СТРУКТУРНО-МЕХАНИЧЕСКАЯ МОДЕЛЬ И ПРОЧНОСТЬ ЦЕМЕНТНОГО КАМНЯ НА СЖАТИЕ

Блешик Н.П.

Строительный факультет, БГПА.

Рыскин М.Н.

Лаборатория технологии модифицированного бетона, БелНИИС. Минск, Беларусь

В работе рассмотрены вопросы взаимосвязи структуры и прочности пементного камня. Предложена структурно-механическая модель цементного камня и приведены сравнительные оценки расчетных и опытных величин его прочности.

Ключевые слова: высокопрочный бетон, цемситный камень, структура, прочность.

Задача получения высокопрочного сводиться к созданию оптимальной структуры конгломерата, характеризующейся высокой собственной прочностью компонентов и высокой адгезионной прочностью их контактов. Свои особенности в характер деформирования и разрушения высокомарочных бетонов вносит то, что прочность цементного камня в них приближается к прочности заполнителя; при этом различие в дисперсности их составляющих элементов превышает три десятичных порядка. Отсюда целесообразность рассмотрения бетона как двухфазного материала (цементный камень — заполнитель), что обусловливает необходимость количественного прогнозирования прочностных и деформативных свойств камня в бетоне.

Авторы предприняли попытку выразить прочность кампя исключительно через физические параметры его структуры: относительное объемное содержание геля (m_z) , гелевых пор $(m_{z.n.})$, капиллярных пор $(m_{x.n.})$, непрогидратированных клинкерных частиц $(m_{xn.})$ и вовлеченного воздуха $(m_{\theta 03})$.

Аналитические выражения, определяющие перечисленные структурные компоненты, получены в работе [1] в виде:

$$m_{z} = \frac{(1+w) \cdot \alpha \cdot \rho_{sm}}{\rho_{z} \left(\rho_{sm} / \rho_{u} + B / \mathcal{U}\right)}; \qquad (1)$$

$$m_{z.m.} = \frac{(1+w) \cdot \alpha \cdot \left(\rho / \rho - \rho / \rho / \rho \right)}{\rho / \rho + B/II}; \qquad (2)$$

$$m_{\kappa.n.} = 1 - m_{z} - \frac{(1 - \alpha)(\rho_{o.m.}/\rho_{u})}{\rho_{o.m.}/\rho_{u} + B/U}$$
, (3)

в которых α - степень гидратации цемента, определяемая как произведение функций учитывающих минералогический состав клинкера, содержание безводного гипса, удельной поверхности цемента и водоцементного отношения цементного теста [2]:

$$\alpha = \varphi_{MC} \varphi_{so3} \varphi_S \varphi_{B/II} \quad ; \tag{4}$$

w - неиспаряемая вода на 1 г цемента при полной гидратации:

$$w = \frac{0.4K_{1r}C_3A + 0.114K_{2r}C_4AF + 0.231K_{3r}C_3S + 0.155K_{4r}C_2S}{(C_3A + C_4AF + C_3S + C_2S)\varphi_{MC}},$$
 (5)

где C_3A,C_4AF,C_3S,C_2S - процентное содержание трехкальциевого алюмината, четерехкальциевого алюмоферрита , трехкальциевого силиката и двухкальциевого силиката; $K_{1r},K_{2r},K_{3r},K_{4r}$ - соответствующие временные функциональные коэффициенты обуславливаемые взаимодействием основных минералов с водой;

 $ho_{_{em.}},
ho_{_{q}},
ho_{_{z}},
ho_{_{\kappa.z.}}$ - плотности соответственно: воды в тесте, цемента, геля и твердого вещества в геле.

$$\rho_{\kappa z} = 2433 \text{ kT/M}^3 [3].$$

$$\rho_z = \frac{0.734 \rho_{y} (1+w)}{(1+w\frac{\rho_{y}}{\rho_{z}} - 0.00007 \rho_{y})}$$
(6)

Как показано в статье [4] настоящего сборника, цементный камень может быть представлен как композиционный материал, в котором клинкерные частицы наполняют матрицу — "связку" образованную цементным гелем, капиллярными порами и вовлеченным воздухом ($m_{cs} = m_z + m_{s,n} + m_{s,n}$).

Поведение такого композита под сжимающей нагрузкой предложено описывать следующей структурно-механической моделью (рис.1), в которой выделено два параплельно сочлененных блока (I и II).

Блок I включает непрогидратированные зерна цемента $(m_{\kappa n})$ и часть "связки" (m_{cs}^I) , расположенную под зернами клинкера, которая при нагружении находится в сложном напряженном состоянии, обусловленном эффектом "обоймы".

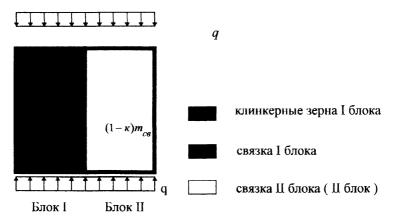
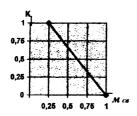


Рис. 1 Структурно-механическая модель цементного камня.

Блок II представляет собой свободнодеформируемую "связку" между включениями клинкера (m_{∞}^{π}). Работа под нагрузкой данного блока определяется исключительно механическими свойствами "связки", испытывающей одноосное напряженное состояние (сжатие), ориентированное в направлении действия внешней силы.

Относительные объемные содержания в цементном камне клинкерных частиц $(m_{\kappa n})$, "связки" I блока (m_{cs}^I) и "связки" II блока (m_{cs}^I) , соответственно, вычисляются по формулам:

$$m_{KR} = 1 - (m_{CR}^{I} + m_{CR}^{II}) = 1 - m_{CR}$$
; (7)


$$m_{cs}^{I} = km_{cs} \quad ; \tag{8}$$

$$m_{cr}^{II} = (1 - k)m_{cr} \quad , \tag{9}$$

в которых k — параметр учитывающий долю "связки" входящей в блок I от объема всей связки. Параметр k выражен в виде линейной функции от m (рис.2):

$$k = 1,25(1 - m_{cs}) \tag{10}$$

Граничные условия данной функции: 1) k = 0 при $m_{cs} = 1$ — отсутствие цементных зерен, модель вырождается в блок II; 2) k = 1 при $m_{cs} = 0.25$ — отсутствует свободнодеформируемая "связка", модель вырождается в блок I (константа 0,25 представляет собой пустотность цементных зерен при максимально плотной их упаковке).

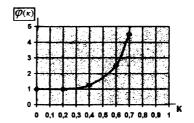


Рис. 2. Зависимость параметра к от объема "связки" m_{cd} .

Рис. 3. Зависимость коэффициента $Q(\kappa)$ от параметра к.

Относительные объемы блока II в ц.к.:

$$m_I = m_{\kappa n} + m_{cs}^I = 1 - (1 - k)m_{cs}$$
 ; (11)

$$m_{II} = m_{c\sigma}^{II} = (1 - k)m_{c\sigma}$$
 (12)

$$f_{\underline{u}\underline{\kappa}} = \sigma_{\underline{I}} m_{\underline{I}} + \sigma_{\underline{II}} m_{\underline{II}} \quad . \tag{13}$$

Напряжения в блоках I и II в предельной стадии $(\sigma_{I}, \sigma_{II})$ находятся, рассматривая концентрацию и упругие свойства отдельных компонентов каждого блока. Прочность цементного камня, исходя из зависимости (13), таким образом, определяется формулой:

$$f_{yx.} = \left[\begin{array}{c} \frac{f_{ce}}{E_{ce}^{II} m_I} + \frac{E_{ce}^{II} m_I^I}{E_{ce}^{II} m_I} \end{array} \right] m_I + f_{ce} m_{II} , \qquad (14)$$

где f_{cs} – прочность "связки";

 $E_{cs}^{I}, E_{cs}^{II}, E_{\kappa n}$ — модули упругости соответственно "связки" I и II блока и клинкерных частиц.

Прочность "связки" определяется параметром Φ полученном в работе [4]:

$$\Phi = \frac{m_z - m_{zn}}{m_z + m_{zn} + m_z} \quad . \tag{15}$$

На основании большего числа экспериментальных данных по прочноств камня различных исследователей и собственных опытов, прочность "связки" цементного камня была найдена в виде:

$$f_{cs} = K\Phi^n = 185\Phi^{2,9}, [M\Pi a].$$
 (16)

Физическим смыслом константы K=185 МПа в формуле (16) является прочность твердого вещества "связки" в камне, т.е. прочность цементного геля при нулевой пористости.

Увеличение модуля упругости "связки" блока $I(E^I_{cs})$ по сравнению с модулем упругости "связки" блока $II(E^I_{cs})$ за счет ограничения деформаций связки клинкерными включениями может характеризоваться эмпирическим коэффициентом $\phi(k) \ge 1$, полученном в виде функции от параметра k (рис.3):

$$\varphi(k) = E^{II} / E^{I} = 1 + 30k^{6} . \tag{17}$$

На основании зависимостей предложенных О.Я. Бергом и др. [5], модуль упругости "связки" определяется из выражения:

$$E_{cs} = E_{cs}^{II} = \frac{50000 f_{cs}}{80 + f_{cs}}, \text{ [M\Pi a]}.$$
 (18)

Величина модуля упругости клинкерных частиц в цементном камне была принята равной $E_{yx}=1.5\cdot 10^5\,M\Pi a$.

В итоге, формула прочности цементного камня (14) с учетом (7)–(12), (14),(17) и (18) после преобразований примет вид:

$$f_{\mu \kappa} = 185 \Phi^{2,9} \left[\frac{\left(1 - (1 - k) m_{cs} \right)^2}{\frac{\Phi^{2,9}}{123 + 3\Phi^{2,9}} \left(1 - m_{cs} \right) + \frac{k m_{cs}}{1 + 30k^6}} + (1 - k) m_{cs} \right]. \tag{19}$$

Применимость полученных математических зависимостей проверялась на результатах многочисленных экспериментальных исследований отечественных и зарубежных авторов и собственных опытах. Часть этих данных приведена в таблице. Всего были обработаны результаты по прочности цементного камня на основе более чем 50 бездобавочных цементов различных химикоминералогических составов и дисперсности. Исходные водоцементные отношения изменялись от 0,22 до 0,5. Время твердения цементного камня составляло от 1 до 28 суток; твердение проходило в воздушно-влажностных условиях или воде при температурах 18-24°C.

Анализ экспериментальных данных и расчетных величин прочности цементного камня показал приемлемую их сходимость в широких диапазонах варьирования исходных данных. Таким образом разработанная структурномеханическая модель цементного камня достаточно адекватно отражает реальную физическую структуру пементного камня и процессы, происходящие при его деформировании и разрушении под кратковременной нагрузкой.

Расчетные (f_p) и опытные (f_{on}) значения прочности цементного камня

Характеристика цемента													
Νe	Вид цемента Минералогический состав, %				SO ₃	Syz.	K _{rer} .	<u>В</u> Ц	τ	•	f ^{on}	fon	
		C ₃ A	C ₄ AF	C ₃ S	C ₂ S	%	м²/ка·			cy T.	МПа	MIla	%
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	"Плевен" (Болгария)	7,08 7,08 7,08 7,08	10,3 10,3 10,3 10,3	58,2 58,2 58,2 58,2	21,1 21,1 21,1 21,1	0,36 0,36 0,36 0,36	320 320 320 320	0,25 0,25 0,25 0,25	0,3 0,3 0,3 0,3	1 3 7 28	17,5 37,9 59,4 69,9	16,0 40,0 62,0 68,0	+9,1 -5,4 -4,1 +2,7
2	"В.Пик" (Болгария)	12,5 12,5 12,5 12,5	9,4 9,4 9,4 9,4	38,5 38,5 38,5 38,5	35,0 35,0 35,0 35,0	0,52 0,52 0,52 0,52 0,52	350 350 350 350	0,26 0,26 0,26 0,26	0,3 0,3 0,3 0,3	1 3 7 28	21,2 42,1 61,3 70,3	27,0 41,0 55,0 68,0	-21,6 +2,6 +11,4 +3,3
3	БТЦ (Болгария)	8,8 8,8 8,8 8,8	10,2 10,2 10,2 10,2	53,7 53,7 53,7 53,7	22,8 22,8 22,8 22,8	2,27 2,27 2,27 2,27	380 380 380 380	0,27 0,27 0,27 0,27	0,3 0,3 0,3	1 3 7 28	30,2 53,7 73,9 78,2	29,0 46,0 59,0 79,0	+4,2 +16,7 +25,2 -1,1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
4	Себряков-	3,3	13,9	53,6	26,0	1,65	300	0,25	0,25	1	27,2	26,0	+4,6
	cacadi	3,3	13,9	53,6	26,0	1,65	300	0,25	0,25	3	49,7	55,0	-9,7
Ì		3,3	13,9	53,6	26,0	1,65	300	0,25	0,25	7	70,0	72,0	-2,8
İ	1	3,3	13,9	53,6	26,0	1,65	300	0,25	0,25	28	83,8	7 7,0	+8,9
1		3,3	13,9	53,6	26,0	1,65	300	0,25	0,3	1	14,9	13,0	+14,9
i	}	3,3	13,9	53,6	26,0	1,65	300	0,25	0,3	3	32,8	32,0	+2,5
1	ļ	3,3	13,9	53,6	26,0	1,65	300	0,25	0,3	7	52,1	51,0	+2,1
1		3,3	13,9	53,6	26,0	1,65	300	0,25	0,3	28	65,0	65,0	0
1		3,3	13,9	53,6	26,0	1,65	300	0,25	0,4	1	6,1	6,5,0	-0,5
ł	Ì	3,3	13,9	53,6	26,0	1,65	300	0,25	0,4	3	17,1	17,0	+0,7
1	į.	3,3	13,9	53,6	26,0	1,65	300	0,25	0,4	7	30,9	36,0	-14,1
		3,3	13,9	53,6	26,0	1,65	300	0,25	0,4	28	40,4	45,0	-10,3
1		3,3	13,9	53,6	26,0	1,65	300	0,25	0,5	1	3,1	3,5,0	-11,3
1		3,3	13,9	53,6	26,0	1,65	300	0,25	0,5	3	10,0	11,0	-9,3
		3,3	13,9	53,6	26,0	1,65	300	0,25	0,5	7	19,4	21,0	-7,8
		3,3	13,9	53,6	26,0	1,65	300	0,25	0,5	28	26,1	34,0	-23,2

Литература.

- 1. Отчет о НИР "Разработка основных положений структурно-механического метода экспрессной оценки морозостойкости бетона" // Белорусская государственная политехническая академия. Минск, 1996.
- 2. Блещик Н.П., Протько Н.С., Рыскин М.Н. Математические модели кинетики гидратации цемента. // Междунар. Конф. Инженерные проблемы современного бетона и железобетона. Минск, БелНИИС, 1997. Т. 2. С. 25 36.
- 3. Пауэрс Т.К. Физические свойства цементного теста и камня // Четвертый международный Конгресс по химии цемента. М.: Стройиздат, 1964. С. 402-438.
- 4. Блещик Н.П., Рыскин М.Н. К вопросу о моделировании структуры и прочности цементного камня. Настоящий сборник.
- 5. Берг О.Я. и др. Высокопрочный бетон. М., Стройиздат, 1971.