Мынистерство народного образования республики Беларусь Брестский попитехнический институт

Хафедра сопротивления материалов

METOQUHECKUE YKABAHUA

Расчет металлической двутавровой балки на прочность и жёсткость"

Брест 1992

министерство народного образования республики БЕЛАРУСЬ

Врестский политехнический институт

Кафедра сопротивления материалов и теоретической механики

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

"Расчет металлической двугавровой балки на прочность и жесткость"

Утверждены на заседании кафедры сопротивления материалов и теоретической механики, протоком # 5 от "/6" анбар 1 1991г.

· YIK 620.I.O.

Расчетно-проектировочная работа №4 по сопротивлению материалов ставит своей целью углубить и закрепить знания студентов по расчету балок при изгибе на прочность и жесткость на конкретном примере. При этом используются сведения, полученные при изучении курса сопротивления материалов и ЭВМ. Методические указания содержат решение типовой эздачи, индивидуальные задания, программу расчета на ЭВМ.

Составители:

А.М. Трусь, прорессор, к.т.н.

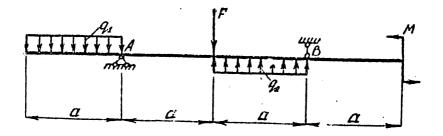
П.И. Соловей, доцент Н.С.Михалюк, доцент В.П. Воробьев, доцент

В.Л.Мартиновский, ассистент П.П. зауличный, ассистент

Рецензенты: ЩНИИ Произданий Госстрои СССР, ст. научный сотрудник,

к.т.н. Плотников В.Г.

ЗАДАЧА.


Дана двутавровая балка, изображенная на схеме (номер схемы студент выбирает согласно порядковому номеру в журнале группы), и значения нагрузок (выбираются из таблицы вариантов по упазанию преподавателя).

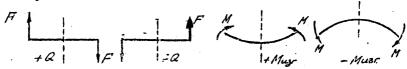
TPEBYETCA:

- I. Определить опорные реакции.
- 2. Определить значения О и М на силовых участках балки и построить их эпоры.
- 3. Определить опасное сечение балки по эпоре изгибающего момента и подобрать по нему стандартное сечение двутавра.
- 4. Проверить подобранное сечение по касательным напряжениям.
- 5. Проверить сечение на стыке полки и стенки двугав; а.
- 6. Построить упругую линию балки и проверить балку на жесткость.
- 7. Установить запас прочности балки по G, \mathcal{T}_{mox} , G_{seb} , G_{seb} и запас жестности.
- 8. Внести в ДЕК-4 данные своей задачи соответственно программе и проверить правильность сво го решении (распечатку с ЭВМ приложить к работе).

УСЛОВИЕ ЗАДАЧИ.

На рис. Іа изображена двугавровая балка, закрепленная и нагруженная, как показано на схеме.

PEWEHNE


І. Обозначаем на схеме и определяем опорные реакции.

2. Определяем эначения Q и M на силовых участках I,2,3,4 и строим эпоры Q и M.

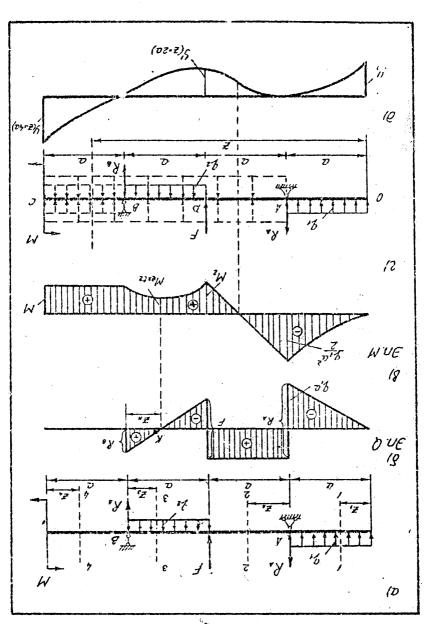
Для этого используем равенства

(для отсеченной части балки).

и правила знаков.

Yuactor I. $0 \leq \alpha_1 \leq \alpha$

$$Q = -q_1 \chi_1^2$$
 rpu $\chi = 0$ $Q = 0$; $M = 0$


$$M = -\frac{q_1 \chi^2}{2}$$
 rpu $\chi = 0$ $Q = -q_2 \alpha_1^2 M = -\frac{q_1 \alpha^2}{2}$

Участок 2. $0 \le \mathcal{X}_2 \le \alpha$ $\Omega = -q_2 \alpha + R_4 = \text{const}; \quad \text{при } \mathcal{Z} = 0 \qquad M = -\frac{q_1 \alpha^2}{2};$ $M = -q_2 \alpha \left(\frac{\alpha}{2} + \alpha\right) + R_1 \mathcal{Z} \quad \text{при } \mathcal{X} = 0 \qquad M = -\frac{3}{2}q_1 \dot{\alpha} + R_2 \alpha$

YURCTON 4.
$$0 \le \mathcal{Z}_{i} \le \alpha$$
. $Q = 0$; $M_{Max} = M$

Участок 3.
$$0 = \mathcal{I}_{8} = \alpha$$

 $Q = R_{8} - q_{2}\mathcal{I};$ луш $\mathcal{I} = 0$ $Q = R_{8}$. Миэл = М
 $M_{USF} = M - R_{8}\mathcal{I} + \frac{q_{2}\mathcal{I}}{2}$ луш $\mathcal{I} = \alpha$ $Q = R_{8} - q_{2}\alpha;$ $M_{USF} = M - R_{8}\alpha + \frac{q_{2}\alpha}{2}$

На участке 3 / имеем экстремальное значение в сечении К.

- 0 -

$$Q_{K} = R_{B} - q_{2}Z_{K} = 0;$$

$$Z_{K} = \frac{R_{B}}{q_{2}};$$

$$M_{extr} = M - R_{B}Z_{K} + \frac{q_{2}Z_{E}^{2}}{2}; M_{extr} = M - \frac{1}{2}\frac{R_{B}^{2}}{q_{2}}.$$

3. По эпоре \mathcal{M} определяем опасное сечение балки (сечение, в кот эром М имеет напольшее значение по длине балки) и подбираем стандартное сечение двутавра.

$$G = \frac{M_{max}}{W_{x}} \le [6]$$

$$W_{x} \ge \frac{M_{max}}{[6]}$$

Найденное значение W_{χ} округляется в большую сторону и по сортаменту из таблицы выбирается номер двутавра.

Выписываем для него все необходимые геометрические характеристики:

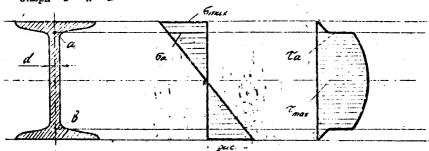
4. Проверка подобранного сечения по касательным напряжениям произведится по формуле муравского в том сечении по длине балки, где действует наибольшая поперечная сила, а по высоте сечения берется точка "с" на нейтральном слое, в которой касательные напряжения будут максимальны.

 $T_{max} = \frac{\Omega_{mox} \int_{X}^{\infty} \Delta [T],}{J_{x} \delta(y)}$ вра $\delta(y) = d'$ - ширина стенки.

где иля двугавра $8/9 = \alpha$ — ширина стенки. Если неизвестно [27], можно воспользоваться соотношением межгу [27] и [6] в ссответствии с теориями прочности.

по 3-ей теории прочности [z] = 0.5 [61];

по 4-ой теории прочности [T] = 0,58 [6]. Если $T_{max} \leq [T]$, оставляем набденное сечение,


если $\mathcal{I}_{max} > [z]$, то по сортаменту подбираем другой двугавр до тех пор, пока $\mathcal{T}_{max} \in [z]$

5. Проверка сечения ла стике полки и стенки, где довольно значительны ноглальные и касательные напряжения, производится в сечении, где одновременно Q и M велики , по третьей или четвертой теориям прочности по формулам:

$$G_{3K_0}^{2} = \sqrt{G_a^2 + 47_a^2} = [6]$$

$$G_{3K_0}^{2} = \sqrt{G_a^2 + 37_a^2} = [6]$$

В рассматриваемой задаче это сечение 4. Построим для него эпоры \mathcal{O} и \mathcal{C}

Если по чеориям прочности

то по сортаменту следует увеличить сечение, пока

$$G_{x6} = [6],$$
 $G_{35A} = [6].$

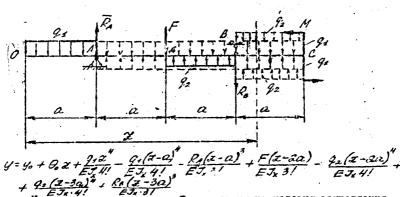
6. Построение упругой жинии балки и проверка балки на жесткость.

Всепользуемся методом начальных параметров и запишем универсальное уравнение прогибов:

гдэ \mathcal{G}_0 и \mathcal{G}_0 — начальные параметры (\mathcal{G}_0 — прогиб, \mathcal{G}_0 — угол поворота в начале координат), которью опредстяются из условий закрепления балки;

 ${\mathcal Z}$ - расстояние от начала косрдинат до рассматриваемого сечения;

 $\mathscr{Z}_{i}, \mathscr{Z}_{i}, \mathscr{Z}_{c}$ - расстояния от соответствующего силового фактора: момента (σ), сили (F), равномерно распределенной нагрузки (φ). То рассматриваемого сечения, где $\mathscr{Z}_{i} = \mathscr{Z} - \alpha_{i}$


Правило знаков для прогибов

При составлен и расчетной схемы балки и применении метода начальных параметров будем руководствоваться следующим:

- а). начало координат выбираем на левом конце балки;
- б), распределенную нагрузку, которая не доходит до правого конца балки нужно продолжить и компенсировать такой же нагрузкой;
- в), общий вид универсального уравнения прогибов для заданной балки записывается для произвольного сечения на правом крайнем участке;
- г). при использовании общего универсального уравнения прогибов следует помнить, что учитывается только та нагрузка, которая действует слева от рассматриваемого сечения.

На основании выше сказанного составим расчетную схему и запишем общее уравнение прогибов для данного примера

Начальні з параметры 46, 96 определим из условия закрепления

балки:
при
$$\mathcal{Z} = \alpha$$
 $\mathcal{Y}_{A} = \mathcal{Y}_{O} + C_{O}\Omega + \frac{q_{O}\alpha^{4}}{24EJ_{X}} = 0$;
при $\mathcal{Z} = 3\alpha$ $\mathcal{Y}_{O} = \mathcal{Y}_{O} + O_{O}3\alpha + \frac{O_{A}(3\alpha)^{4}}{24EJ_{X}} - \frac{Q_{A}(2\alpha)^{4}}{6EJ_{X}} + \frac{F\alpha^{3}}{6EJ_{X}} - \frac{Q_{A}\alpha^{4}}{24EJ_{X}} = 0$

Из обоих уравнений находим \mathcal{Y}_o и \mathcal{O}_o . Определяем прогиб в пролете

$$y'_{z=2n} = y_0 + Q_0 \cdot 2\alpha + \frac{q_2(2\alpha)^4}{24EJ_k} - \frac{q_1(\alpha)^4}{24EJ_k} - \frac{R_A(\alpha)^3}{6EJ_k};$$

на конце консоли:

Упругая линия балки покызана на рисунке Проверяем жесткость.

левая консоль
$$y_0 \leq \Gamma y_0 I = \frac{\alpha}{aap}$$
;

правая консоль
$$y_{(z=4a)} = [y_c] = \frac{a}{40}$$
;

B REPORTE
$$Y_{(z=2a)} \leq [Y_A] = \frac{l}{400}$$
; $(l=2a)$

 Оценим запас прочности подобранной балки по нормальным напражениям

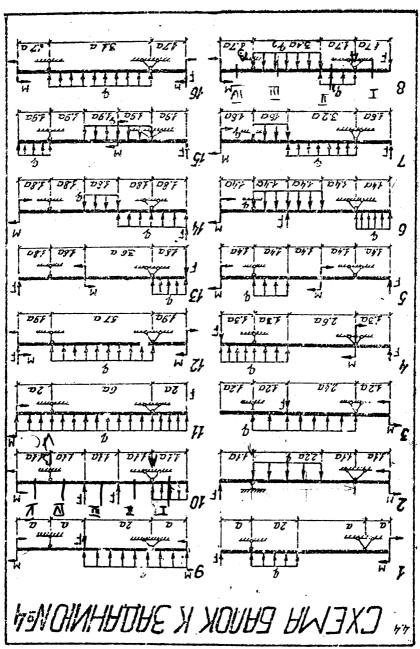
$$k_{col} = \frac{[6]}{6ma}$$

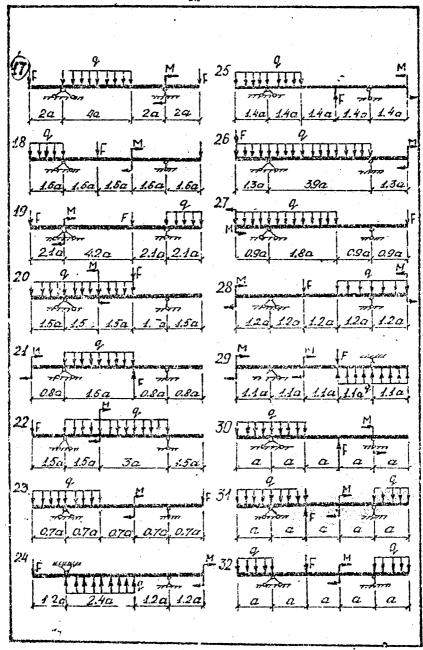
по касательным напряжениям

$$k_{[\tau]} = \frac{[\tau]}{\tau_{max}}$$

по теориям прочности

$$k_{\tilde{G}_{DR}}^{\tilde{G}} = \frac{LGI}{G_{DR}};$$


$$k_{\tilde{G}_{DR}}^{\tilde{G}} = \frac{LGI}{G_{DR}}.$$


Запас по жесткости:

$$k_{o} = \frac{\zeta y_{o}I}{y_{o}};$$

$$k_{c} = \frac{\zeta y_{c}I}{y_{c}};$$

$$k_{a} = \frac{\zeta y_{a}I}{y_{c}}.$$

[9]50=[2] P[]W []9/=[9] P[]W 01.7=]

07	50	09	16.4	OG.
0.9	SS	07	8.4	64
٥٤	30	0.9	1.1	87
02	۵'n	05	9.1	27
04	ΩĘ	09	5.1	97
01	98	09	17.4	97
09	017	02	6.1	77
07	GI7	08	5.1	ይካ
0.9	SE	06	11	75
20	07	80	0.1	17
09	20	ock	1.1	017
07	07	01	5.1	65
05	٥٤	09	5.1	8€
09	55	0.9	7'} 5'}	ŦΣ
09	52	05	3.7	36
07	20	07	9.1	35
0.2	52	07	11	ትር
ú9	50	09	87	55
09	42	20	64	32
20	Sk	ÚŽ	2,5	15
09	SO	C7	6.4	30
05	05	07	8.1	58
04	OZ	05	1.1	58
ΟΣ	20	09	3.1	22
09	52	OL	C*1	56
KH-M	K11V	KH	α	MAN THE
Z	b	ţ	α	A S S S S S S S S S S S S S S S S S S S

		Y V			
07	OÇ.	08	7.4	52	
09	QÇ	08	5%	75	
04	07	06	2,7	23	
DL.	20	COL	1°4	22	
OL	04	06	0.1	72	
09	20	08	1.1	SO	
01	SS	01	1.2	61	
09	52	09	5.1	81	
30	52	07	ケレ	21	
20	50	09	54	91	
07	SD	09	94	SI	
09		09	24	か.	
20	G)	07	84	El	
20	OF	09	64	12	İ
07	OF	CΩ	2,0	LL	
09	SI	07	61	201	
20	SI	0.9	8.1	6	
ΟS	SO	09	27	B	
07	70	በን	91	2,4	
09		20	G.1	9	ĺ
09	22	09	カル	ς	
05	24	02	5.1	7	
30	25	08	1,2		P
20		06	L'}	,	
07		001		1	
KHW	KHYMK			19: 114	
M	10	L	σ	NAMA VO VO	
80 80 80 80 80 81 81 81 81 81 81 81 81 81 81 81 81 81	20 v 55 s 57 s 22 s 22 s 20 v	40 60 80 60 60 60 60 70 70 80	1,2	9 9 9 7 9	

LUBUNITU ANCUOBPIX TUHHPIX K 3UT NET

тревования

и оформлению работы Титульный лист

мно

республики Беларусь

Брестский польтехнический институт

Кафедра сопротивления малериалов и теоретической механики

РАСЧЕТНО - ПРОЕКТИРОВОЧНАЯ

PABOTA #4

"Разчет металлической двугавровой балки на прочность и жесткость"

получил (дата)	сдал
групта	• • • •
студент	• • • • •
преподаватель	• • • • •

Брест, 199...г.

- а). Текст и рисунки работы оформляются в соответствии с требованиями технического черчения. Эпиры строятся в масштабе с его указанием.
- .б).Исходные данные.

Дано:

Схема В.....

численные значения

(рисунок)

по варианту В....

g = : M =

- в).Требуется: (де требования, перечисленные на стр.3)
- г). Решение: оформление см. в примере расчета

MACTPYKUUN NO PABUTE C ПРОГРАММОЙ SALKA.ASC

ДЛЯ ПРОВЕРКИ ПРАВИЛЬНОСТИ ПОСТРОЕНИЯ ЭПЮР Q , Н И УПРУГОЯ ЛИНИИ

1. ЗАГРУЗИТЬ ОПЕРАЦИОННУЮ СИСТЕМУ:

B MXO:

2. ВОЯТИ В СИСТЕМУ ПРОГРАМИРОВАНИЯ ЗАЗІС

BAS

3. SAFPYSUTE B DREPATUBLY RAMATE REPORTAMY BALKA.ASC

LOAD BALKA

4. ЗАПУСТИТЬ ПРОГРАММУ НА ВЫПОЛНЕНИЕ

RUN

5. PABDIA C ПРОГРАММОИ:

А) ВСЕ ПАРАМЕТРЫ БАЛКИ ВВОДЯТСЯ В СИСТЕМЕ СИ

Б)ОСЬ У НАПРАВЛЕНА ВНИЗ

ECAN F NAN Q HARPABAEHN WHAS TO BRUNTCH FY (Q>0) ECAN F NAN Q HARPABAEHN BREPX TO BRONTCH FY (Q<0) ECAN M HARPABAEH TO YACOBON CTPEAKE TO BRONTCH MYB ECAN H HARPABAEH ROTTUB YACOBON CTPEAKH- HYB

В)КООРДИНАТЫ ОТСЧИТЫВАЮТСЯ ОТ ЛЕВОГО КОНЦА БАЛКИ

ГУВВОД НАГРУЗОК БАЛКИ :

- ОТ, ОНАСМВАЯСТ ЭН ИНЭДЭВВ ИЧТЭМАЯП ЭКНАСАРАН ИЛЭЭОР ПРИСТРИКОТ ТИКОЛИРИВ И МОТ€ ОО ТИЖОООО АММАРООП ОМПЕ ВИНЭОЧТООТ БЕЗ АТНЭМОН ОГЭМИАВИТЕМ И ИКИО МОКИ
- ЖЭДЛЯ РАБОТЫ ПРОГРАМИН НАЧАЛЬНЫЙ УГОЛ ПОВОРОТА И НАЧАЛЬНЫЙ ПРОГИБ ВВОДЯТСЯ УМНОЖЕННЫМИ НА ЖЕСТКОСТЬ
- 6. ПО ОКОНЧАНИИ РАБОТЫ ПРОГРАММЫ :
 - : АТАЧВАН АТАРЭП АН ЧИПЕ АДИВИВ КПД (А

SYS <BK>
RUN EPRINT <BK>

6) ДЛЯ ПРОДОЛЖЕНИЯ РАБОТЫ ПОВТОРИТЬ П. 2- П. 5

YCJOBHWE OGOSHAYENNЯ ПРИНЯТЫЕ В ПРОГРАНМЕ Dalka.asc

L — ДЛИНА БАЛКИ

LI - KGOPANHATA JEBOM ONOPH

L2 - КООРДИНАТА ПРАВЛИ ОПОРЫ

Си - ПЕРЕНЕННАЯ ВИДА НАГРУЗКИ

ER - ПЕРЕМЕННАЯ ПРИЗНАКА ОВИБКИ

Р(Т) - ВЕЛИЧИНА СИЛЫ

H(I) - BEJJHYUHA MOMENTA

GL(I) - ВЕЛИЧИНА НАЧАЛА РАСПР. НАГРУЗКИ

QP(I) - ВЕЛИЧИНА КОНЦА РАСПР. РЭГРУЗКИ

X(I) - КООРДИНАТА ПРИЛОЖЕНИЯ НАГРУЗКИ

В(І) - ДЛИНА РАСПРЕДЕЛЕННОЯ НАГРУЗКИ

ZK - ПРИЗНАК ОПРЕДЕЛЕНИЯ «НАЧАЛЬНЫХ ПАРАНЕТРОВ

FO - НАЧАЛЬНЫЯ УГОЛ ПОВОРОТА

YO - НАЧАЛЬНЫМ ПРОГИБ

ЕХ - НОДУЛЬ УПРУГОСТИ Е

IX - ОСЕВОЙ НОМЕНТ ИННЕРЦИИ I

эмнадеи воневру

Составители: Трусь Александр Михайлович

Соловей Павел Иванович Михалик Николай Степанович Воробьев Виктор Петрович

Мартиновский Знадимир Леонидович

Зауличный Павел Павлович

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
Расчет металлической двутавровой салки на прочность и жесткость

Ответственный за выпуск Трусь A.M. Редактор Строкач Т.В.

Подписано к печати I6.0I.9I г. юрмат 60х84/I6. усл.п.л.0,93. Уч.иэд.л.I,0. Заказ № 66. Тираж 200 экз. Бесплатно. Отпечатано на ротапринте Брестского политехнического института. 2240I7. Брест, ул.Московская,267.