УДК 624.011:539.4

СОПРОТИВЛЕНИЕ СЖАТОГО ВИНТА ПОТЕРЕ УСТОЙЧИВОСТИ, УСТАНОВЛЕННОГО ПОПЕРЕК ВОЛОКОН ДРЕВЕСИНЫ

А. Я. Найчук¹, Е. В. Маркечко², К. К. Глушко³, Юнь Сюй⁴

¹ Д. т. н., доцент, профессор кафедры строительных конструкций УО «Брестский государственный технический университет», Брест, Беларусь, e-mail: atnya@yandex.ru

² Магистр технических наук, старший преподаватель кафедры строительных конструкций УО «Брестский государственный технический университет», Брест, Беларусь, e-mail: bk-2112@mail.ru

³ К. т. н., доцент кафедры архитектуры УО «Брестский государственный технический университет», Брест, Беларусь, e-mail: konstantin.qlushko@bk.ru

⁴ К. т. н., доцент, Школа гражданского строительства и коммуникаций Северо-Китайского университета водных ресурсов и электроэнергетики, Чжэнчжоу, Китайская Народная Республика, e-mail: xuyun@ncwu.edu.cn

Реферат

Приводятся результаты исследования устойчивости сжатого стального винта, установленного поперек волокон древесины элемента конструкции, а также выполнен их анализ, позволивший разработать модель сопротивления сжатого винта потере устойчивости с учетом изменения упругих свойств материала винта и ползучести древесины. На основании разработанной модели сопротивления предложен алгоритм определения расчетного значения несущей способности сжатого винта, установленного поперек волокон древесины элемента конструкции.

Ключевые слова: винт, древесина, прочность, расчетная длина, нагрузка, критическое значение нагрузки, устойчивость, несущая способность, ползучесть.

THE BUCKLING LOAD OF SCREWS WHICH ARE EMBEDDED IN THE TIMBER PERPENDICULAR TO THE GRAIN

A. Ya. Naichuk, E. V. Markechko, K. K. Hlushko, Yun Xu

Abstract

Investigation results of the screw stability when screw is embedded in the timber perpendicular to the grain are presented. They were analyzed. As a result of analysis resistance model of the buckling load of screws which are embedded in the timber perpendicular to the grain was obtained. This resistance model is taking into account changes in elastic properties of screw material and creep properties of timber element. Algorithm to calculate of design buckling capacity of screw which is embedded in the timber perpendicular to the grain is based on resistance model.

Keywords: screw, timber, strength, effective length, load, critical load, stability, load capacity, creep.

Введение

Как было отмечено в [1-3], винты, испытывающие действие сжимающих усилий используют, в основном, в качестве усиления опорных площадок несущих деревянных конструкций с целью повышения их сопротивления при сжатии древесины поперек волокон. Согласно [4-7], предельное состояние таких опорных площадок может наступить в результате исчерпания прочности материала винта при его сжатии, среза древесины по цилиндрической поверхности диаметром, равным диаметру наружной резьбы d и разрушения винта в результате потери устойчивости в массиве древесины. Используемые при проверках предельных состояний модели сопротивления винта сжатию и продавливанию в массиве древесины достаточно полно проработаны и приведены в качестве расчетных в ряде нормативных документов [4-5, 8], чего нельзя сказать о моделях сопротивления сжатого винта потере устойчивости, установленного поперек волокон древесины. Из целого ряда моделей сопротивления сжатого винта потере устойчивости, установленного в массиве древесины, наибольшего внимания заслуживает модель, предложенная в [2]. Вместе с тем, модель [2] имеет ряд ограничений и недостатков, которые были отмечены в работах [6-7]. Задачей данных исследований являлась разработка расчетной модели по определению несущей способности винта, исходя из условия обеспечения его устойчивости в массиве древесины.

Методика и результаты проведения исследований

Одним из условий обеспечения несущей способности сжатого винта, установленного поперек волокон в древесине элемента конструкции, является соблюдения условия по обеспечению его сопротивления $N_{cl,R}$ потере устойчивости. В случае, когда потеря устойчивости сжатого винта происходит в упругой области, сопротивление $N_{cl,R}$

может быть определено по формуле (1), а если в упругопластической – по формуле (2) [9]. Учитывая данную особенность и изменение упругих характеристик материала винта в зависимости от уровня напряжений в поперечном сечении, были определены предельные значения гибкости λ_{pr} с использованием формулы (3) [10].

$$N_{cl,R} = \frac{\pi^2 \cdot E \cdot I_{\min}}{\left(\mu \cdot l_c\right)^2} , \qquad (1)$$

$$N_{cl,R} = \frac{\pi^2 \cdot E_{\kappa} \cdot I_{\min}}{\left(\mu \cdot l_{ef}\right)^2} \quad , \tag{2}$$

$$\lambda_{pr} = \pi \sqrt{\frac{E}{f_{pr}}} \quad , \tag{3}$$

где Е – модуль упругости материала винта, МПа;

Ек – касательный модуль упругости материала винта, МПа;

 f_{pr} – предел пропорциональности материала винта, МПа.

При изготовлении винтов используют углеродистые и нержавеющие стали с пределом текучести f_y = 1000 МПа и 500 МПа соответственно [11]. Значение предела пропорциональности f_{pr} для указанных сталей составляет 900 МПа и 450 МПа соответственно. Исходя из приведенных значений f_{pr} и модуля упругости E = 210000 МПа [10], предельные значения гибкости будут составлять λ_{pr} = 51 и 68. При гибкости винта λ > λ_{pr} сопротивление потере устойчивости определяют с использованием формулы (1), а при λ < λ_{pr} — с использованием формулы (2). Следует отметить, что формула (1) является частным случаем формулы (2). При определении сопротивления $N_{cl,R}$ винта потере устойчивости первоначально были

рассчитаны значения гибкости λ винтов для различных длин анкеровки l_{ef} , диаметра d и плотности ρ_{κ} древесины (класса прочности). Для вычисления расчетной длины винта L_{cr} значения коэффициента μ определяли по формулам (4) – (6), которые получены в результате аппроксимации графических зависимостей коэффициента расчетной длины µ от R, приведенных в [6]. Следует отметить, что формулы (4) - (6) справедливы для $300 \le R \le 100000$.

Значения коэффициента µ расчетной длины в зависимости от его граничных условий определяется по формулам:

- при шарнирно-подвижном закреплении головки винта и треугольном распределении продольного усилия по его длине

$$\mu_1 = 3,2152 \cdot R^{-0,253}$$
; (4)

- при скользящей заделке головки винта и треугольном распределении продольного усилия по его длине

$$\mu_2 = 1,6459 \cdot R^{-0.233}$$
; (5)

- при скользящей заделке или шарнирно-подвижном закреплении головки винта и прямоугольной форме эпюры распределения продольной силы по его длине

$$\mu_1 = \mu_2 = 1,8461 \cdot R^{-0,237}$$
 (6)

В таблицах 1-3 приведены значения гибкости λ для винтов диаметрами 6 мм \leq d \leq 20 мм и длине анкеровки 10d \leq l_{ef} \leq 30d, определенные по формуле (7). При определении гибкости λ винта значения плотности древесины принимались в интервале от 290 кг/м³ до 460 кг/м³, что соответствовало минимальному и максимальному классам прочности пиломатериалов [12] и клееной древесины [13].

$$\lambda = \frac{L_{cr}}{i_{\min}} = \frac{\mu \cdot l_{ef}}{\left(\frac{0, 7 \cdot d}{4}\right)}$$
 (7)

Таблица 1 – Значение гибкости λ винта при шарнирно-подвижном закреплении его головки и треугольном распределении продольного усилия по длине

Диаметр винта, d, мм	Плотность древесины, $ ho_{\!\scriptscriptstyle{K}}$, кг/м $^{\!\scriptscriptstyle{3}}$	Длина анкеровки, <i>l_{ef}</i> , мм	Параметр, R	Коэффициент, µ	Расчетная длина винта, L _{cr} , мм	Гибкость винта, λ
G, WIW	290	ici, iviivi	304,6	0,76	45,4	43,2
	350	60	367,6	0,70	43,3	41,2
	460	- 00	483,2	0,72	40,4	38,5
	290		· · · · · · · · · · · · · · · · · · ·	'		
6	350	120	4873,5	0,37	45,0	42,9
6		120	5881,9	0,36	42,9	40,9
	460		7730,4	0,34	40,1	38,1
	290		24672,3	0,25	44,8	42,7
	350		29776,9	0,24	42,7	40,7
	460		39135,4	0,22	39,9	38,0
	290		388,8	0,71	85,3	40,6
	350	120	469,2	0,68	81,4	38,8
	460		616,7	0,63	75,9	36,2
	290		6220,2	0,35	84,6	40,3
12	350	240	7507,1	0,34	80,7	38,4
	460		9866,5	0,32	75,3	35,9
	290		31489,6	0,23	84,2	40,1
	350	360	38004,7	0,22	80,3	38,2
	460		49949,1	0,21	74,9	35,7
	290		501,0	0,68	133,4	38,1
	350	200	604,6	0,64	127,2	36,3
	460		794,7	0,59	118,7	33,9
	290		8015,7	0,33	132,3	37,8
20	350	400	9674,1	0,32	126,2	36,0
	460	1	12714,6	0,29	117,7	33,6
	290		40579,4	0,22	131,7	37,6
	350	600	48975,2	0,21	125,5	35,9
ľ	460	1	64367,4	0,20	117,2	33,5

таолица 2 – значение гиокости д винта при скользящей заделке его головки и треугольном распределении продольного усилия по его длин									
Диаметр винта,	Плотность	Длина анкеровки,	Параметр, R	Коэффициент, µ	Расчетная длина	Гибкость			
d, мм	древесины, $ ho_{\!\scriptscriptstyle K}$, кг/м 3	l _{ef} , MM	параметр, к	коэффициент, р	винта, L _{cr} , мм	винта, λ			
	290		304,6	0,43	26,1	24,8			
	350	60	367,6	0,42	24,9	23,7			
	460		483,2	0,39	23,4	22,3			
	290		4873,5	0,23	27,3	26,0			
6	350	120	5881,9	0,22	26,1	24,9			
	460		7730,4	0,20	24,5	23,4			
	290		24672,3	0,16	28,1	26,7			
	350	180	29776,9	0,15	26,9	25,6			
	460		39135,4	0,14	25,2	24,0			
10	290	120	388,8	0,41	49,2	23,4			
12	350		469,2	0,39	47,1	22,4			

Продолжение таблицы 2

Диаметр винта, d, мм	Плотность древесины, $\rho_{\rm K}$, кг/м 3	Длина анкеровки, <i>l_{ef}</i> , мм	Параметр, R	Коэффициент, µ	Расчетная длина винта, L _{cr} , мм	Гибкость винта, λ
	460		616,7	0,37	44,2	21,1
	290		6220,2	0,22	51,6	24,6
	350	240	7507,1	0,21	49,4	23,5
	460		9866,5	0,19	46,3	22,1
	290		31489,6	0,15	53,0	25,3
	350	360	38004,7	0,14	50,8	24,2
	460		49949,1	0,13	47,61	22,7
	290	200	501,0	0,39	77,3	22,1
	350		604,6	0,37	74,0	21,1
	460		794,7	0,35	69,5	19,8
	290		8015,7	0,20	81,1	23,2
20	350	400	9674,1	0,19	77,6	22,2
	460		12714,6	0,18	72,8	20,8
	290		40579,4	0,14	83,3	23,8
	350	600	48975,2	0,13	79,8	22,8
	460	1	64367,4	0,12	74,8	21,4

Таблица 3 – Значение гибкости λ винта при шарнирно-подвижном закреплении или скользящей заделке его головки и прямоугольном

Диаметр винта, d, мм	Плотность древесины, $\rho_{\rm K}$, кг/м ³	Длина анкеровки, <i>l_{ef}</i> , мм	Параметр, R	Коэффициент µ	Расчетная длина винта, L _{cr} , мм	Гибкость винта, λ
,	290		304,6	0,48	28,5	27,2
	350	60	367,6	0,45	27,3	26,0
	460		483,2	0,43	25,6	24,4
	290		4873,5	0,25	29,6	28,2
6	350	120	5881,9	0,24	28,3	26,9
	460		7730,4	0,22	26,5	25,3
	290		24672,3	0,17	30,2	28,8
	350	180	29776,9	0,16	28,9	27,5
	460		39135,4	0,15	27,1	25,8
	290	120	388,8	0,45	53,89	25,7
	350		469,2	0,43	51,5	24,5
	460		616,6	0,40	48,3	23,0
	290	240	6220,2	0,23	55,8	26,6
12	350		7507,1	0,22	53,4	25,4
	460		9866,5	0,21	50,1	23,8
	290		31489,6	0,16	57,0	27,2
	350	360	38004,7	0,15	54,5	26,0
	460		49949,1	0,14	51,1	24,3
	290		501,0	0,42	84,5	24,2
	350	200	604,6	0,40	80,9	23,1
	460		794,7	0,38	75,8	21,7
	290		8015,7	0,212	87,6	25,0
20	350	400	9674,1	0,21	83,8	23,9
	460		12714,6	0,20	78,6	22,4
	290		40579,4	0,15	89,5	25,6
	350	600	48975,2	0,14	85,6	24,5
	460]	64367,4	0,13	80,2	22,9

Анализируя значения λ , приведенные в таблицах 1-3, можно отметить, что:

- для винтов при одних и тех же значениях lef/d и ок с увеличением их диаметра d гибкость λ уменьшается независимо от условий закрепления головки;
- при постоянном диаметре d и длине анкеровки lef винта с увеличением плотности рк древесины его гибкость λ уменьшается;
- для винтов с шарнирно-подвижным закреплением головки и треугольным распределением продольного усилия по его длине при одних и тех же параметрах l_{ef} , d u ρ_{κ} гибкость λ в среднем в 1,7 раза выше, чем при скользящей заделке;

- независимо от схемы закрепления головки винта, формы эпюры распределения продольного усилия по его длине для lef/d ≥10d гибкость винтов λ меньше предельной λ_{pr} , т. е. сопротивления $N_{cl,R}$ винта потере устойчивости должно определяться с учетом упругопластического деформирования его материала.

Для определения характеристического значения сопротивления $N_{cl,R\kappa}$ винта потере устойчивости, работающего в упруго-пластической области деформирования, можно воспользоваться формулой (2) или же правилами п. 6.3.1 [10]. Поскольку расчетная формула (6.47) в [10] базируется на методах статистической обработки экспериментальных данных, то для определения сопротивления $N_{cl,R}$ винта потере устойчивости воспользуемся данным методом [10], разработанным для центрально-сжатых элементов постоянного сечения. Исходя из формулы (6.47), в [10] характеристическое значения сопротивления $N_{cl,Rk}$ винта потере устойчивости может быть определено по формуле

$$N_{cl,Rk} = \chi \cdot A \cdot f_{y} \quad , \tag{8}$$

где χ – понижающий коэффициент для соответствующей кривой потери устойчивости, определяемый согласно [10] по формуле (9);

A – площадь нетто поперечного сечения винта, мм²;

 γ_{M1} – частный коэффициент свойств материала винта, принимаемый равным 1,1 [10].

Согласно [10] значение понижающего коэффициента χ определяется для соответствующей условной гибкости по формуле

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \overline{\lambda}^2}} \text{ при } \chi \le 1, \tag{9}$$

где Φ – коэффициент, значение которого согласно [10] определяют по формуле (10);

 ${\cal X}$ – условная гибкость, значение которой согласно [10] определяют по формуле (11)

$$\Phi = 0.5 \cdot \left[1 + 0.49 \cdot \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right] ,$$
 (10)

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}} = \frac{L_{cr}}{i} \cdot \frac{1}{\lambda_1} , \qquad (11)$$

где f_y – предел пластического течения материала винта, МПа;

А – площадь поперечного сечения винта, значение которой для винта с резьбой будет равно $A = \pi \cdot (0,7\text{d})^2/4$;

 N_{cr} – критическая сила для соответствующей формы потери устойчивости в упругой стадии, вычисленная с использованием характеристик поперечного сечения брутто;

 L_{cr} – расчетная длина винта, значение которой равно L_{cr} = μ · l_{ef} ,

i – радиус инерции поперечного сечения винта, значение которого для винта с резьбой равно i=(0,7d)/4;

λ₁ – гибкость винта, значение которой определяют формуле

$$\lambda_{1} = \pi \sqrt{\frac{E}{f_{y}}} \quad . \tag{12}$$

Следует отметить, что при $\lambda \leq 0, 2$, согласно [10] Φ = 1.

С учетом предложенного подхода были выполнены расчеты по определению характеристического значения сопротивления $N_{cl,Rk}$ сжатого стального винта потере устойчивости, установленного поперек волокон древесины в элементе конструкции с использованием формул (8) — (12) при $f_{y,k}$ = 1000 МПа, а также сопоставление полученных значений с данными, приведенными в работе [2]. Результаты вычислений $N_{cl,Rk}$ для соответствующих геометрических параметров винтов, условий закрепления их головки, распределения продольного усилия по их длине и плотности древесины приведены в таблицах 4–6.

Следует отметить, что при вычислении значений $N_{cl,Rk}$ условную

гибкость $\,\lambda\,$ определяли двумя методами:

– метод 1, основанный на результатах наших исследований, т. е. с использованием коэффициента расчетной длины μ , значения которого определяли по формулам (4) – (6);

– метод 2, основанный на результатах исследований [2], т. е. с использование значений $N_{k|k}=N_{cr}$, приведенных в работе [2].

Таблица 4 – Характеристическое значение сопротивления *N_{cl.Rk}* винта потере устойчивости при шарнирно-подвижном закреплении его го-

1 1	Плотность	ении продольного у П Длина			Параметры, определенные по методу 1			
диаметр древе	древесины, $ ho_{\!\scriptscriptstyle{K}}$, кг/м 3	длина анкеровки, <i>l_{ef}</i> , мм	Гибкость винта, λ ₁	Условная $\overline{\lambda}$ гибкость, $\overline{\lambda}$	Значение коэффициента χ	Сопротивление <i>N_{cl,Rk}</i> , H	<i>N_{cl,Rk},</i> H, определенное по методу 2	
	290		43,2	0,95	0,57	7888	7936	
	350	60	41,2	0,91	0,60	8259	8301	
	460		38,5	0,84	0,63	8778	8813	
6	290		42,9	0,94	0,57	7953	7936	
	350	120	40,9	0,90	0,60	8323	8301	
	460		38,1	0,84	0,64	8838	8813	
	290		42,7	0,94	0,58	7992	7936	
	350	180	40,7	0,89	0,60	8360	8301	
	460		38,0	0,83	0,64	8874	8813	
	290	120	40,6	0,89	0,60	33468	33633	
	350		38,8	0,85	0,63	34894	350356	
	460		36,2	0,79	0,67	36868	36979	
	290	240	40,3	0,89	0,61	33721	33633	
12	350		38,4	0,84	0,63	35138	35036	
	460		35,9	0,79	0,67	37097	36979	
	290	360	40,1	0,88	0,61	33868	33633	
	350		38,2	0,84	0,64	35280	35036	
	460		35,7	0,78	0,67	37230	36979	
	290		38,1	0,84	0,64	98274	_	
	350	200	36,3	0,80	0,66	102028	_	
	460		33,9	0,75	0,70	107178	_	
	290		37,8	0,83	0,64	98942	_	
20	350	400	36,0	0,79	0,67	102668	_	
	460]	33,6	0,74	0,70	107772	_	
	290		37,6	0,83	0,64	99331	_	
	350	600	35,9	0,79	0,67	103039	_	
Ţ	460	1	33,5	0,74	0,70	108117	_	

Таблица 5 - Характеристическое значение сопротивления N_{CLRk} винта потере устойчивости при скользящей заделке его головки и тре-

угольном распределении продольного усилия по его длине

J. C. I Brioni Paorip	Плотность	Пачио	Длино	Параме	тры, определенные г	по методу 1	Сопротивление
Диаметр винта, d, мм ρ_{κ} , кг/м ³	Длина анкеровки, <i>l_{ef}</i> , мм	Гибкость винта, λ ₁	Условная $\frac{\lambda}{\lambda}$	Значение коэффициента χ	Сопротивление <i>N_{cl,Rk}</i> , H	<i>N_{cl,Rk},</i> H, определенное	
	•		212				по методу 2
	290	00	24,8	0,55	0,82	11319	9224
	350	60	23,7	0,52	0,83	11504	9541
	460		22,3	0,49	0,85	11754	9973
6	290		26,0	0,57	0,80	11109	9224
	350	120	24,9	0,55	0,82	11305	9541
	460		23,4	0,51	0,84	11571	9973
	290		26,7	0,59	0,79	10979	9224
	350	180	25,6	0,56	0,81	11183	9541
	460		24,0	0,53	0,83	11459	9973
	290	120	23,4	0,51	0,83	46228	38527
	350		22,4	0,49	0,85	46913	39712
	460		21,1	0,46	0,86	47842	41320
	290	240	24,6	0,54	0,82	45445	38527
12	350		23,5	0,52	0,83	46174	39712
	460		22,1	0,48	0,85	47162	41320
	290	360	25,3	0,55	0,81	44965	38527
	350		24,2	0,53	0,83	45720	39712
	460		22,7	0,50	0,84	46744	41320
	290		22,1	0,49	0,85	130953	-
	350	200	21,1	0,46	0,86	132716	-
	460		19,8	0,44	0,88	135111	-
	290		23,2	0,51	0,84	128941	-
20	350	400	22,2	0,49	0,85	130815	
	460		20,8	0,46	0,87	133357	-
	290		23,8	0,52	0,83	127705	-
	350	600	22,8	0,50	0,84	129648	-
	460		21,4	0,47	0,86	132282	-

Таблица 6 - Характеристическое значение сопротивления Ncl.Rk винта потере устойчивости при шарнирно-подвижном закреплении или

скользящей заделке его головки и прямоугольном распределении продольного усилия длине

Диаметр винта, d, мм	П	-		Параме	по методу 1	Сопротивление	
	Плотность древесины, ρ_{κ} , кг/м 3	Длина анкеровки, <i>l_{ef}</i> , мм	Гибкость винта, λ_1	Условная $\frac{\lambda}{\lambda}$	Значение коэффициента χ	Сопротивление <i>N_{cl,Rk}</i> , Н	<i>N_{cl,Rk}</i> , H, определенное по методу 2
	290		27,2	0,60	0,79	10896	9224
	350	60	26,0	0,57	0,80	11108	9541
	460		24,4	0,54	0,82	11394	9973
	290		28,2	0,62	0,77	10715	9224
6	350	120	26,9	0,59	0,79	10937	9541
	460		25,3	0,56	0,81	11238	9973
	290		28,8	0,63	0,77	10605	9224
	350	180	27,5	0,61	0,78	10834	9541
	460		25,8	0,57	0,80	11143	9973
	290	120	25,7	0,56	0,81	44673	38527
	350		24,5	0,54	0,82	45458	39712
	460		23,0	0,51	0,84	46520	41320
	290		26,6	0,58	0,79	44003	38527
12	350	240	25,4	0,56	0,81	44827	39712
	460		23,8	0,52	0,83	45941	41320
	290		27,2	0,60	0,79	43596	38527
	350	360	26,0	0,57	0,80	44443	39712
	460		24,3	0,54	0,82	45588	41320
	290		24,2	0,53	0,83	127004	-
20	350	200	23,1	0,51	0,84	129019	-
	460		21,7	0,48	0,86	131746	_

Продолжение таблицы 6

Диаметр винта, d, мм	Плотность	Ппино		Парамет	Сопротивление		
	древесины, $\rho_{\!\scriptscriptstyle{K}}$, кг/м 3	Длина анкеровки, <i>l_{ef}</i> , мм	Гибкость винта, λ_1	Условная $\frac{\lambda}{\lambda}$	Значение коэффициента χ	Сопротивление <i>N_{cl,Rk}</i> , Н	<i>N_{cl,Rk},</i> H, определенное по методу 2
	290		25,0	0,55	0,81	125286	ı
	350	400	23,9	0,53	0,83	127399	ı
	460		22,4	0,49	0,85	130257	ı
	290		25,6	0,56	0,81	124242	ı
	350	600	24,5	0,54	0,82	126415	ı
	460		22,9	0,50	0,84	129353	-

Анализируя характеристические значения сопротивления $N_{cl,Rk}$ сжатого винта потере устойчивости (таблицы 4-6), установленного поперек волокон древесины в элементе конструкции, можно сделать вывод, что при длине анкеровки $l_{\rm ef} \geq 10{\rm d}$ для одного и того же значения плотности $\rho_{\rm k}$ и диаметра d, оно является величиной постоянной. Таким образом, увеличение длины анкеровки $l_{\rm ef}$ больше 10d не оказывает влияния на значение $N_{cl,Rk}$. Повышения сопротивления $N_{cl,Rk}$ винта потере устойчивости, как его и несущей способности, может быть достигнуто путем:

- увеличения плотности древесины, т. е. использование элементов деревянных конструкций с большим классом прочности древесины;
 - увеличения диаметра винта;
- изменение условия закрепления его головки (замена шарнирно-подвижного закрепления на скользящую заделку);
- изменение закона распределения сжимающего усилия по длине винта (использование винтов с неполной резьбой).

Сопоставляя характеристические значения $N_{cl,Rk}$, вычисленные с учетом полученных нами коэффициентов расчетной µ длины (метод 1), со значениями, рассчитанными по методу 2 [2], можно отметить, что при шарнирно-подвижном закреплении головки винта и треугольном распределении продольного усилия по его длине они совпадают (таблица 4). Такое совпадение значений $N_{cl,Rk}$, рассчитанных по двум независимым методам, является подтверждением достоверности полученных значений коэффициента µ расчетной длины при решении задачи устойчивости сжатого винта, установленного в массиве древесины с использованием метода конечных разностей [4–5]. Что же касается характеристических значений сопротивления $N_{cl,Rk}$ винтов со скользящей заделкой головки и треугольном распределении продольного усилия по их длине, а также шарнирноподвижном закреплении или скользящей заделкой его головки и прямоугольным распределением продольного усилия, то здесь значения, рассчитанные по методу 1, выше значений, определенных по методу 2 (таблица 5 и 6) в 1,22 раза для d=6 мм при $\rho_k=290$ кг/м³, $l_{\rm ef}$ = 10d, a для d = 12 мм при $\rho_{\rm k}$ = 460 кг/м³ и $l_{\rm ef}$ = 30d в 1,10 раза. Выявленные здесь различия в значениях $N_{cl,Rk}$ можно объяснить погрешностью численных расчетов, а полученные результаты при определении коэффициента µ расчетной длины – достоверными.

При проверке предельного состояния несущей способности сжатого винта должно быть определено его расчетное значение сопротивления потере устойчивости. Для определения расчетного значения сопротивления $N_{cl,Rd}$ винта потере устойчивости, установленного поперек волокон древесины в элементе конструкции, может быть использована откорректированная с учетом изменения упругих свойств древесины (ползучести) во времени методика, применяемая для центральносжатых стальных элементов [10]. Следует отметить, что все корректировки в данной области должны быть внесены при определении характеристического значения сопротивления $N_{cl,Rk}$ сжатого винта потере устойчивости. Для решения данной задачи следует откорректировать значение коэффициента расчетной длины ц. т. е. в общем перемещении перпендикулярно продольной оси винта учесть перемещение, обусловленное ползучестью древесины. Поскольку значение коэффициента расчетной длины μ зависит от коэффициента постели c, величина которого определяется как отношение действующей перпендикулярно продольной оси винта погонной нагрузки к значению перемещения в данном направлении, которое должно быть откорректировано с учетом ползучести древесины. Таким образом, значение коэффициента постели c должно определяться исходя из общего перемещения, стоящего из двух составляющих: перемещения u_{inst} , обусловленного кратковременным действием нагрузки, и перемещения u_{creep} , обусловленного ползучестью древесины в результате длительного действия нагрузки. Учитывая данное обстоятельство, полное значение коэффициента постели c_{fin} с учетом ползучести древесины может быть определено по формуле

$$c_{fin} = \frac{c_{inst}}{1 + k_{def}} \quad , \tag{13}$$

где c_{inst} – коэффициент постели от кратковременного действии нагрузки, определяемый из эксперимента или по формуле (14) [2], H/mm^2 ;

 $k_{\rm def}$ – коэффициент ползучести древесины, значение которого принимается из таблицы 5.5 [8]. Для классов эксплуатации 1, 2 и 3 согласно [8] – $k_{\rm def}$ = 0,60; 0,80 и 2,0 соответственно.

Значение коэффициента постели C_{inst} при кратковременном действии нагрузки, как характеристики упругого основания в перпендикулярном направлении к продольной оси винта согласно [2], можно определять по формуле

$$c_{inst} = \frac{(0,22+0,014 \cdot d) \cdot \rho}{1,17 \cdot \sin^2 \alpha + \cos^2 \alpha},$$
 (14)

где ho – плотность древесины;

d – наружный диаметр резьбы винта;

lpha – угол наклона продольной оси винта по отношению к направлению волокон древесины.

Таким образом, алгоритм определения расчетного значения сопротивления $N_{cl,Rd}$ сжатого стального винта потере устойчивости, установленного поперек волокон древесины в элементе конструкции, может быть представлен в следующем виде:

- для соответствующего класса эксплуатации конструкции из таблицы 5.5 [8] принимают значение kdef;
- по формуле (14) рассчитывают значение коэффициента постели С_{inst} при кратковременном действии на винт нагрузки;
- полное значение коэффициента постели c_{fin} определяют по формуле (13);
 - рассчитывают значение безразмерного коэффициента R;
- по формулам (4) (6) определяют значение коэффициента расчетной длины μ_{fin} для соответствующих граничных условий винта и закона распределения продольного усилия по его длине;
- используя формулы (9) (11) рассчитывают значения коэффициента χ ;
- по формуле (8) рассчитывают характеристическое значение сопротивления $N_{cl,Rk}^{st}$ с учетом ползучести древесины;
- расчетное значение сопротивления (несущей способности) $N_{cl,Rd}$ сжатого стального винта потере устойчивости определяют по формуле

$$N_{_{cl,Rd}}^{*} = \frac{N_{cl,Rk}^{*}}{\gamma_{M1}}$$
 , (15)

где $\left(N_{cl,Rk}^*\right)$ – характеристическое значение сопротивления сжатого стального винта потере устойчивости, установленного поперек воло-

кон древесины в элементе конструкции, определенное с учетом ползучести древесины, H;

 γ_{M1} – коэффициент свойств материала, принимаемый, согласно [10], равным 1.1.

Следует отметить, что в работе [2] определение расчетного значения сопротивления $N_{cl,Rd}$ сжатого стального винта потере устойчивости определялось аналогичным образом только лишь с той разни-

цей, что при вычислении значения условной гибкости λ в формуле (11) использовалось расчетное значение критической силы $N_{\text{cr,d}}$, определяемой по формуле

$$N_{cr,d} = \frac{N_{ki,k} \cdot k_{\mathrm{mod}}}{\gamma_M}$$
 , (16)

где N_{klk} – характеристическое значение критической силы, принимаемое из таблицы 1 или 2 [2] в зависимости от граничных условий винта, H;

 k_{mod} – коэффициент модификации, учитывающий изменение прочности древесины от длительного действия нагрузки и условий эксплуатации [4 или 8];

 γ_M – коэффициент свойств материала и изделий, значение которого принимают равным 1,3 [4].

Определение расчетного значения $N_{cr,d}$ по формуле (16) является некорректным, поскольку здесь должно учитываться не снижение прочности древесины во времени, а изменение значений упругих свойств, т. е. увеличение деформаций в результате ползучести, как это было отмечено нами выше.

Используя приведенный выше алгоритм, были выполнены расчеты по определению характеристического и расчетного значений сопротивления сжатого винта как без учета, так и с учетом ползучести древесины, в зависимости от величины его диаметра d и плотности ρ_k древесины при шарнирно-подвижном закреплении головки и треугольном распределении продольного усилия по его длине. Результаты расчетов приведены в таблице 7.

Таблица 7 – Сравнение несущей способности винта с учетом ползучести древесины для класса эксплуатации 2, при модуле упругости стали E = 210000 MПа, пределе пластического течения стали $f_y = 1000 \text{ M}$ Па, шарнирно-подвижном закреплении его головки и треугольном распределении продольного усилия по длине

HUAMETO	_		Коэффициент расчетной длины		Сопротивление, H, при k _{def} = 0		Сопротивление, H, при k _{def} = 0,8	
	Плотность древесины, $\rho_{\!\scriptscriptstyle K}$, кг/м 3	Длина анкеровки, <i>l_{ef}</i> , мм	µinst при k _{def} = 0	µ _{fin} при k _{def} = 0,8	Характери- стическое значение <i>N_{cl,Rk}</i>	Расчетное значение <i>N_{cl,Rd}</i>	Характеристическое значение $N_{cl,Rk}^{st}$	Расчетное значение $N_{_{cl,Rd}}^{st}$
	290		0,25	0,28	7992	7265	7040	6400
6	350	180	0,24	0,27	8360	7600	7424	6749
	460		0,22	0,25	8874	8067	7974	7250
	290		0,23	0,26	33868	30789	30151	27410
12	350	360	0,22	0,25	35280	32072	31665	28786
	460		0,21	0,23	37230	33846	33802	30729
	290		0,22	0,25	99331	90300	89402	81275
20	350	600	0,21	0,24	103039	93672	93475	84977
	460		0,20	0,22	108117	98288	99156	90142

Анализируя результаты расчетов, приведенные в таблице 7, можно отметить, что при учете ползучести древесины значение коэффициента расчетной длины $\mu_{\rm fin}$ увеличивается, а значение расчетного $N_{\rm cl.\,Rd}^*$ сопротивления винта уменьшается.

Закпючение

В результате выполненных исследований было установлено:

- предельное значение гибкости для винтов из углеродистой стали $\lambda_{pr}=51$, а из нержавеющей $\lambda_{pr}=68$;
- при одинаковых значениях отношения расчетной длины $l_{\rm ef}$ к диаметру d и одинаковой плотности древесины c увеличением диаметра d гибкость винта уменьшается независимо от условий закрепления головки, аналогичная картина изменения гибкости наблюдается при увеличении плотности древесины для винтов одного и того же диаметра;
- максимальное значение гибкости λ = 43,2 характерно для винтов диаметром 6 мм с шарнирно-подвижным закреплением головки и треугольным распределением продольного усилия по длине винта, а минимальное λ = 20 при шарнирно-подвижном закреплении или скользящей заделке его головки и прямоугольном распределении продольного усилия по длине;
- поскольку гибкость винта λ меньше предельной λ_{pr} , сопротивления $N_{cl,R}$ винта потере устойчивости при длине анкеровки l_{el} /d ≥10

должно определяться с учетом упруго-пластического деформирования его материала;

- увеличение длины анкеровки l_{ef} винта более 10d не сказывается на величине его сопротивления $N_{cl,R}$ потере устойчивости;
- повышение сопротивления $N_{cl,R}$ винта потере устойчивости может быть достигнуто за счет увеличения плотности древесины или диаметра винта, изменения шарнирно-подвижного закрепления на скользящую заделку, использования винтов с неполной резьбой.

На основании результатов исследований и их анализа разработана расчетная модель потери устойчивости установленного поперек волокон древесины в элементе конструкции сжатого винта, позволяющая учитывать ползучесть древесины и особенности упругопластического деформирования изотропного материала (стали) винта. На основании данной модели предложен алгоритм определения несущей способности сжатого винта, установленного перпендикулярно волокнам древесины элемента конструкции. Предложенную модель рекомендуется применять при выполнении проверок предельных состояний несущей способности локально армированных опорных участков деревянных конструкций с использованием винтов.

Список цитированных источников

 Formolo, S. Compression perpendicular to the grain and reinforcement of a pre-stressed timber deck / S. Formolo, R. Granström. – Universität Karlsruhe, 2007. – 176 p.

- 2. Bejtka, I. Self-tapping screws as reinforcement in beam supports / I. Bejtka, H. J. Blass // CIB-W18 Conference Proceedings: Paper 39-7-2, Florence, Italy. - 2006. - 13 p.
- Bejtka, I. Verstärkung von Bauteilen aus Holz mit Vollgewindeschrauben / I. Bejtka Chalmers University of Technology, 2007. – 177 p.
- 4. Еврокод 5. Проектирование деревянных конструкций. Часть 1-1. Общие правила и правила для зданий: ТКП EN 1995-1-1-2009 (02250). - Введ. 01.01.2010. - Минск : Минстройархитектуры, 2010. – 110 c.
- 5. Конструкции деревянные с узлами на винтах. Правила проектирования: СП 299.1325800.2017. – Введ. 17.02.2018 – М.: Минстрой России, 2017. - 19 с.
- Найчук, А. Я. Устойчивость стальных центрально сжатых винтов в массиве древесины / А. Я. Найчук, К. К. Глушко, Е. В. Маркечко // Промышленное и гражданское строительство. -2020. – № 3 (65). – C. 4–9.
- 7. Глушко, К. К. Численный анализ устойчивости центрально сжатых стальных винтов в деревянных конструкциях / К. К. Глушко, Е. В. Маркечко // Теория и практика исследований, проектирования и САПР в строительстве: сб. статей Междунар. науч.-метод. конф., Брест, 27 марта 2020 г. / редкол.: Н. Н. Шалобыта [и др.]. – Брест : БрГТУ, 2020. – С. 46–57.
- Деревянные конструкции: СП 5.05.01-2021. Введ. 01.06.2021. Минск : Минстройархитектуры, 2021. – 115 с.
- Вольмир, А. С. Устойчивость упругих систем / А. С. Вольмир. М. : Государственное издательство физико-математической литературы, 1963. – 879 с.
- 10. Еврокод 3. Проектирование стальных конструкций. Часть 1-1. Общие правила и правила для зданий: ТКП EN 1993-1-1-2009* (02250). - Введ. 01.01.2010. - Минск : Минстройархитектуры, 2014. – 96 c.
- 11. Совершенствование нормативной базы для соединений деревянных конструкций на винтах / П. Н. Смирнов [и др.] // Крепеж, клеи, инструменты и – 2018 – № 3 (65). – С. 18–23
- 12. Древесина конструкционная. Классы прочности: СТБ EN 338-2011. – Введ. 01.06.2012. – Минск : Госстандарт, 2012. – 11 с.
- 13. Конструкции деревянные. Древесина клееная многослойная. Классы прочности и определение характеристических значений: СТБ EN 1194-2011. - Введ. 01.07.2012. - Минск : Госстандарт, 2012. - 13 c.

References

- Formolo, S. Compression perpendicular to the grain and reinforcement of a pre-stressed timber deck / S. Formolo, R. Granström. - Universität Karlsruhe, 2007. - 176 p.
- Beitka, I. Self-tapping screws as reinforcement in beam supports / I. Bejtka, H. J. Blass // CIB-W18 Conference Proceedings: Paper 39-7-2, Florence, Italy. - 2006. - 13 p.
- Bejtka, I. Verstärkung von Bauteilen aus Holz mit Vollgewindeschrauben / I. Bejtka Chalmers University of Technology, 2007. - 177 p.
- Evrokod 5. Proektirovanie derevyannyh konstrukcij. CHast' 1-1. Obshchie pravila i pravila dlya zdanij : TKP EN 1995-1-1-2009 (02250). - Vved. 01.01.2010. - Minsk : Minstrojarhitektury, 2010. -110 s.
- Konstrukcii derevyannye uzlami vintah Pravila na proektirovaniya: SP 299.1325800.2017. - Vved. 17.02.2018 - M.: Minstroi Rossii. 2017. – 19 s.
- Najchuk, A. YA. Ustojchivosť stal'nyh central'no szhatyh vintov v massive drevesiny / A. YA. Najchuk, K. K. Glushko, E. V. Markechko // Promyshlennoe i grazhdanskoe stroitel'stvo. - 2020. - № 3 (65). -S. 4-9.
- Glushko, K. K. CHislennyj analiz ustojchivosti central'no szhatyh stal'nyh vintov v derevyannyh konstrukciyah / K. K. Glushko, E. V. Markechko // Teoriya i praktika issledovanij, proektirovaniya i SAPR v stroitel'stve: sb. statej Mezhdunar. nauch.-metod. konf., Brest, 27 marta 2020 g. / redkol.: N. N. SHalobyta [i dr.]. - Brest : BrGTU, 2020. – S. 46–57.
- Derevyannye konstrukcii : SP 5.05.01-2021. Vved. 01.06.2021. -Minsk: Minstrojarhitektury, 2021. – 115 s.
- Vol'mir, A. S. Ustojchivost' uprugih sistem / A. S. Vol'mir. M. : Gosudarstvennoe izdateľstvo fiziko-matematicheskoj literatury, 1963. - 879 s.
- 10. Evrokod 3. Proektirovanie stal'nyh konstrukcij. CHast' 1-1. Obshchie pravila i pravila dlya zdanij : TKP EN 1993-1-1-2009* (02250). -Vved. 01.01.2010. – Minsk : Minstrojarhitektury, 2014. – 96 s.
- 11. Sovershenstvovanie normativnoj bazy dlya soedinenij derevyannyh konstrukcij na vintah / P. N. Smirnov [i dr.] // Krepezh, klei, instrumenty i – 2018 – № 3 (65). – S. 18–23.
- 12. Drevesina konstrukcionnaya. Klassy prochnosti : STB EN 338-2011. -Vved. 01.06.2012. - Minsk: Gosstandart, 2012. - 11 s.
- 13. Konstrukcii derevyannye. Drevesina kleenaya mnogoslojnaya. Klassy prochnosti i opredelenie harakteristicheskih znachenij : STB EN 1194-2011. - Vved. 01.07.2012. - Minsk : Gosstandart, 2012. - 13 s.

Материал поступил 11.06.2024, одобрен 18.06.2024, принят к публикации 18.06.2024

48 Строительство