ТЕРМИЧЕСКОЕ И КАЛОРИЧЕСКОЕ УРАГЧЕНИЯ СОСТОЯНИЯ И. И. МОЛНОРОВИЧ, В. В. Гуринорич Белорусский государственный университет

практически во всех курсах общей физики вопросу с ущест-овании калорического и термического уравнений состояния вещества почти не уделяется внимания. В дучшем случае только констатируется, что между макроскопическими параметрами системи - давлением, температурой и объемом, существует определенная связь. В то же премя это один из фундаментальнениих вопросов молекулярной физики.

З докладе анализируются досталочно простые отнты, повволяющие сделать вывод о том, что для любой изотропной термодинамической системи параметрами характеризующими механическое и тепловое равновесия в системе являются, соответственно, давление и температура. Очевидно, что их вначении определяются внутренией энергией, объемом и числом частиц в системе. Т. е. давление и темпералура функционально зависят от указанных экстенсивных параметров. Из анализа этих зависимистей логически следует существование термического и калорического уравнений состояния вещества, как функции температуры и удельного объеме.

НЕКОТОРЫЕ ВОПРОСЫ ЗАДАЧИ ДВУХ ТЕД А. Н. Качамин Ромольский государственный университет

1. Предлагается оравнительно простой векторный метод получения интеграла движения Лаплеа. Умножа векторно уравнение отвосительного движения на интеграл плещадей, получим $\mathcal{L} \times 2\delta = -2\mathcal{L} \times (\mathcal{L} \times \mathcal{L}) / \mathcal{L}$. После несложных преобравований равой части получим $-\mathcal{L}/2\mathcal{L}^2$)/ \mathcal{L} , где $\mathcal{L}^2 \times \mathcal{L}^2$. Перенеся результат в жевую оторону и вынеся оперетор $\mathcal{L}/2\mathcal{L}$ аскобки, получим в окобках вектор Лапласа $\mathcal{L} \times (\mathcal{L} \times 2\delta) - 2\mathcal{L}^2$.

= const

Выясияем направление вектора $\overline{\Lambda}$ Знание студентами вектора Лап ласа позволяет более предметно говорить о прецессии перигалии орбиты в релятивистской задаче двух тел

- 2. С помощью вектора можно просто получить уравнение орбиты в полярных координатах. Для этого умножим полученных интегран скалярно на Σ и почти сраву получим уравнение орбиты.
- 3. В острономии интеграл энергии используется в виде $U^2 = 2(2/2 + 4/2)$, где в большая получеь орбиты эличисы. Иля того, чтобы перейти и такому виду от обычного $E_X + E_0 = \frac{1}{2}$ предлагается воспользоваться теоремой о вириале.

НЕТРАДИЦИОННЫЙ СПОСОВ ВВЕДЕЛЫЯ ПОЕНТИЯ ТОКОВ СМЕЩЕНИЯ А. Н. Кемамин

Гомельский государственный университет

Понятие токов смещения нелесообравно ввести опирансь на рижом эсотого полужива посторов эсоторов может в посторов в постор BRUNCATE B BUILD $\mathcal{H} = \overline{\mathcal{V}} \times \overline{\mathcal{D}}$. Sto bedamenue cootbetctbyot концепции дельнодействии, поскольку $\overline{\mathcal{F}}$ относится к заряду, а \overline{H} и $\overline{\mathfrak{V}}$ - к получнодействовав на это равенство оператором 🗸 , и используи закон сохранения заряда, который формульруется в начале курса как следствие опытных фактов, можно получить / жотномение, свявывающее величины, относящиеся только к данной точке поля. Трактуя полученный результат о точки врения концепции близкодействия, ко приходим к понятию локов смещения. Однако, чтобы не вагромождать общий курс из--долиней математикой, можно необходимые преобразования выполнизь в интегральной форме. Пиркуляция 🕖 по контуру 🌊 булот равна ФН al = Ø (o x D) a . Преобразуем (v x D) = \$\overline{\pi} (d\vert x \overline{\pi}) = \overline{\pi} (d\vert x \overline{\pi}) = \overline{\pi} (d\vert x \overline{\pi}) | dt = \overline{\pi} d\vert | dt тле об в аба об . Обратившись к чертежу, можно с помощью простых рассуждений убедиться, что интеграл в правой часты and dN/dt, rge N - n Tok Bekropa D vepes поверхность, or-