ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА СТЕКЛОФИБРОБЕТОНА

Н.П.Блещик, Е.П.Гучко, строительный факультет, БІТІА Г.В.Мазуренок Лаборатория технологии модифицированного бетона, БелНИИС.

В статье рассмотрены результаты исследований физико- механических свойств композиций бетона с различным содержанием стекловолокна. Получены расчетные модели, позволяющие прогнозировать прочностные характеристики в зависимости от состава и физико- механических свойств исходных компонентов.

Минск, Беларусь

Ключевые слова: стеклофибробетон, прочность при сжатии, прочность при растяжении, прочность при изгибе, модуль деформаций.

Одним из направлений в области повышения эффективности строительства является разработка и применение стеклофибробетонных конструкций.

Стеклофибробетон рекомендуется для конструкций, в которых наиболее эффективно могут использоваться его технические преимущества, а именно:

- повышенные прочность при растяжении и изгибе, трещиностойкость, ударная прочность, вязкость, износо-, морозо-, и огнестойкость;
- возможность реализации эффективных конструктивных решений, например, тонкостенных конструкций без стержневой или сетчатой арматуры;
- возможность применения новых, более производительных приемов формования армированных конструкций, например, пневмонабрызг, метод погиба свежеотформованных листовых изделий, роликовое прессование и др. [1].

При выборе конструктивных решений учитываются методы изготовления, монтажа и условия эксплуатации конструкций. Формы и размеры элементов должны приниматься исходя из наиболее полного использования особенностей свойств стеклофибробетона, возможности механизированного и автоматизированного заводского изготовления, удобства транспортирования и монтажа конструкций.

Для расчета и конструирования тонкостенных стеклофибробетонных конструкций должны быть известны оптимальные композиции стеклофибробетона его прочностные и деформативные характеристики. В БелНИИС и БГПА были

проведены исследования по определению физико-механических свойств фибробетона, армированного щелочестойким стекловолокном.

Испытывались стандартные образцы из стеклофибробетона, с объемным содержанием фибры от 0,94 до 4,7 %, длиной от 12 до 60 мм. Составы образцов приведены в таблице 1.

Таблица 1 Составы испытываемых образцов, дисперсно армированных стеклянной фиброй

№ состава	1	2	3	4	5	6	7	8	9	10
Цемент, кг/м ³	1268	1268	1268	1268	1268	1268	1268	1268	1116	1624
Шлак, кг/м ³	-	-	-	-	-	-	-	-	152	•
Песок, кг/м3	634	634	634	634	634	634	634	634	634	ì
Вода, кг/м3	374	374	374	374	408	408	374	374	374	476
С-3, кг/м ³	6,34	6,34	6,34	6,34	9,51	9,51	6,34	6,34	6,34	11,37
ПВК, кг/м ³	-	-	-	-	-	•		-	16,74	•
Объемное содержание фибры, ρ_f %	0	0,94*	1,88*	2,82*	3,76*	4,7*	2,82**	2,82***	2,82*	2,82*

Примечание:

- длина фибры = 30 мм;
- ****** длина фибры = 12 мм;
- *** длина фибры = 60 мм.

Образцы подвергались испытанию на осевое растяжение и сжатис, растяжение при изгибе, раскалывание.

Результаты исследования прочности стеклофибробетона представлены в таблице

2.Полученные данные позволили сделать следующие выводы.

Предельная прочность торкретбетона при сжатии - 48 МПа получена на образцах, изготовленных из раствора первого состава при отсутствии стеклянной фибры. При увеличении содержания фибры с 0,94 до 4,7 % по объему прочность стеклофибробетона постепенно снижается на 16,7 % по отношению к прочности неармированного бетона. Снижение прочности стеклофибробетона при сжатии может быть объяснено результатами исследований Михайла и сотрудников [2], которые установили, что введение волокна вызывает при одной и той же степени гидратации цемента увеличение пористости цементного камня. Кроме того, они предполагают, что волокна к тому же замедляют гидратацию цемента.

Таблица 2 Прочностные характеристики стеклофибробетона.

№ состава	1	2	3	4	5	6
Процент армирования по	0	0,94	1,88	2,82	3,76	4,7
объему						
Прочность при сжатии, МПа	48,0	45,0	45,0	44,0	44,0	40,0
Призменная прочность, МПа	42,6	31,7	36,8	37,6	33,8	35,1
Коэффициент призмен- ной прочности	0,89	0,88	0,82	0,85	0,77	0,88
Прочность на растяжение при изгибе, МПа	1,77	4,8	6,6	9,55	11,45	11,98
Прочность на осевое растяжение по раскалыванию, МПа	1,33	3,32	3,89	6,87	7,06	7,32
Прочность на осевое растяжение по изгибу, МПа	1,02	2,74		5,58	6,64	6,95

Исследованиями установлено, что при прочих равных условиях наибольшая прочность стеклофибробетона отмечена у образцов, армированных фиброй длиной 30 мм. Увеличение длины фибры до 60 мм и уменьшение до 12 мм приводит к снижению прочности при сжатии примерно на 14%.

В результате математической обработки экспериментальных данных, полученных на образцах с длиной фибр 30 мм, зависимость прочности стеклофибробетона при сжатии представлена в следующем виде:

$$f_{ck,f} = (1 - 6.2 \cdot 10^{-2} \cdot \rho_f) \cdot f_{ck}^{\bullet}$$
, (1)

где f_{ck}^{\bullet} -прочность при сжатии неармированного бетона, по составу идентичного со стеклофибробетоном;

 ρ_f - объемное содержание фибры, %.

Коэффициент призменной прочности стеклофибробетона изменялся в пределах от 0,77 до 0,88. Среднее значение составило 0,84. Зависимости коэффициента призменной прочности от содержания стеклянной фибры не обнаружено.

Прочность на растяжение при изгибе стеклофибробетона увеличилась по отношению к неармированному бетону в 2,7...6,8 раза и составила 5,2...13,0 МПа. При длине фибр 30 мм растяжение при изгибе увеличивалось пропорцио-

нально с увеличением объемной концентрации фибр. При принятых составах раствора и характеристик исходных компонентов линейная зависимость прочности на растяжение при изгибе представлена в следующем виде:

$$f_{ctk,i,f} = 2.6 + 2.34 \cdot \rho_f$$
 (2)

Выражение (2) может быть использовано в интервале значений ρ_f =0,94 \div 3,75 %. С увеличением объемного содержания стеклянной фибры сверх 3,75% прочность стеклофибробетона на растяжение при изгибе увеличивается незначительно. Поэтому предельное содержание фибры следует принимать равным 3,75%.

Прочность стеклофибробетона при осевом растяжении определялась методом изгиба призм и косвенным методом при раскалывании кубов. Как следует из результатов, представленных в табл. 3, прочность на осевое растяжение, определенная по методу раскалывания, превышает прочность, определенную по методу изгиба, на $1.2 \div 8.15$ %.

Это объясняется влиянием повышенной пластичности стеклофибробетона. Расхождение между прочностью на осевое растяжение, определенное двумя различными методами, может объясняться также неточным значением коэффициента в формуле пластического момента сопротивления образцов. В этой связи, за более достоверные значения прочности осевого растяжения следует принимать среднее значение, определенное по двум методам исследований.

Прочность на осевое растяжение стеклофибробетона определяется в зависимости от относительного объемного содержания фибры, коэффициентов, учитывающих вероятность отклонения направления усилий в фибрах от направления расчетной плоскости (λ_{op}), вероятную анкеровку фибр (λ_{an}), вероятность пересечения фибрами расчетной плоскости (λ_{p}) [3-5]. Одним словом, дисперсное армирование посредством применения указанных коэффициентов приводится к направленному, а зависимость принимает вид:

$$f_{ctk,f} = \lambda_{\mathbf{p}} \cdot \lambda_{o\mathbf{p}} \cdot \lambda_{a\mathbf{n}} \cdot \rho_{f} \cdot f_{f} . \tag{3}$$

В результате математической обработки зависимости (3) для практического использования может быть использована следующая формула по определению нормативного сопротивления стеклофибробетона на осевое растяжение:

$$f_{ctk,f} = K_{\mathbf{p}}^{f} \cdot f_{kf} \cdot \rho_{f} + f_{ctk} (1 - \rho_{f}) , \qquad (4)$$

Таблица 3 Сравнительные данные расчетных и опытных значений прочности стеклофибробетона при сжатии и осевом растяжении

Напря-	Номера составов									
женное	Характери-									
состояние	стика	1	2	3	4	5	6	7	8	9
Осевое растяже- ние	Расчет , МПа (формула 3)	-	3,08	4,59	5,75	6,73	7,5	5,69	5,75	4,54
	Опыт, $f_{ctkf,on}$, MПа	1,17	3,03	4,92	6,22	6,85	7,14	5,61	6,22	4,94
	$\frac{f_{ctk,f}}{f_{ctk,f,on}}; %$	-	1,63	-6,69	-7,6	-1,77	5,05	1,5	-7,6	-8,15
Сжатие	Расчет , МПа (формула 1)	48,0	45,11	43,92	43,0	42,23	41,55	43,0	43,0	43,0
	Опыт, f _{ck,f,on,} МПа	48 ,0	45,0	45,0	44,0	44,0	40,0	37,7	44,0	37,8
	$\frac{f_{ck,f}}{f_{ck,f,on}};\%$	0	0,23	-2,9	-2,27	-4,02	3,87	14,06	-2,27	13,76

где $f_{k\!f}$ - нормативное сопротивление растяжению фибровой арматуры;

 $f_{\it ctk}$ - нормативное сопротивление неармированного бетона при осевом растяжении;

 $K_{\rm p}^{\prime}$ -коэффициент армирования стеклофибробетона при вычислении прочностных характеристик.

Здесь
$$K_{\mathbf{p}}^{f} = 5.7 \cdot 10^{-2} - 44 \cdot \rho_{f}^{2.5}$$
 (5)

Экспериментальные данные свидетельствуют о вполне удовлетворительной корреляции зависимостей (4) и (5) с расчетными данными.

Результаты исследований модулей упругих и общих деформаций, а также коэффициента Пуассона стеклофибробетона (отношение поперечных деформаций к продольным), представлены в таблице 4.

По результатам исследований зависимость начального модуля упругости представлена в виде закона смеси:

$$E_{cf} = K_{\rho}^{E} \cdot E_{f} \cdot \rho_{f} + E_{cm} \cdot (1 - \rho_{f}) \quad , \tag{6}$$

где $K_{
ho}^{\scriptscriptstyle E}$ -коэффициент армирования стеклофибробетона при вычислении деформативных характеристик - $K_{
ho}^{\scriptscriptstyle E}=5-87.5(
ho_f-0.01)\cdot 10^{-3}$;

 $E_{\,f}\,$ - модуль упругости элементарной стеклянной нити;

 $E_{\it cm}$ - начальный (секущий) модуль упругости неармированного мелкозернистого бетона.

 Таблица 4

 Результаты исследований деформативных характеристик стеклофибробетона

№			Относит. деформац., <i>є</i> ·10 ⁻⁵			Модуль	Модуль	Коэффи-
coc-	R _{ma} MIIa		Продол		Попереч-ные	деформа-	упругос-ти	циент
та-	-F/	G	1			ций	, ,,	Пуассона
вов	(кгс/см ²)	R	пол-	упру-	Попереч-	E·10 ⁻³ ,	E _B ·10 ⁻³ ,	<i>E</i> _{2y}
	(ные	гие	ные упругие,	MIIa	МПа	
			ε_l	ε_{lv}	$\varepsilon_{2\gamma}$	(krc/cm ²)	(KTC/CM ²)	$V = \frac{1}{\varepsilon_{1y}}$
	ĺ		"	Cly	239	(RIGIONI)	(RIGIONI)	
1	2	3	4	5	6	7	8	9
		0.2	52	49	4.9	15.3(156)	16.2(165)	0.10
1	42.6	0.3	75	71	9.9	16.3(166)	17.2(175)	0.14
	(435)	0.4	100	90	14.6	16.5(168)	18.3(187)	0.16
}		0.5	127	113	23.2	16.3(166)	18.3(187)	0.21
1	2	3	4	5	6	7	8	9
<u> </u>		0.2	37	35	4.4	19.8(202)	21.0(214)	0.13
2	39.7	0.3	57	55	9.1	19.8(202)	20.6(210)	0.13
_	(405)	0.4	80	73	14.5	19.1(195)	21.0(214)	0.20
	(,	0.5	100	93	20.0	19.2(196)	20.7(211)	0.20
						27.2(270)	1	
		0.2	30	26	4.7	22.5(229)	25.9(264)	0.18
3	36.8	0.3	52	47	9.3	20.0(204)	22.2(226)	0.20
	(375)	0.4	80	72	19.0	17.6(179)	19.5(199)	0.26
		0.5	103	92	28.0	17.3(176)	19.3(197)	0.30
1		0.55	114	102	34.0	17.2(175)	19.2(196)	0.33
		0.2	28	27	3.2	24.7(252)	25 ((261)	0.12
4	37.6	0.2	46	43	6.7	24.7(252)	25.6(261)	0.12
1 "	(383)	0.3	64	43 59	10.6	23.1(236) 22.6(230)	24.8(259) 24.4(249)	0.16
	(363)	0.4	84	74	15.4	21.7(221)	24.4(249)	0.18
		0.5	67	/*	15.4	21.7(221)	24.3(230)	0.21
		0.2	27	26	1.7	23.0(235)	23.9(244)	0.065
5	33.8	0.3	43	41	5.0	22.4(228)	23.4(239)	0.12
l	(345)	0.4	61	56	8.4	21.3(217)	23.2(237)	0.15
		0.5	81	71	12.8	20.2(206)	23.0(235)	0.18
1		0.6	-	86	17.6	-	22.8(233)	0.20
			L					L
	25.0	0.2	29	28	0.10	22.2(234)	22.9(234)	0.10
6	35.0	0.3	47	44	0.15	22.6(230)	22.6(230)	0.15
	(358)	0.4	68	60	0.18	22.5(229)	22.5(229)	0.18
		0.5	89	76	0.20	22.3(227)	22.3(227)	0.20
L		L	L			L	l	L

1	2	3	4	5	6	7	8	9
		0.2	28	27	0.2	21.9(223)	22.6(231)	-
7	33.6	0.3	45	41	1.8	21.1(215)	23.1(236)	-
	(343)	0.4	66	56	4.5	19.4(198)	22.9(234)	0.08
		0.5	87	73	8.6	18.6(190)	22.2(226)	0.12
		0.6	-	91	13.2		21.8(222)	0.15
 -	†	0.2	27	26	2.9	23.0(235)	23.9(244)	0.11
8	1	0.3	44	41	6.6	22.0(224)	23.5(240)	0.16
	34.2	0.4	64	58	10.0	20.4(208)	22.6(230)	0.17
İ	(349)	0.5	86	74	15.6	19.2(196)	22.3(227)	0.21
		0.6	110	91	18.3	18.1(185)	21.9(223)	0.20
		0.2	28	27	2.5	22.6(230)	23.4(239)	0.09
9	34.7	0.3	46	43	6.2	21.3(217)	22.8(232)	0.14
	(354)	0.4	66	60	11.5	20.1(205)	22.1(225)	0.19
1 .		0.5	89	78	17.1	18.8(192)	21.5(219)	0.22
		0.6	115	97	23.6	17.6(179)	20.8(212)	0.24
		0.2	27	27	4.2	16.5(168)	16.5(168)	0.16
10	25.3	0.3	44	42	8.6	15.9(162)	16.6(169)	0.20
	(258)	0.4	66	59	14.7	14.4(147)	16.1(164)	0.25
		0.5	88	74	19.8	13.7(140)	16.3(166)	0.27
		0.6	117	92	29.8	12.5(127)	15.9(162)	0.32
		L		L	L	<u> L</u>	L	L

Начальный модуль упругости стеклофибробетона зависит от модулей упругости матрицы и фибр и их объемного содержания. Причем с увеличением объемного содержания фибр начальный модуль упругости стеклофибробетона увеличивается по нелинейному закону (на 29,4% при увеличении содержания фибр с 0,94 до 4,7%).

Начальный коэффициент поперечной деформации бетона (коэффициент Пуассона) несущественно зависит от объемного содержания фибр. Для принятых композиций стеклофибробетона его значение рекомендуется принимать равным 0,16. С увеличением уровня напряжений от 0,3 до 0,6 коэффициент Пуассона стеклофибробетона увеличивается в среднем до 0,2 или 25%.

Литература.

- 1. Рабинович Ф.Н. Дисперсно армированные бетоны. М., 1989. С. 176.
- 2.Mikhail R.Sh., Abd-El-Khalik, Hussancin A., Dollimore D., Stino R. Cem. Coner, Res 8 (6), 765 (1978).
- 3. Рабинович Ф.Н., Лемыш Л.Л. Об учете параметров ориснтации и анкеровки фибр при расчете сталефибробетонных конструкций // Расчет пространствен-

- ных строительных конструкций: труды Куйбышевского гос. Ун-та. Куйбышев. 1985. Вып. 11. С. 161-169.
- 4. Рабинович Ф.Н., Лемыш Л.Л. Зависимость между параметрами фибрового армирования и напряженно-деформированным состоянием сталефибробетонных элементов // Инж. Теорет. Основы строит-ва: Реф. Инф. ВНИИС. М., 1986. Вып. 8. С. 2-8.
- 5. Рамачадран В., Фельдман Р., Бодуэндж. Наука о бетоне. Физико-химическое бетоноведение. М., 1986. С. 142.