МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«Брестский государственный технический университет»

Кафедра машиностроения и эксплуатации автомобилей

Методические указания к курсовому проектированию по дисциплине

«Детали машин»

для студентов технических специальностей

Часть 3

УДК 621.822.6

Методические указания к курсовому проектированию по дисциплине «Детали машин» для студентов технических специальностей (часть 3) содержат пример конструирования зубчатых колес редуктора и расчет соединений валступица (шпоночные соединения) для редуктора, а также необходимые справочные данные и список рекомендуемой литературы. Издание может использоваться при выполнении практических работ и подготовке к экзамену по данной дисциплине. В 3-х частях.

Составитель: С. В. Монтик, зав. кафедрой МЭА, к. т. н., доцент

Рецензенты: зам. главного инженера, главный конструктор ОАО «Брестский электромеханический завод» Полуляшин Р. А. зав. кафедрой машиноведения БрГТУ, к. т. н., доцент Голуб В. М.

[©] Учреждение образования «Брестский государственный технический университет», 2024

6 КОНСТРУИРОВАНИЕ КОЛЕС РЕДУКТОРА

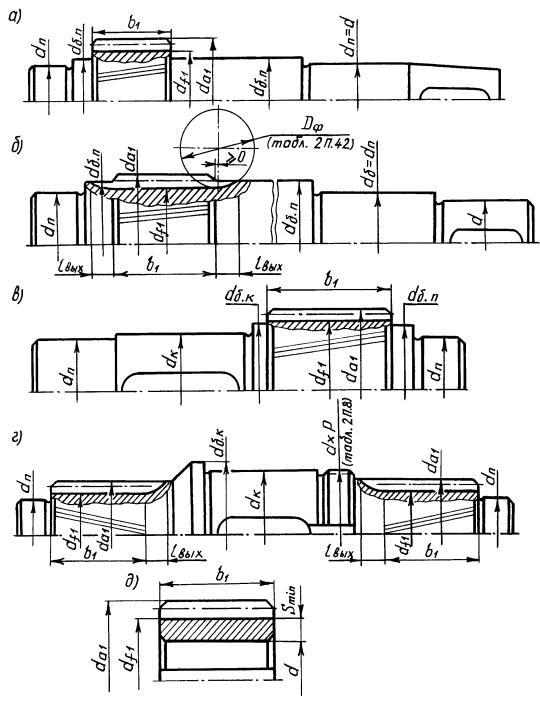
Общие рекомендации по разработке конструкции цилиндрических зубчатых колес

Конструкции цилиндрических зубчатых колес представлены на рисунках 6.1...6.2. Меньшее из пары зубчатых колес называется шестерней, большее – колесом. Термин "зубчатое колесо" является общим и относится как к шестерне, так и колесу. Шестерни чаще всего изготавливают за одно целое с валом, получая так называемые валы-шестерни. На рисунках $6.1~a, \, \delta$ показаны быстроходные (входные) валы-шестерни, а на рисунках $6.1 \, \epsilon$, ϵ – промежуточные валы-шестерни. Жесткость и точность вала-шестерни выше, чем вала и насадной шестерни, а стоимость производства ниже за счет уменьшения числа посадочных поверхностей и отсутствия соединения (например, шпоночного). Насадные шестерни применяют в открытых зубчатых передачах, а также в тех случаях, когда по условиям сборки невозможна установка одного из зубчатых колес на валу, например колеса быстроходной ступени, устанавливаемого на промежуточном валу двухступенчатого редуктора с раздвоенной тихоходной ступенью. В данном случае одну шестерню выполняют за одно целое с валом, а вторую – насадной. При этом, по условиям прочности минимальная толщина S_{min} тела насадной шестерни (рисунок $6.1 \ d$) принимается в зависимости от модуля m:

m, MM	1,5	2,0	2,5	4,0	5,0	6,0
S_{min} , MM	4 m	3,8 m	3,5 m	3 m	2,8 m	2,5 m

В конструкции промежуточного вала-шестерни на рисунок $6.1\ \emph{г}$ обе шестерни раздвоенной косозубой тихоходной ступени выполнены за одно целое с валом, так как диаметр ступени вала под ступицей насадного колеса $d_k > d_{a1}$, что обеспечивает его установку.

В зависимости от соотношения диаметров впадин зубьев шестерни d_{f1} и вала зубья нарезают со свободным входом и выходом инструмента (рисунок 6.1 a, e) либо углубляясь в тело вала частично (рисунок 6.1 e) или полностью (рисунок 4.12 e). При углублении зуба в тело вала следует учитывать выход фрезы $l_{\rm BMX}$ (рисунок 6.1 e, e), который определяют графически по диаметру фрезы $d_{\rm phy}$, принимаемому в зависимости от модуля d [2, 3].


Заготовкой для вала-шестерни при единичном типе производства служит круглый прокат, при серийном и массовом – поковка.

Основными элементами цилиндрического насадного колеса являются обод (или зубчатый венец), диск и ступица (рисунок $6.2 \ в$, ϵ). В ряде конструкций колес диск может отсутствовать, а обод объединяться со ступицей (рисунки $6.2 \ a$, δ).

На рисунок 6.2~a...в показаны формы насадных цилиндрических колес, применяемые при единичном и мелкосерийном производствах. Колеса небольших размеров ($d_{a2} < 100~{\rm MM}$) изготавливают точением из круглого проката. При

 $d_{a2} = 100 \dots 500$ мм в качестве заготовок используют поковки, получаемые свободной ковкой. У колес, заготовки которых получают из круглого проката или свободной ковкой, обрабатывают все поверхности.

Колеса небольшого размера (d_{a2} < 80 мм) выполняют преимущественно в виде сплошных дисков. При $d_{a2} \ge 80$ мм для уменьшения объема точной обработки резанием базовых поверхностей, на дисках выполняют небольшие выточки глубиной 1...2 мм с более грубой обработкой (рисунки 6.2 a, δ).

(a, 6, 8, 2 - вал-шестерня; д - насадная шестерня)Рисунок 6.1 - Конструкция цилиндрических зубчатых колес [3]

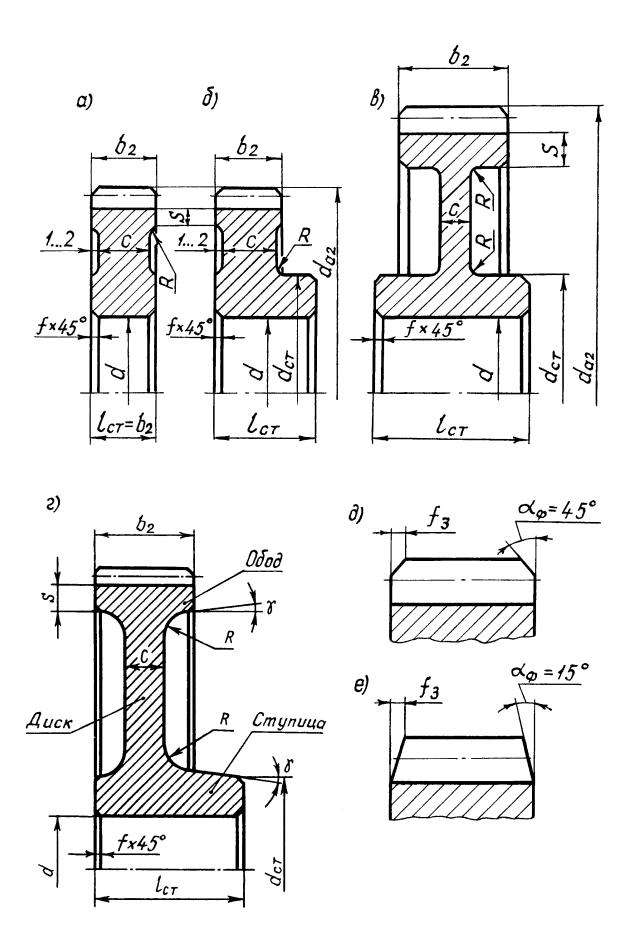


Рисунок 6.2 – Конструкция цилиндрических зубчатых колес (насадные колеса) [3]

В целях уменьшения массы колес диаметрами $d_{a2} = 250 \dots 500$ мм глубину выточек по торцам увеличивают, получая при этом колесо с диском (рисунок 6.2 ϵ). В мелкосерийном производстве наряду со свободной ковкой для получения заготовок малых и средних размеров находит применение ковка в односторонних подкладных штампах. Колесо в данном случае имеет глубокую одностороннюю выемку с расположением ступицы со стороны подкладного штампа. С этой же стороны заготовка, с целью облегчения ее выемки из штампа, имеет уклоны $\gamma \geq 7^\circ$ и радиусы закруглений $R \geq 6$ мм. С противоположной стороны на торце колеса выполняют выточку глубиной 1...2 мм.

В среднесерийном, крупносерийном и массовом производствах заготовки колес диаметрами $d_{a2} \leq 500$ мм получают в основном штамповкой в двухсторонних штампах. Заготовка в данном случае максимально приближена к форме готового колеса (рисунок $6.2\,\varepsilon$), имеет достаточно чистую поверхность и не требует обработки нерабочих поверхностей. Облегчение выемки заготовки из двухстороннего штампа обеспечивается, как и в односторонних подкладных штампах, назначением уклонов $\gamma \geq 7^\circ$ и радиусов закруглений $R \geq 6$ мм. При крупносерийном и массовом производствах нарезание зубьев производится при обработке колес пакетами. По этой причине длину ступицы колеса $l_{\rm ст}$ принимают равной или меньше ширины венца b_2 . Если ступица выступает с одной стороны, то нарезание в пакете возможно только двух колес. Во всех остальных случаях ступица колеса может располагаться симметрично или несимметрично относительно обода в зависимости от конструкции редуктора. При этом нарезание зубьев проводят отдельно для каждого колеса.

При диаметрах колес $d_{a2} > 500$ мм их изготавливают литыми из углеродистых или легированных сталей (кроме единичного производства). При единичном производстве для колес таких размеров применяют сварную заготовку.

Следует отметить, что окончательная длина ступицы колеса $l_{\rm ct}$ может быть принята только после расчета соединения колеса с валом (шпоночного, шлицевого или с натягом).

С целью облегчения обработки и транспортировки колес в дисках иногда выполняют четыре отверстия, размеры которых принимают конструктивно.

Dravesta		Способ получения заготовки							
Элемент колеса	Параметр	Круглый прокат	Свободная ковка	Штамповка					
		(рисунок 6.2 а)	(рисунок 6.2 б, в)	(рисунок 6.2 г)					
	Диаметр	$d_{a2} < 100 \text{ mm}$	б) $d_{a2} = 100 \dots 250$ мм	$d_{a2} =$					
Ofor	диаметр	$u_{a2} < 100 \text{ MM}$	в) $d_{a2} = 250 \dots 500$ мм	= 100 500 мм					
Обод	Толщина	$S = (2 4)m \ge 10 \text{ MM}$							
	Ширина		b_2						
Ступица	Диаметр	d = d (a)	d						
	внутренний	$a - a_k$ (3,	$d=d_k$ (здесь d_k – диаметр вала под ко						

Таблица 6.1 – Размеры конструктивных элементов цилиндрических зубчатых колес, мм

Элемент		C	пособ получения заготов	ки					
	Параметр	Круглый прокат	Свободная ковка	Штамповка					
колеса		(рисунок 6.2 а)	(рисунок 6.2 б, в)	(рисунок 6.2 г)					
	Диаметр наружный		$d_{\mathrm{CT}} = 1,55d$						
	Длина	$l_{\mathrm{CT}} = b_2$	$l_{\mathrm{CT}} = (0.8 \dots 1.5) d$ [оптимальное значение $l_{\mathrm{CT}} = (1 \dots 1.2) d$]						
	Толщина	$C = b_2 - (2 4)$ MM	$C = b_2 - (2 \dots 4) \text{ mm} \cdot C = (0,3 \dots 0,4) b_2 \ge 10 \text{ m}$						
Диск	Радиусы скруглений	R	² ≥ 1 мм	<i>R</i> ≥ 6 mm					
	Уклон	_	_	$\gamma \geq 7^{\circ}$					

Примечания:

- 1. Размер фаски f в отверстии ступицы диаметром d принимают по таблице A.1 приложения. Размеры фасок по углам наружной поверхности ступицы и обода колеса принимают такого же размера f.
- 2. На торцах зубьев выполняют фаски $f_3 = (0,5 \dots 0,7)m$ (см. рисисунок 6.2, ∂ , e) и округляют до ближайшего стандартного значения, выбираемого из ряда: I,0; I,2; I,6; I,0; I,
- 3. Угол фаски α_{Φ} (см. рисунок 6.2, ∂ , e):
- на колесах с прямыми зубьями $\alpha_{\Phi} = 45^{\circ}$;
- на колесах с косыми зубьями при твердости рабочих поверхностей $H_2 \le 350~HB \alpha_{\Phi} = 45^{\circ}$;
- при твердости рабочих поверхностей $H_2 > 350~HB~-\alpha_{\Phi} = 15~...~20^{\circ}.$

В приведенном ниже примере расчета используются данные из пособия [1, 2].

Пример выполнения раздела курсового проекта

6 Конструирование колес редуктора

6.1 Конструирование зубчатого колеса быстроходной ступени

Колесо выполняется насадным и устанавливается на промежуточном валу редуктора.

Исходные данные

Параметры зубчатого колеса (по данным примера из [1, 2]):

- модуль $m_n = 2,5$ мм;
- число зубьев $z_2 = 98$;
- угол наклона зуба $\beta = 14,83502^{\circ};$
- ширина зубчатого венца $b_2 = 47$ мм;
- делительный диаметр $d_2 = 253,45$ мм;
- диаметр впадин $d_{f2} = 247,20$ мм;
- диаметр вершин $d_{a2} = 258,45$ мм.

Материал колеса: сталь 45, термообработка: улучшение, твердость зубьев на активной поверхности: 232...262 HB.

Диаметр вала, на который устанавливается зубчатое колесо, $d=d_k=80$ мм (см. рисунок 6.3).

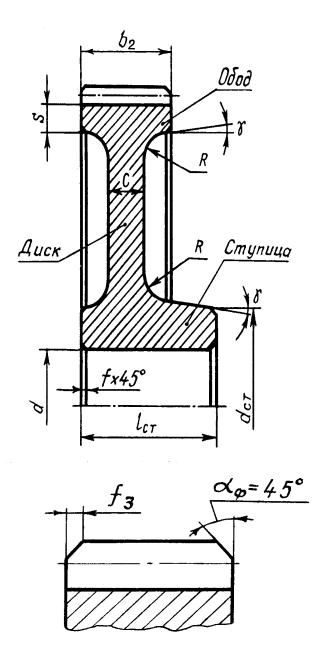
Тип производства: среднесерийное производство.

Для среднесерийного производства принимаем для изготовления колеса заготовку, полученную штамповкой в двухсторонних штампах.

Способ получения заготовки: штамповка.

Определение размеров конструктивных элементов цилиндрического косозубого колеса быстроходной ступени

Определение размеров конструктивных элементов цилиндрического косозубого колеса быстроходной ступени представлено в таблице 6.2. Рассчитанные размеры принимаются по ряду нормальных линейных размеров по ГОСТ 6636-69 (см. [1], таблица A.4).


Таблица 6.2 – Определение размеров конструктивных элементов цилиндрического косозубого колеса быстроходной ступени (см. рисунок 6.3).

Тип производства — *среднесерийное производство* Способ получения заготовки — *штамповка*

Элемент колеса	Параметр	Обозначение, формула,	Расчет и полученное значение
	Делительный диаметр	d_2 , мм	$d_2 = 253,45 \mathrm{mm}$
Зубчатый венец	Диаметр вершин	d_{a2} , мм	$d_{a2}=258,\!45$ мм
	Диаметр впадин	d_{f2} , мм	$d_{f2} = 247,\!20$ мм
Обод	Толщина	S = (2 4)m ≥ 10 мм	$S = (2 4) \cdot 2,5 = 5 10$ мм. $S = 10$ мм
	Ширина	b_2	47 мм
	Диаметр внут- ренний	$d = d_k$	45 мм
Ступица	Диаметр наружный	$d_{\mathrm{CT}} = 1,55d$	$d_{ ext{CT}} = 1,55 \cdot 45 = 69,75$ мм. $d_{ ext{CT}} = 71$ мм
	Длина	$l_{\text{CT}} = (1 \dots 1, 2)d$	$l_{\text{CT}} = (1 \dots 1,2) \cdot 45 = 45 \dots 54$ мм Принимаем $l_{\text{CT}} = 53$ мм.
Диск	Толщина	$C = (0,3 \dots 0,4)b_2$ ≥ 10 мм	$C = (0,3 \dots 0,4) \cdot 47 = = 14,1 \dots 18,8$ мм. Принимаем $C = 15$ мм.
диск	Радиусы скруглений	<i>R</i> ≥ 6 мм	R=6 mm
	Уклон	<i>γ</i> ≥ 7°	$\gamma = 7^{\circ}$
	Фаски на тор- цах зубчатых колес	$f_3 = (0,5 \dots 0,7)m$	$f_3 = (0.5 \dots 0.7) \cdot 2.5 =$ $= 1.25 \dots 1.75$ мм. Принимаем $f_3 = 1.6$ мм.
	Угол фаски	$lpha_{\phi}$, градус	$lpha_\Phi=45^\circ$

Продолжение таблицы 6.2

Элемент колеса	Параметр	Обозначение, формула,	Расчет и полученное значение
	Фаски в отверстии ступицы, по углам наружной поверхности ступицы и обода колеса	f, таблица А.1, мм	$f = 1,6 \; { m MM}$

Pисунок 6.3 — Pазмеры конструктивных элементов насадных цилиндрических косозубых колес редуктора

6.2 Конструирование зубчатого колеса тихоходной ступени

Колесо выполняется насадным и устанавливается на тихоходном валу редуктора.

Исходные данные

Параметры зубчатого колеса (по данным примера из [1, 2]):

- модуль $m_n = 4$ мм;
- число зубьев $z_2 = 76$;
- угол наклона зуба $\beta = 8,32049^{\circ}$;
- ширина зубчатого венца $b_2 = 60$ мм;
- делительный диаметр $d_2 = 307,23$ мм;
- диаметр впадин $d_{f2} = 297,23$ мм;
- диаметр вершин $d_{a2} = 315,23$ мм.

Материал колеса: сталь 40X, термообработка: улучшение, твердость зубьев на активной поверхности: 269...302 HB.

Диаметр вала, на который устанавливается зубчатое колесо, $d=d_k=80$ мм (см. рисунок 6.3).

Тип производства: среднесерийное производство.

Для среднесерийного производства принимаем для изготовления колеса заготовку, полученную штамповкой в двухсторонних штампах.

Способ получения заготовки: штамповка.

Определение размеров конструктивных элементов цилиндрического косозубого колеса тихоходной ступени

Определение размеров конструктивных элементов цилиндрического косозубого колеса тихоходной ступени представлено в таблице 6.3.

Таблица 6.3 - Определение размеров конструктивных элементов цилиндрического косозубого колеса тихоходной ступени (см. рисунок 6.3).

Тип производства - среднесерийное производство Способ получения заготовки – штамповка

Элемент колеса	Параметр	Обозначение, формула	Расчет и полученное значение
	Делительный диаметр	d_2 , мм	$d_2 = 307,23$ мм
Зубчатый венец	Диаметр вершин	d_{a2} , мм	$d_{a2}=315,23\ { m MM}$
	Диаметр впадин	d_{f2} , мм	$d_{f2} = 297,23$ мм
Обод	Толщина	$S = (2 4)m \ge 10 \text{ MM}$	$S = (2 4) \cdot 4 = 8 16$ mm. S = 16 mm
	Ширина	b_2	60 мм

Элемент колеса	Параметр	Обозначение, формула	Расчет и полученное значение
	Диаметр внутренний	$d = d_k$	80 мм
Ступица	Диаметр наружный	$d_{\rm CT} = 1,55 \ d$	$d_{ ext{CT}} = 1,55 \cdot 80 = 124$ мм. $d_{ ext{CT}} = 125$ мм
	Длина	$l_{\text{CT}} = (1 \dots 1, 2)d$	$l_{\text{CT}} = (1 \dots 1,2) \cdot 80 = 80 \dots 96$ мм Принимаем $l_{\text{CT}} = 95$ мм.
Петат	Толщина	$C = (0,3 \dots 0,4) b_2 \ge 10$ мм	$C = (0,3 \dots 0,4) \cdot 60 =$ = 18 \dots 24 мм. Принимаем $C = 20$ мм.
Диск	Радиусы скруглений	<i>R</i> ≥ 6 мм	$R=6\mathrm{mm}$
	Уклон	<i>γ</i> ≥ 7°	$\gamma=7^{\circ}$
	Фаски на тор- цах зубчатых колес	$f_3 = (0,5 \dots 0,7)m$	$f_3 = (0,5 \dots 0,7) \cdot 4 =$ $= 2 \dots 2,8$ мм. Принимаем $f_3 = 2,5$ мм.
	Угол фаски	$lpha_{\Phi}$, градус	$\alpha_{\Phi} = 45^{\circ}$
	Фаски в отверстии ступицы, по углам наружной поверхности ступицы и обода колеса	f, таблица А.1, мм	f = 2,0 мм.

9 РАСЧЕТ СОЕДИНЕНИЙ ВАЛ-СТУПИЦА ДЛЯ РЕДУКТОРА

Общие рекомендации

Для соединения валов со ступицами деталей (зубчатые и червячные колеса, шкивы ременных передач, звёздочки цепных передач, муфты) применяют шпоночные и шлицевые соединения, а также соединения с натягом, которые препятствуют относительному повороту вала и установленной на нём детали и передают вращающий момент T.

Шпоночное соединение

Основным элементом данного соединения является шпонка. В индивидуальном и серийном производстве наибольшее распространение получили призматические шпонки со скруглёнными или плоскими торцами. Все размеры шпонок и допуски на них стандартизованы. Стандарт предусматривает для каждого диаметра вала d определенные размеры поперечного сечения шпонки (ширину b и

высоту h) и глубины пазов (вала t_1 и ступицы t_2) (см. таблица А.2 приложения). Стандартной величиной должна быть и полная длина шпонки l.

При проектных расчетах размеры поперечного сечения шпонки b х h и глубину паза вала t_1 принимают в зависимости от диаметра ступени вала в месте установки шпонки (для ступеней вала цилиндрической формы и цилиндрических концов валов — по таблице А.2 приложения, для конических концов валов — по [3] (таблица 2П.2)). Полную длину шпонки l принимают на 5...10 мм. меньше длины ступицы детали $l_{\rm CT}$ и затем округляют до стандартного размера, указанного в примечании 1 к таблица А.2. В качестве расчетной длины шпонки l_P принимают:

- а) для исполнения 1 (оба торца шпонки скругленные) $l_P = l b$;
- б) для исполнения 2 (оба торца шпонки плоские) $l_P = l$;
- в) для исполнения 3 (один торец шпонки скругленный, второй плоский)

$$l_P = l - b/2$$

При определении l_P принимают стандартное значение полной длины шпонки l. После этого проверяют условие прочности шпоночного соединения призматической шпонкой по напряжениям смятия $\sigma_{\rm CM}$:

$$\sigma_{\rm CM} = \frac{2 \cdot 10^3 T}{d(h - t_1)l_P} \le [\sigma_{\rm CM}],$$
(9.1)

где σ_{CM} – МПа; T – вращающий момент, передаваемый участком вала, где установлена шпонка, $\mathbf{H} \cdot \mathbf{m}$; d – мм (для конического конца вала вместо d подставляют средний диаметр $d_{CP} = d - 0.05 l_K$, здесь d – номинальный диаметр вала; l_K – длина конического участка вала по [3] (таблица 2П.2)); h – мм; t_1 – мм (для конического конца вала – в среднем сечении по таблице A.2 приложения).

Допускаемые напряжения смятия $[\sigma_{CM}]$ для неподвижных соединений рекомендуется принимать: при переходных посадках $[\sigma_{CM}] = 80...150$ МПа, при посадках с натягом $[\sigma_{CM}] = 110...200$ МПа (большие значения при стальной ступице детали, меньшие – при чугунной).

Если по условию (9.1) получилось $\sigma_{\text{CM}} > [\sigma_{\text{CM}}]$, то следует увеличить длину ступицы l_{CT} . При этом новое значение l_{CT} не должно превышать 1,5d. Если $l_{\text{CT}} > 1,5<math>d$, то шпоночное соединение следует заменить соединением с натягом или шлицевым (при этом сохраняется предварительно принятое значение l_{CT}).

Опыт эксплуатации неподвижных шпоночных соединений показал, что их нормальная работа обеспечивается при установке на вал ступицы детали по посадке с натягом. Применение посадки с зазором не допускается.

При курсовом проектировании для шпоночного соединения призматической шпонкой рекомендуются следующие посадки колёс на валы:

- а) цилиндрических прямозубых H7/p6 (H7/r6);
- б) цилиндрических косозубых и червячных H7/r6 (H7/s6);
- в) конических H7/s6 (H7/t6);
- г) коробок передач H7/k6 (H7/m6).

Посадки без скобок относятся к нереверсивным передачам, посадки в скобках- к реверсивным.

Установка полумуфт, шкивов ременных передач и звёздочек цепных передач на цилиндрические концы валов при шпоночном соединении проводится по следующим посадкам:

- а) при нереверсивной работе и умеренной нагрузке (τ ≤15 МПа) H7/k6; H7/m6:
- б) при реверсивной работе, а также при сильно нагруженных валах ($\tau > 15$ МПа) H7/n6.

Посадки призматических шпонок регламентированы ГОСТ 23360-78. Ширину призматической шпонки выполняют по h9. Поля допусков остальных размеров следующие:

- а) ширины шпоночного паза вала P9;
- б) ширины шпоночного паза в ступице детали: соединение неподвижное нереверсивной передачи Js9; соединение неподвижное реверсивной передачи P9; соединение подвижное в осевом направлении для любой передачи D10.

При установке деталей на валы по посадке с натягом в случае использования шпоночного соединения очень трудно совместить шпоночный паз в ступице детали со шпонкой вала. Поэтому для облегчения сборки в данном случае рекомендуется предусматривать направляющий цилиндрический участок вала с допуском по d11. В таком случае путём свободного поворота колеса относительно вала можно предварительно совместить шпоночный паз колеса со шпонкой, а затем напрессовать колесо на вал.

Цилиндрические посадочные поверхности при использовании шпоночного соединения обычно шлифуют, для чего перед упорным буртиком предусматривают канавку для выхода шлифовального круга шириной c_k . С целью надёжного прижатия ступицы к упорному буртику длина ступицы детали должна быть больше длины посадочной поверхности вала на величину с ≥ 1 мм.

Для уменьшения напряжений смятия σ_{CM} в шпоночном соединении шпонку с закругленными торцами (исполнение 1) можно заменить шпонкой с плоскими торцами (исполнение 2), что увеличивает расчетную длину шпонки l_P . При этом допускается выход шпоночного паза вала на соседние ступени.

Если на валу предусмотрено несколько шпоночных пазов, то для удобства фрезерования их располагают вдоль одной образующей вала и выполняют одной ширины, принятой по меньшему диаметру вала.

В приведенном ниже примере расчета используются данные из пособия [1, 2].

Пример выполнения раздела курсового проекта

9 Расчет соединений вал-ступица для редуктора

9.1 Быстроходный (входной) вал

Шпонка установлена только под полумуфтой муфты упругой втулочно-пальцевой (МУВП) на конце входного вала цилиндрической формы.

По результатам расчета из [2]: размеры цилиндрического конца вала по ГОСТ 12080-66: диаметр $d_1=32$ мм, длина $l_1=58$ мм (исполнение – короткие), фаска 1,6 х 45°, радиус скругления 2,0 мм. Выбрана *Муфта упругая втулочно – пальцевая* 250-38-l-32-2 *УЗ* ГОСТ 21424-93, для которой длина ступицы (исполнение 2) $l_{\rm CT}=l_{\rm ШИЛ}=58$ мм (см. таблицу A.3).

Для нереверсивной передачи установку полумуфты на вал осуществляем по переходной посадке H7/k6. Полумуфты упругой втулочно-пальцевой муфты МУВП изготовляют из чугуна марки СЧ 20 (ГОСТ 1412-85) или стали 35Л (ГОСТ 977-88). Принимаем материал полумуфт — чугун СЧ 20. Тогда для переходной посадки и чугунной ступицы [$\sigma_{\text{СМ}}$] = 80 МПа.

По таблице А.2 приложения А для $d_1=d=32$ мм принимаем: b=10 мм; h=8 мм; $t_I=5$ мм. Полная длина шпонки

$$l = l_{\text{CT}} - (5...10) = 58 - (5...10) = 53...48 \text{ MM}.$$

Принимаем стандартное значение l = 50мм (см. таблицу А.2 приложения А). Условное обозначение принятой шпонки: Шпонка $10 \times 8 \times 50$ ГОСТ 23360-78. Расчетная длина шпонки для исполнения 1 (оба торца шпонки скругленные)

$$l_P = l - b = 50 - 10 = 40$$
 mm.

Тогда расчетные напряжения смятия при вращающем моменте на валу $T = T_I = 52,84 \, \text{H} \cdot \text{м}.$

$$\sigma_{\text{CM}} = \frac{2 \cdot 10^3 T}{d(h - t_1) l_P} = \frac{2 \cdot 10^3 \cdot 52,84}{32 \cdot (8 - 5) \cdot 40} = 27,5 \text{ M}\Pi \text{a} \le [\sigma_{\text{CM}}] = 80 \text{ M}\Pi \text{a}.$$

Прочность шпоночного соединения обеспечивается.

9.2 Промежуточный вал

Шпонка установлена под косозубым зубчатым колесом, длина ступицы которого составляет $l_{\rm CT}=53$ мм (см. таблицу 6.2). Диаметр вала $d=d_k=45$ мм. Материал ступицы зубчатого колеса — сталь 45. Принимаем посадку колеса на вал с натягом H7/r6. Тогда $[\sigma_{\rm CM}]=200$ МПа.

По таблице А.2 для $d=45\,$ мм принимаем: $b=14\,$ мм; $h=9\,$ мм; $t_I=5,5\,$ мм. Полная длина шпонки

$$l = l_{\text{CT}} - (5...10) = 53 - (5...10) = 48...43 \text{ MM}.$$

Принимаем стандартное значение l = 45 мм.

Условное обозначение принятой шпонки: **Шпонка 14**×9×45 ГОСТ **23360-78**. Расчетная длина шпонки для исполнения 1 (оба торца шпонки скругленные)

$$l_P = l - b = 45 - 14 = 31$$
 MM.

Тогда расчетные напряжения смятия при вращающем моменте на промежуточном валу

$$T = T_{II} = 278,31 \text{ H} \cdot \text{M}$$
.

$$\sigma_{\rm CM} = \frac{2 \cdot 10^3 T}{d(h-t_1)l_P} = \frac{2 \cdot 10^3 \cdot 278{,}31}{45 \cdot (9-5{,}5) \cdot 31} = 114 \ {\rm M}\Pi a \leq [\sigma_{\rm CM}] = 200 \ {\rm M}\Pi a.$$

Прочность шпоночного соединения обеспечивается.

9.3 Тихоходный (выходной) вал

Шпонки установлены на конце вала под ступицей ведущей звездочки цепной передачи и под цилиндрическим косозубым колесом.

Рассмотрим шпоночное соединение ведущей звездочки. По результатам расчета из [2]: размеры цилиндрического конца вала по ГОСТ 12080-66: диаметр вала $d_1 = d = 52$ мм, длина $l_1 = l_{\rm CT} = 110$ мм (исполнение – длинные).

Для переходной посадки *H7/k6* (передача нереверсивная) и стальной ступицы $[\sigma_{\text{CM}}] = 150 \text{ M}\Pi \text{a}.$

По таблице А.2 приложения для d=52 мм принимаем: b=16 мм; h=10 мм; $t_I=6$ мм. Полная длина шпонки

$$l = l_{\text{CT}} - (5...10) = 110 - (5...10) = 105...100 \text{ MM}.$$

Принимаем стандартное значение l=100 мм (см. примечание 1 к таблице A.2). Условное обозначение принятой шпонки: Шпонка $16 \times 10 \times 100$ ГОСТ 23360-78. Расчетная длина шпонки l_p для исполнения 1 (оба торца шпонки скругленные)

$$l_P = l - b = 100 - 16 = 84$$
 mm.

Тогда расчетные напряжения смятия при вращающем моменте на промежуточном валу

$$T = T_{III} = 1136,53 \text{ H} \cdot \text{M}$$
.

$$\sigma_{\rm CM} = \frac{2 \cdot 10^3 T}{d(h-t_1)l_{\rm P}} = \frac{2 \cdot 10^3 \cdot 1136,53}{52 \cdot (10-6) \cdot 84} = 130,1 \ {\rm M\Pia} \leq [\sigma_{\rm CM}] = 150 \ {\rm M\Pia}.$$

Прочность шпоночного соединения обеспечивается.

Рассмотрим шпоночное соединение цилиндрического косозубого колеса. Диаметр вала $d=d_k=80$ мм, длина ступицы $l_{\rm CT}=95$ мм (см. таблицу 6.3). Материал ступицы – сталь 40X. Тогда для посадки с натягом H7/r6 и стальной ступицы $[\sigma_{\rm CM}]=200$ МПа.

По таблице А.2 для d=80 мм принимаем: b=22 мм; h=14 мм; $t_I=9$ мм. Полная длина шпонки

$$l = l_{\text{CT}} - (5...10) = 95 - (5...10) = 90...85 \text{ MM}.$$

Принимаем стандартное значение l = 90 мм .

Условное обозначение принятой шпонки: Шпонка 22×14×90 ГОСТ 23360-78. Расчетная длина шпонки для исполнения 1 (оба торца шпонки скругленные)

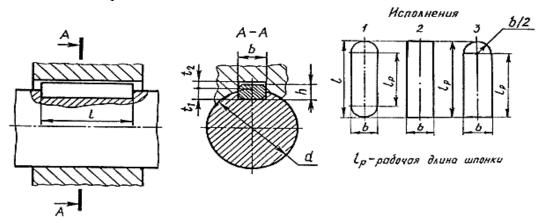
$$l_P = l - b = 90 - 22 = 68 \text{ MM}.$$

Тогда расчетные напряжения смятия при вращающем моменте на промежуточном валу

$$T = T_{III} = 1136,53 \,\mathrm{H} \cdot \mathrm{M}$$
.

$$\sigma_{\rm CM} = \frac{2 \cdot 10^3 T}{d(h-t_1)l_P} = \frac{2 \cdot 10^3 \cdot 1136{,}53}{80 \cdot (14-9) \cdot 68} = 83{,}6 \; {\rm M}\Pi a \leq [\sigma_{\rm CM}] = 200 \; {\rm M}\Pi a.$$

Прочность шпоночного соединения обеспечивается.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Методическое пособие к курсовому проектированию по дисциплине «Детали машин» для студентов технических специальностей: в 3 ч. / Брест. гос. техн. ун-т; сост.: С. В. Монтик [и др.].—Брест: БрГТУ, 2022. Ч. 1. 44 с.
- 2. Методическое пособие к курсовому проектированию по дисциплине «Детали машин» для студентов технических специальностей: в 3 ч. / Брест. гос. техн. ун-т; сост.: С. В. Монтик, А. А. Волощук, Я. А. Акулич Брест: БрГТУ, 2023. Ч. 2. 28 с.
- 3. Санюкевич, Ф. М. Детали машин. Курсовое проектирование: учеб. пособие. / Ф. М. Санюкевич 2-е изд. исправл. и доп. Брест : БрГТУ, 2004. 488 с.

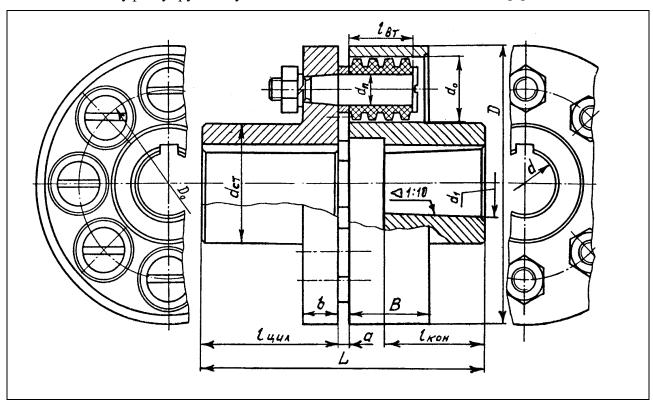
Таблица A.1 – Размер фаски f в отверстии ступицы диаметром d [3]

d	2030	3040	4050	5080	80110	110120	120150
f	1,0	1,2	1,6	2,0	2,5	3,0	4,0

Таблица А.2 – Шпонки призматические по ГОСТ 23360-78 [3]

Размеры в мм						
	Сечение шпо	нки	Глубина паза			
Диаметр вала, <i>d</i>	b	h	вала t ₁	ступицы t ₂		
Св. 12 до 17	5	5	3	2,3		
Св. 17 до 22	6	6	3,5	2,8		
Св. 22 до 30	8	7	4	3,3		
Св. 30 до 38	10	8	5	3,3		
Св. 38 до 44	12	8	5	3,3		
Св. 44 до 50	14	9	5,5	3,8		
Св. 50 до 58	16	10	6	4,3		
Св. 58 до 65	18	11	7	4,4		
Св. 65 до 75	20	12	7,5	4,9		
Св. 75 до 85	22	14	9	5,4		
Св. 85 до 95	25	14	9	5,4		
Св. 95 до 110	28	16	10	6,4		
Св.110 до 130	32	18	11	7,4		
Св. 130 до 150	36	20	12	8,4		
Св. 150 до 170	40	22	13	9,4		
Св. 170 до 200	45	25	15	10,4		

Примечания:


- 1. Длины призматических шпонок l (*мм*) выбирают из ряда : 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220; 280; 320; 360; 400; 450; 500.
- 2. Примеры условного обозначения: исполнение1, $b \times h \times l = 14 \times 9 \times 100$:

Шпонка 14×9×100 ГОСТ 23360-78.

То же, исполнение 2:

Шпонка 2 - 14×9×100 ГОСТ 23360-78.

Таблица A.3 - Mуфты упругие втулочно-пальцевые по ГОСТ 21424 - 93 [4]

,7 A		Размеры в мм												
Номинальный вращающий момент <i>T</i> , H.м	$d; d_1$	D	<i>l</i> _{цил}		$l_{ m KOH}$		L				b	В	$d_{ m CT}$	а
			Исп 1	Исп 2	Исп 3	Исп 4	Исп 1	Исп 2	Исп 3	Исп 4				
31,5	16; 18; 19	90	40	28	30	18	84	60	84	60	16	20	32	4
63	20; 22; 24	100	50	36	38	24	104	76	104	76	16	20	38	4
125	25; 28	120	60	42	44	26	125	89	125	89	18	32	50	5
123	30	120	80	58	60	38	165	121	165	121	18	32	56	5
250	32;35; 36; 38	140	80	58	60	38	165	121	165	121	18	32	67	5
230	40; 42; 45	140	110	82	85	56	225	169	225	169	18	32	75	5
500	40; 42; 45	170	110	82	85	56	225	169	225	169	18	32	80	5
710	45; 48;50	190	110	82	85	56	226	170	226	170	24	40	95	6
/10	55; 56	190	110	82	85	56	226	170	226	170	24	40	95	6
1000	50; 55; 56	220	110	82	85	56	226	170	226	170	24	40	100	6
1000	60;63; 65; 70	220	140	105	107	72	286	216	286	216	24	40	120	6

i 1		Размеры в мм												
Номинальный вращающий момент <i>T</i> , H·м	$d; d_1$	D	l_{II}	ил	$l_{ m K}$	ОН			L		b	В	$d_{ m CT}$	а
H			Исп 1	Исп 2	Исп 3	Исп 4	Исп 1	Исп 2	Исп 3	Исп 4				
	63;65; 71; 75	250	140	105	107	72	288	218	288	218	30	48	130	8
2000	80; 85; 90	250	170	130	135	195	348	268	348	268	30	48	150	8

Примечания:

- 1. Полумуфты изготовляют следующих исполнений:
 - 1 с цилиндрическими отверстиями для длинных концов валов по ГОСТ 12080-66;
 - 2 с цилиндрическими отверстиями для коротких концов валов по ГОСТ 12080-66;
 - 3 с коническими отверстиями для длинных концов валов по ГОСТ 12081-72;
 - 4 с коническими отверстиями для коротких концов валов по ГОСТ 12081-72.
- 2. Допускается сочетание полумуфт разных исполнений с различными диаметрами посадочных отверстий в пределах одного номинального вращающего момента.
- 3. Пример условного обозначения муфты с номинальным вращающим моментом
- T = 710 Hm: одна из полумуфт диаметром d = 48 мm, исполнения 1, другая диаметром
- d = 45 мм исполнения 2, климатического исполнения У (работа в районах с умеренным климатом) категории размещения 3 (работа в закрытом помещении):

Муфта упругая втулочно - пальцевая 710 - 48 - 1 - 45 - 2 V3 $\Gamma OCT 21424 - 93$.

Следует обратить внимание, что в обозначении муфты МУВП после значения T указывают обозначение полумуфты с отверстиями для крепления пальцев.

Учебное издание

Составитель: Монтик Сергей Владимирович

Методические указания к курсовому проектированию по дисциплине «Детали машин» для студентов технических специальностей

Часть 3

Ответственный за выпуск: Монтик С.В. Редактор: Винник Н. С. Корректор: Дударук С. А. Компьютерная верстка: Сирота А. Р.

Издательство БрГТУ. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1569 от 16.10.2017 г. Подписано в печать 17.10.2024 г.

Усл. п. л. 1,16. Уч.-изд. л. 1,25. Тираж 30 экз. Заказ № 1027. Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет» 224017, Брест, ул. Московская, 267

Формат $60x84^{-1}/_{16}$. Бумага «Performer». Гарнитура «Times New Roman».