P& = (Zrﬁ"Ar) f & (6)

Finally, combining (3), (4), and (6) is given the following homogeniza-
tion equation [3, 5]:

Chom =2+ £+ Cp ¢ [A,: (errAr)_l]- (1)

The elasticity tensor C, should be chosen depending on specific
morphology of the composite material. At the same time, there are sever-
al classical estimates for C,: the Mori-Tanaka (MT) scheme C, = C,,
(C,y, —is the fourth-order elasticity tensor of a matrix phase), and the Self-
Consistent (SC) scheme Cy = Cpom [5]-

The DEMT deals with a two-phase composite characterized by ma-
trix-inclusion morphology. Its homogenization model brings out from an
iterative starting from a step where a dilute concentration of inclusions is
randomly dispersed throughout a continuous matrix phase. At each step
a differential volume element dV is replaced with the same volume of
new inclusions randomly dispersed throughout the effective medium.
Replacement inclusions are always an order of magnitude greater in size
than those at the previous step. The effective elasticity tensor at each
step is expressed by [3, 7]:

Chom (€ + ) = Cpom(€) + [(Cine = Crom) * Atncl S, (8)
where C;,,. — is the fourth-order elasticity tensor of an inclusion;

A, —is the fourth-order strain concentration tensor of an inclusion;

¢ —is the volume fraction of an inclusion;

Ac - is the incremental volume concentration of an inclusion.

Which leads to the following generalized differential form [3, 7]:

d(;% = llfc(cinc - (Chom) FApe )
with initial condition C,, = C,, at c = 0.

To sum up, analytical homogenization is most suitable for compo-
sites with spherical inclusions providing fairly simple models for calculat-
ing the effective elastic moduli. The considerable drawback is that analyt-
ical solutions to the Eshelby's inclusion are expressed for ellipsoidal in-
clusions, which restricts the geometric shape of composite inclusions to a
sphere or spheroid.

The numerical homogenization assumes that the REV is subjected to
a homogeneous strain field, where the equilibrium conditions for the mi-
croscopic stress field (a(x)) read as [4, 8]:

V-o(x) =0Vx €V
with the linear elastic constitutive law:
o(x) =C(x): e(x)Vx €V,
where C(x) - is the fourth-order elasticity tensor.
The microscopic strain field €(x) can be split into the macroscopic
strain € which would be the actual strain field in the REV if it were homo-

geneous, and the periodic fluctuation strain & which accounts for the
presence of heterogeneities [4, 8]:

e(x) =+ &uW),

where 7i(x) - is the periodic fluctuating displacement field.
Taking into consideration the condition (&), = &, it follows that
Generalizing (9), (10), and (11), the following variational formulation
can be applied.
Find % € V such that:

J, G+ E@): Cx):E@)aV =0Vv eV,
Bw =5 (Vu+ (VW)

where ¥ - is the test displacement function.

The above formulation is not well-posed due to the existence of the
constraint (£),, =0. One way to circumvent this is introducing a vectoral
Lagrange multiplier A as an additional unknown and reformulate the prob-
lem [9].

Find (7, A) € V such that:

(10)

(11)

(12)

(13)
(14)

f(§+ é(ﬁ)):(C(x):é(ﬁ)dV+f A-iidv+f 6-udv =
4 14 14
=0vV(@0) eV, (15)

where «-» —is the dot product.

The solution of above problem is performed for six elementary load
cases consisting of uniaxial strain and pure shear solicitations by assign-
ing unit values of the corresponding &;;. The value &;; is usually taken to
be 1 and 1/2 for uniaxial strain and shear, respectively. For example:

1 0 0 0 1/2 0
&g = [0 0 0]; &p = [1/2 0 0].
0 0 0 0 0 o0

For each load case, the average stress g;; is computed and then the
components of the elasticity tensor C},,,,, are evaluated (see Figure 1).

Unlike the analytical homogenization, the numerical homogenization
makes it possible to evaluate the effective elastic moduli of composites
with inclusions of arbitrary geometrical shapes. The crucial disadvantages
are significant difficulties related to generating a mesh for arbitrary geom-
etry, and high computational complexity, which heavily depends on the
mesh resolution and the finite elements used.

Cement-based composites consist of a large number of randomly
distributed phases of different shapes and sizes, so to evaluate the effec-
tive elastic moduli it is most appropriate to use a combination of present-
ed approaches, applying them primarily depending on the morphology of
the phases at each elementary level. The geometric shape of phases
plays important role in homogenization of effective properties along with
their elastic properties and concentration, and is underestimated in the
most existing models.

This paper presents the linear model of elastic properties of cement-
based composites at early age based on the combination of these two
approaches to provide a solution considering phase shapes close to the
real ones, in contrast to existing approaches where they are mostly rep-
resented as spherical.

(16)
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Zi1 Young’s modulus
v12 and vi3 Poisson's ratio

7

G2 Shear modulus

Z£32 Young’s modulus
V21 and v23 Poisson's ratio

G113 Shear modulus

/£33 Young’s modulus
v31 and v32 Poisson's ratio

G723 Shear modulus

Figure 1 — Schematic representation of six elementary load cases required to estimate the effective elastic properties, according to [10]

Representation of multiscale microstructure

The microstructure of cement-based composites is divided into three
elementary levels:

1. Level 1: Unhydrated cement consists of the €352, C,S, C34,
and C,AF minerals, and hydration products consists of the CSH, CH,
CeAS3Hs,, CLASH,,, C3AH,, and FH; compounds;

2. Level 2: Cement paste consists of homogenous unhydrated ce-
ment, homogenous solid of hydration products, and porosity;

3. Level 3: Concrete consists of homogenous cement paste,
the ITZ, and aggregates.

Microstructure development

One of the key features of modeling the effective elastic properties of
cement-based composites is change over time in the volume fractions of
the constitutive phases of cement paste.

The modeling of the microstructure development is a complex ap-
proach that includes two parts:

1) A hydration kinetics model for evaluating the hydration degree «
at an arbitrary time step;

2) Predicting the volume fractions of cement paste phases corre-
sponding hydration degree f,(a) and associated with each hydration
reaction.

The present model involves the kinetics model of Parrot and Killoh
[11] and predicting the volume fractions using the stoichiometry of hydra-
tion reactions of clinker phases. To carry out the stoichiometry calcula-
tions, the sets of most well-known hydration reactions of Portland cement
were taken from the model of Tennis and Jennings [12].

Another aspect of modeling is related to the fact that numerical ho-
mogenization requires spatial distribution cement paste phases over
REV, which changes with time.

The most appropriate for these purposes is the discrete approach
based on splitting up of REV into cubic cells with a certain edge length,
typically 1 um, called voxels. Each voxel represents part of a specific
phase of REV at an arbitrary time step according to the stoichiometry of
hydration reactions and the rules of handle individual voxels. The discrete
approach can significantly simplify mesh generation.

One the well-known discrete models is CEMHYD3D [13]. However, the
considered model uses a computationally simpler model presented in [14].

Multiscale homogenization

Level 1

The most suitable scheme at that level is the SC scheme, in which
the reference medium coincides with the homogenized medium:

— for unhydrated cement: Cy = Cy;

— for hydration products: Co = Cpy;
where C,,. — is the fourth-order effective elasticity tensor of homogenous
unhydrated cement;

Cpp - is the fourth-order effective elasticity tensor of homogenous
solid of hydration products.

The SC scheme is classically used to homogenize a polycrystalline
structure consists of an agglomeration of individual crystallites (grains),
that accurately reflects both the structure of unhydrated cement and the
solid of hydration products.

The main problem here is the choice of geometrical shape of phases.
A spherical shape is a classical choice in most existing models. This is
considerable assumption, since a lot of SEM analyses of the microstruc-
ture of cement paste identify that the shape of most hydration products is
not spherical [15].

Meanwhile, as it has been noted, the analytical homogenization impos-
es restrictions that non-spherical inclusions can be approximated by one of
the spheroidal shapes: oblate or prolate, i. e. homogenous solid of hydration
products is represented by a set of spheroids, which differ in orientation. In
this way, the problem is reduced to choosing the appropriate spheroid
shape for each hydration product by determining its aspect ratio.

Assuming that spheroidal phases are isotropically oriented (i. e. in all
directions) in the REV, the average strain concentration tensor is defined
as [16, 17]:

A) == [0 Jy o Ay sin 0 d6 do, (17)

where A, - is the strain concentration tensor of the spheroidal phase rin
the spherical coordinates, calculated as:

AJr = RiijanpquAmnpq )

cos6 —sinf 0
2 The cement chemist notation is used. and = Sl.necqsqb Cosea.)w —sing|, (18)
sinfsin¢g cosOsing cos¢
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where ¢ and 8 — are the azimuthal and polar angle, respectively.

The average strain concentration tensor now should be taken for cal-
culating the effective elasticity tensor in the homogenization equation (7),
since the original tensor (5) assumes to axis-aligned orientation.

It is worth noting, that the above solution significantly increases com-
putational costs, since the SC scheme is a system of nonlinear equations
with respect to the components of the effective tensor, involving the
above complex transformation of the fourth-order strain concentration
tensor in solving it.

Regarding the morphology of Portland cement, it is not known with
any certainty. Nevertheless, in this paper is assumed that it is close to
spherical.

Level 2

The most frequent scheme at that level is the MT scheme, in which
porosity is considered as spherical inclusions. However, pores cannot be
completely characterized by a single geometric shape, the morphology of
pores is complex and has a wide range of both pore shapes and sizes
(from the nanometer to micrometer scale). In order to account the realistic
pore characteristics, it is more suitable to use the FEA-based homogeni-
zation.

Besides, the pure MT scheme is not well-posed at that level since,
the porosity of cement paste is partially saturated with water during the
hydration process. Consequently, a combination of the MT scheme and
poromechanics is required for predicting the effective moduli [18].

The FEA-based homogenization taken in conjunction with a discrete
REV of cement paste provides more flexible solution not restricted by
porosity shape, and can be effectively implemented without involving
poromechanics.

The discrete REV represents the set of voxels each of which has
stiffness depending on the phase it belongs to. And in addition, a voxel is
cubic element that can be easily transformed into a hexahedral finite
element.

The presented model uses a hexahedral mesh which is generated
based on the discrete REV obtained from the microstructural model [14],
and consists of the following finite elements:

— for strain field: a trilinear 8 nodes hexahedron with 3 degree-of-
freedom (DOF) per node;

— for stress field: a trilinear 8 nodes hexahedron with 1 DOF per
node.

The mesh has four subdomains related to the phases of unhydrated
cement, hydration products, and porosity, represented by water and air
subdomains. Each finite element has the same elasticity tensor within a
subdomain.

The global stiffness matrix and nodal load vector are assembled by
applying the variational formulation (15), where:

(Cuc VX € Ve
(Chp Vx € Vhp

CyVx€Y, ’
(Cair Vx € Vair
where C,,, C,; — is the fourth-order elasticity tensor of water and air,
respectively;

Vier Vips Viys Vair — are the subdomains of the REV referring to the
phases of unhydrated cement, hydration products, water, and air, respec-
tively.

One more important aspect of the FEA-based homogenization is
boundary condition. Typical boundary condition for approximating a solu-
tion over a REV are periodic boundary conditions under which each node
experiences the same periodic displacement as the opposite node.

This approach is characterized by high computational complexity as-
sociated with the assembly of the stiffness matrix and nodal load vector
as well as solving the linear system, and the regeneration of the mesh at
each time step.

Clx) = (19)

Level 3

This level is characterized by fairly clear morphology: a cement ma-
trix and aggregate particles of different sizes embedded into it. The ITZ
around each aggregate particle separates them from a cement matrix.
This area differs structurally and mechanically from both the cement ma-
trix and aggregates.

One of possible approaches to modelling such a composite structure
is reduce it to a two-phase morphology: a matrix with composite particles
embedded into it, consisting of aggregate particles surrounded by an ITZ
layer. It means, the original problem is divided into two subproblems:

1. Homogenization of a composite particle (also called effective
particle mapping);

2. Homogenization of a concrete microstructure.

According to [19], the effective particle mapping for a spherical parti-
cle surrounded by a matrix shell, effectively can be done using the Gen-
eralized Self-Consistent (GSC) scheme:

3
Tq,
(Cp =C («:ITZr (Caggr (Taggi!;itz) > y

where C,, - is the fourth-order effective elasticity tensor of a composite
particle;

C;rz - is the fourth-order elasticity tensor of a matrix shell (in this
case, it is the ITZ);

Cqgg — s the fourth-order elasticity tensor of a representative aggre-
gate particle;

Tagg — 8 the radius of a representative aggregate particle;

6+, — Is the thickness of the ITZ around aggregate particles.

The presented scheme is certainly realizable for rounded fine aggre-
gates and cubic coarse aggregates, since their shape can be approxi-
mated as spherical with relatively small error. On the contrary, the shape
of flaky and elongated coarse aggregates is closer to a prolate spheroid,
which reduces the accuracy of the scheme in relation to them.

In this way, for effective particle mapping of coarse aggregates pref-
erence is given to MT scheme:

(Cp = fagg( (Cagg : Aagg) + fITZ(CITZ ) (21)
where A, - is the strain concentration tensor of a representative ag-
gregate particle, which is calculated according to (5);

fagg — i8 the volume fraction of a representative aggregate particle
inside a composite particle, which is calculated as:

Va,
fagg = ng , (22)

(20)

Vagg —is the volume of a representative aggregate particle;

V;, —is the volume of a composite particle;

firz - is the volume fraction of the ITZ in a composite particle,
firz =1 = fagg-

The aggregates are a huge mass of particles of different sizes char-
acterized by a particle size distribution. So, the following question arises,
what a representative aggregate particle is in this case? The simplest
answer to this is to take any type of averages, for instance, weighted
average. However, it is obvious, simple averaging is not appropriate for
estimating the entire population of aggregate particles.

Here, a more flexible iterative process is used, where at each step a
composite consisting of a representative aggregate particle of the i-th
fraction surrounded by a uniform matrix shell is considered. At each step,
the thickness of a matrix shell remains constant. A number of steps is
equal to a number of aggregate fractions.

The effective elasticity tensor calculated by (20) or (21) from the pre-
vious step is the matrix elasticity tensor for the current step. At the first
step, the matrix elasticity tensor is C;r. Finaly, the effective elasticity
tensor of a composite particle will be reached in the last step.

The analyzes of the concrete morphology indicates that the DEMT s
probably the best choice for the homogenization its microstructure, since
a well match is observed between a concept of the DEMT and the con-
crete microstructure. So, the effective elasticity tensor of concrete (C,)
computes according to (9):

ac, 1
- (Cp - (Cc) : <Ap),

dc = ;
with initial condition C, = C.p, atc = 0.
where : (A,) - is the average fourth-order strain concentration tensor of
a composite particle, calculated using (17) for non-spherical particles,
otherwise (A,) = A,
Ccp — is the fourth-order effective elasticity tensor of homogenous
cement paste.

(23)
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Nevertheless, it is impossible to directly solve the above differential
equation, since the composite contains composite particles of two types —
fine and coarse. To get around this problem, one of the possible solutions
is to use an iterative process similar to described one earlier: first the
equation is solved for the fine composite particles, then this solution is the
initial condition for the equation solving with respect to coarse composite
particles.

Percolation threshold

Percolation threshold of the solid phase of cement paste plays key
role from the point of view of its mechanical behavior. It describes a state
of cement paste corresponding to the setting process during which the
initial stiffness of the cement system is formed, i.e. below which elastic
moduli can be neglected.

According to percolation theory any mechanical characteristic will be
proportional to the volume of connected (percolated) clusters in the sys-
tem. This means that it is necessary to determine the percolation clusters
each time step in the discrete REV and the stiffness matrix and nodal
vector must be assembled only from finite elements related to these clus-
ters, that is a rather complex computational problem.

At the same time, the percolation theory provides a simple analytical
solution represented by a power law in the following normalized form:

a—a. 14
Ccp = (ngA( per) )

1-aper

(24)

where CEE4 - is the is the effective fourth-order elasticity tensor of ce-
ment paste according to the FEA-based homogenization;

a —is the hydration degree of cement;

Qe — is the hydration degree of cement corresponding to the per-
colation threshold of the solid phase;

y —is the exponent.

Modelling results

Concrete with parameters reported in Table 1 was used for the simu-
lation.

The parameters of the constitutive phases of cement paste report in
Table 2. The elastic properties of the phases in Table 2 were taken ac-
cording to [20].

Table 1 — Parameters of concrete

The analyzed hydration period is 28 days.
The predicted phase composition of cement paste during hydration
period is shown in Figure 2.

EEN inert gypsum BN portlandite
H alite B ettringite mm C-S-H
H Dbelite Emm monosulfate water
mm ferrite iron_hydroxide air

B aluminate Em hydrogarnet

1.0

0.8 1

0.6

0.4 1

0.2

Relative compound volume [m3/m?3]

0.0
0.0000

0.1750

0.3500 0.5250
Degree of hydration [-]

0.7391

Figure 2 — The predicted phase composition of cement paste during
hydration period

The REV resolution was considered in the range from
10 voxels/edge to 20 voxels/edge to reduce the computational cost
(1 voxel =1 umd).

The Eshelby's tensor was computed according to [21].

i i 3
Mix proportions, kg/m Density, kg/m? |
Aggregate Water to Fineness of Mineral composition of ce-
Iéonland Water c?;?ﬁ,m Portland Aggregate c;n;/int, ment (mass %)
ement i g
fine coarse Cement :
fine coarse
C3S: 54,5; C2S: 17,3; CsA:
370 185 754 969 0,5 3150 2510 2640 345 8.9: C4AF- 7.6; Gypsum: 5
Table 2 — Parameters of the constitutive phases of cement paste
Phase
Parameter _ _ Gyp-
CsS C,S C5A C,AF | CSH CH C¢AS3Hs, | C4LASHy, | C3AHg | FH3 sum
Young's modulus, GPa | 1374 135,5 145,2 150,8 238 43,5 24,1 432 93,8 224 | 445
Poisson's ratio 0,299 0,297 0,278 0,318 0,24 0,294 0,321 0,292 0,32 0,25 | 0,33
Aspect ratio 1,0 1,0 1,0 1,0 0,01 0,1 100 10 1,0 1,0 1,0

The elastic properties of water: the bulk modulus is 2,2 GPa, the
Poisson's ratio is 0,499. The elastic properties of air were taken to be
close to zero.

The particle size distribution of aggregates is provided by Gates-
Gaudin-Schuhman distribution. Characteristic particle diameter was taken
for fine aggregate 8 mm, for coarse aggregate 31,5 mm. Particle size
distribution exponent is equal to 1,5 for both cases.

The average particle size for each fraction of aggregates was deter-
mined as the volume-weighted mean diameter (also called De Brouckere
mean diameter).

The parameters of aggregates report in Table 3.

The elastic properties of the ITZ were considered as 1/3 of the effec-
tive elastic properties of cement paste. The thickness of the ITZ is equal
to 50 pum.

The exponent in the equation (24) is equal to 1.

The modeling results are presented in Figures 3, 4, and 5.
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Table 3 — Parameters of aggregates

Aggregate
Parameter
fine coarse
Young's modulus, GPa 59,5 63,5
Poisson's ratio 0,25 0,31
Aspect ratio 1,0 3,0
Sieve size, mm 05;1;2;4,8 4:8;16; 31,5
—eo— Spherical hydrates
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Figure 3 — Comparison of the effective Young's modulus of hydration
products computed by using the SCS scheme, depending on their shape
and orientation (OD - orientation distribution)
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Figure 4 — Comparison of the effective Young's modulus of cement paste
computed by using the FEA and MT schemes
(the effective Young's modulus of hydration products and clinker phases
were computed by using the SC scheme)
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Figure 5 — Comparison of the effective Young's modulus of concrete
computed by using the Differential and MT schemes
(the effective Young's modulus of hydration products and clinker phases
were computed by using the SC scheme, the effective Young's modulus
of cement paste using the FEA scheme at a REV resolution
of 10 voxels/edge)

Conclusions

1. Cement-based composites consist of a large number of phases
of different shapes and sizes, so an approach to predicting effective elas-
tic properties considering all phases as spherical inclusions, is not an
effective solution that may reduce the accuracy of predicting.

2. The structure of cement-based composites and morphology of
phases differ significantly at each scale level preventing the use of only
one specific way for homogenization elastic properties.

3. The most preferable approach is to use both analytical and nu-
merical homogenization, which leads to achieving acceptable accuracy in
predicting effective characteristics.

4. The limitation of as such approach is the high computational
complexity.

5. Analysis of the microstructure of cement-based composites ce-
ment-based composites indicates that the SC scheme is the best possi-
ble way to predict the effective elastic properties of hydration products
and clinker phases, for a cement paste — the FEA scheme, and for con-
crete — Differential scheme.
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