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Abstract. This paper regards the mixed problem for wave equation on the
plane. The authors of the article prove that the usage of necessary and suffi-
cient homogeneous compatibility conditions guarantees coming to the classical
solution in the half-strip. The article gives the classical solution to the one-
dimensional wave equation in analytical form if there are Dirichlet conditions
at the side edges and conditions of Cauchy type at the bottom of the plane.
The Classical solution means function which is defined in all points presented
in the closure of the defined domain. This function must have all classical
derivatives included in the equation and conditions of problem. In case of
heterogeneous compatibility conditions correct problem is formulated. In this
case the conjugation conditions are added to the problem. Then the classical
solution is piecewise smooth in the corresponding subdomains of the half-strip.
Also this paper obtains the classical solution of the problem using the method
of the characteristic parallelogram.

1 Introduction

Using the method of characteristics, the classical solution of problems for hyperbolic
equations can get in an analytical form. For example it obtained for the problems for
one-dimensional wave equation [3, 5-6], for the mixed problems for Klein-Gordon-
Fock eqaution [8], for mixed problems for bi-wave equation [9]. The advantage of
the method of characteristics is that the results are obtained for many problems
with different boundary and integral conditions.

Here, using the example of the first mixed problem for a one-dimensional wave
equation defined in a half-strip, it is shown that the solution or its derivatives have
a discontinuity on a certain set of characteristics inside the domain of definition of
the equation if there are no fully or partially compatibility conditions in the corner
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points for the given functions of the boundary conditions and the right part of the
equation.

The problem is also considered in the case of non-uniform matching conditions.
The formulation of the problem, especially in the case of non-uniform matching
conditions, can be considered with the use of the conjugation conditions of the
searched function and its derivatives.

Using the method of characteristic parallelogram, the solution of the problem
is written in the form of a formula using the specified functions and a particular
solution of the original equation.

2 Statement of the problem

In the closure Q = [0,∞)×[0, l] of the domain Q = (0,∞)×(0, l) of two independent
variables x = (x0, x1) ∈ Q ⊂ R2 we analyze the wave equation(

∂2
x0
− a2∂2

x1

)
u(x) = f(x), x = (x0, x1) ∈ Q ⊂ R2, (1)

where a2, l are positive real numbers, ∂2
x0

= ∂2/∂x0
2, ∂2

x1
= ∂2/∂x1

2 are partial
derivatives of the second order. For equation (1) on the boundary ∂Q of the domain
Q we add the initial conditions

u(0, x1) = ϕ(x1), ∂x0u(0, x1) = ψ(x1), x1 ∈ [0, l], (2)

and boundary conditions

u(x0, 0) = µ(1)(x0), u(x0, l) = µ(2)(x0), x0 ∈ [0,∞). (3)

Here f : Q 3 x → f(x) is the given function in Q, ϕ : [0, l] 3 x1 → ϕ(x1) ∈ R,
ψ : [0, l] 3 x1 → ψ(x1) ∈ R are functions on [0, l], µ(j) : [0,∞) 3 x0 → µ(j)(x0) ∈ R
are the given functions in [0,∞), the smoothness of which will be clarified below,
j = 1, 2.

Functions f , ϕ, ψ, µ(j), j = 1, 2 satisfy the following non-uniform compatibility
conditions:

ϕ(0)− µ(1)(0) = δ(1),
1

a

(
dµ(1)(0)− ψ(0)

)
= δ(2),

1

a2

(
a2d2ϕ(0)− d2µ(1)(0) + f(0, 0)

)
= δ(3),

(4)

µ(2)(0)− ϕ(l) = σ(1),
1

a

(
dµ(2)(0)− ψ(l)

)
= σ(2),

1

a2

(
d2µ(2)(0)− a2d2ϕ(l)− f(0, l)

)
= σ(3),

(5)

where dµ(j) and d2µ(j) – derivatives of functions µ(j) of the first and second orders,
j = 1, 2, d2ϕ – derivative of the second order of the function ϕ.

If all numbers σ(j) = δ(j) = 0, j = 1, 2, 3 in the compatibility conditions (4) –
(5), then the conditions (4) – (5) are the homogeneous compatibility conditions with
respect to the given functions of the problem (1) – (3). Note that for sufficiently
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smooth given functions of the equation (1) in the set Q, conditions (2) in the interval
[0, l], conditions (3) in the half-line [0,∞) there is the unique classical solution to
this problem if and only if the coincidence conditions (4), (5) for these functions
are homogeneous. Otherwise, on certain characteristics in the domain Q of solution
u of the problem (1) – (3) along with derivatives, they have discontinuities. These
discontinuities can be written in the form of pairing conditions, which will be done.
Thus, in the general case, the problem (1) – (3) can be replaced with a problem (1)
– (5) with conjugation conditions on characteristics, where the jumps of functions
and theirs derivatives are expressed in terms of given real numbers δ(j) and σ(j),
j = 1, 2, 3. The solution of the problem (1) – (5) will be written out in the analytical
form through functions f , ϕ, ψ, µ(1) and µ(2) using the appropriate formulas.

3 Particular solutions of equation (1)

The general solution u ∈ C2(Q) of the equation (1) is a sum of the general solution
u(0) ∈ C2(Q) of the homogeneous equation(

∂2
x0
− a2∂2

x1

)
u(0)(x) = 0, x ∈ Q, (6)

and the particular solution vp ∈ C2(Q) of the inhomogeneous equation (1). We now
construct the particular solution of the equation (1) without continuing the function
f in the variable x1 outside the segment [0, l].

Here the construction will be carried out locally. To do this, we divide the

domain Q into subdomains Q(m) =
(

(m−1)l
a

, ml
a

)
× (0, l), where m = 1, 2, . . . (see fig.

1). From the characteristics x1 − ax0 = (1−m)l and x1 + ax0 = ml of the domain
Q(m) we integrate the equation (1).

As a result, we obtain in Q(m) the solution

v(m)
p (x) = f (1,m)(x1 − ax0) + f (2,m)(x1 + ax0)−

− 1

4a2

x1−ax0∫
l−ml

dy

x1+ax0∫
ml

f

(
z − y

2a
,
z + y

2

)
dz,

x1 ∈ [0, l],

(7)

where f (j,m) are from C2 in all their domains of definition, x ∈ Q. The particular
solution vp of the equation (1) is determined by the following formula

vp(x) = v(m)
p (x),x ∈ Q(m),m ∈ N. (8)

Theorem 1. Let the function f is from C1(Q), Q = [0,∞) × [0, l]. Then
the function vp, defined by the formulas (7) and (8) with the certain choice of the
functions f (j,m), j = 1, 2, m ∈ N, is from the space C2

(
Q
)
, is the solution of the

equation (1) and satisfies the conditions

vp(0, x1) = ∂x0vp(0, x1) = 0,

∂2
x0
vp(0, x1) = f(0, x1), x1 ∈ [0, l].

(9)
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Figure 1: Dividing the domain Q into subdomains Q(m).

Proof. If f ∈ C1
(
Q
)
, f (1,m) ∈ C2 ([−ml, 2l −ml]), f (2,m) ∈ C2 ([ml − l,ml + l]),

then according to the formula (7) v
(m)
p ∈ C2

(
Q(m)

)
for each m ∈ N. We calculate

the derived functions v
(m)
p , namely:

∂x0v
(m)
p (x) = −adf (1,m)(x1 − ax0) + adf (2,m)(x1 + ax0)+

+
1

4a

x1+ax0∫
ml

f

(
z − x1 + ax0

2a
,
z + x1 − ax0

2

)
dz−

− 1

4a

x1−ax0∫
l−ml

f

(
x1 + ax0 − y

2a
,
x1 + ax0 + y

2

)
dy,

∂2
x0
v(m)
p (x) = a2d2f (1,m)(x1 − ax0) + a2d2f (2,m)(x1 + ax0) +

1

2
f(x)+

+
1

8a

x1+ax0∫
ml

∂y0f

(
y0 =

z − x1 + ax0

2a
,
z + x1 − ax0

2

)
dz−

−1

8

x1+ax0∫
ml

∂y1f

(
z − x1 + ax0

2a
, y1 =

z + x1 − ax0

2

)
dz−

68



− 1

8a

x1−ax0∫
l−ml

∂y0f

(
y0 =

x1 + ax0 − y
2a

,
x1 + ax0 + y

2

)
dy−

−1

8

x1−ax0∫
l−ml

∂y1f

(
x1 + ax0 − y

2a
, y1 =

x1 + ax0 + y

2

)
dy,

∂x1v
(m)
p (x) = df (1,m)(x1 − ax0) + df (2,m)(x1 + ax0)−

− 1

4a2

x1+ax0∫
ml

f

(
z − x1 + ax0

2a
,
z + x1 − ax0

2

)
dz−

− 1

4a2

x1−ax0∫
l−ml

f

(
x1 + ax0 − y

2a
,
x1 + ax0 + y

2

)
dy,

∂2
x1
v(m)
p (x) =

1

a2
∂2
x0
v(m)
p (x)− 1

2a2
f(x).

The obtained ratios of derivatives are substituted into the equation (1). As a

result, we are convinced that the function v
(m)
p is the solution of this equation for

x ∈ Q(m) and each number m ∈ N.
According to the definition of the function vp by the formula (8), requiring to

fulfill the first two conditions from (9), for functions f (j,1) (j = 1, 2), substituting

v
(1)
p into these conditions, we obtain the system of equations

f (1,1)(x1) + f (2,1)(x1) =
1

4a2

x1∫
0

dy

x1∫
l

f

(
z − y

2a
,
z + y

2

)
dz,

− df (1,1)(x1) + df (2,1)(x1) =

=
1

4a2

x1∫
l

f

(
z − x1

2a
,
z + x1

2

)
dz − 1

4a2

x1∫
0

f

(
x1 − y

2a
,
x1 + y

2

)
dy.

(10)

Solving the system (10), we obtain the values of the functions f (j,1) (j = 1, 2),

f (1,1)(x1) =
1

4a2

x1∫
0

dξ

ξ∫
l

f
(z − ξ

2a
,
z + ξ

2

)
dz,

f (2,1)(x1) =
1

4a2

x1∫
0

dη

η∫
0

f
(η − y

2a
,
y + η

2

)
dy =

1

4a2

x1∫
0

dy

x1∫
y

f
(η − y

2a
,
y + η

2

)
dη,

for which
v(1)
p (0, x1) = ∂x0v

(1)
p (0, x1) = 0. (11)
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From the equation (1) and the conditions (11) the correlation follows

∂2
x0
v(1)
p (0, x1) = f(0, x1) + a2∂2

x1
v(1)
p (0, x1) = f(0, x1).

Thus, for a certain function vp the ratio (8) with the appropriate choice of functions
f (j,1) fulfills the requirements (9) of theorem 1.

Since f ∈ C1
(
Q
)
, the functions v

(m)
p , m = 1, 2, are from the space C2

(
Q(m)

)
.

On the line of contact {x|x0 = l/a} between the two domains Q(1) and Q(2) we will

demand that the continuity of two functions be fulfilled v
(1)
p and v

(2)
p , namely

v(2)
p

(
l

a
, x1

)
= v(1)

p

(
l

a
, x1

)
,

∂x0v
(2)
p

(
l

a
, x1

)
= ∂x0v

(1)
p

(
l

a
, x1

)
, x1 ∈ [0, l].

(12)

We will consider the conditions (12) as Cauchy conditions for the function v
(2)
p .

They can be achieved by selecting the functions f (j,2) accordingly. Substituting
representations (7) into conditions (12), we obtain the system (10) for the functions
f (j,2), j = 1, 2.

On the basis of the conditions (12) and the equation (1) we obtain the equality

∂2
x0
v(2)
p (

l

a
, x1) = ∂2

x0
v(1)
p

(
l

a
, x1

)
, x1 ∈ [0, l]. (13)

From the previous arguments and equalities (12), (13) we conclude that the function

v
(1,2)
p , defined by the relation

v(1,2)
p (x) = v(m)

p (x), x ∈ Q(m),m = 1, 2,

is from the space C2
(
Q(1) ∪Q(2)

)
.

Moving along the proposed scheme due to the certain choice of functions f (j,m),
j = 1, 2; m = 3, 4, . . ., we prove that the function constructed vp according to the
formulas (7) and (8) is to the class C2

(
Q
)

and satisfies the equation (1), for all

x ∈ Q.

4 The solution of the problem (1) - (3). Uniform

compatibility conditions

We begin the study and construction of the classical solution of the problem (1) –
(3) with the general solution u ∈ C2(Q) of the equation (1). The general solution
from C2(Q) this equation can be represented as

u(x) = g(1)(x1 − ax0) + g(2)(x1 + ax0) + vp(x), (14)
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where g(1) ∈ C2((−∞, l]), g(2) ∈ C2([0,∞)), vp – private solution of the equation
(1) vp ∈ C2(Q), a > 0 (for definiteness).

If f ∈ C1(Q), then the particular solution according to theorem 1 is determined
by formulas (7) – (8). Here also vp ∈ C2(Q), C1(Q) ⊂ C0,1(Q).

From the general representation (14) of the solution of the equation (1) we select
the one that satisfies the condition (2) and (3). To do this, we will assume that
ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]), µ(j) ∈ C2([0,∞)), j = 1, 2.

From (14) and Cauchy conditions (2) we have a system

g(1)(x1) + g(2)(x1) = ϕ(x1), x1 ∈ [0, l],

− a d g(1)(x1) + a d g(2)(x1) = ψ(x1), x1 ∈ [0, l].
(15)

Here conditions were taken (9).
As the functions g(j), j = 1, 2, in the system (15) are determined partially, and

not in all areas D(g(j)) of their definition, here we introduce the notation

g(j)(z) = g(j,0)(z), z ∈ [0, l].

Integrating the second equation from (9), and then solving the resulting algebraic
system, we find the values g(j,0)(x1), namely:

g(j)(z) = g(j,0)(z) =
1

2
ϕ(z) + (−1)j

1

2a

z∫
0

ψ(ξ)dξ + (−1)jC, j = 1, 2, (16)

for z ∈ [0, l], C is an arbitrary constant from the set R, which appeared as the result
of integrating the second equation of the system (15).

For other values of the argument z the values of the functions g(j) are determined
in stages, using boundary conditions (3). Satisfying the solution (14) to the first
boundary condition from (3), we obtain the equation

g(1)(z) + g(2)(−z) = µ(1)
(
− z

a

)
− vp

(
− z

a
, 0
)
. (17)

Since the function g(2) is already defined by the formula (16) for −z = ax0 ∈ [0, l],
then

g(1)(z) = g(1,1)(z) = µ(1)
(
− z

a

)
− g(2,0)(−z)− vp

(
− z

a
, 0
)
, z ∈ [−l, 0]. (18)

Similarly, by satisfying (14) the second boundary condition from (3), we obtain the
relation

g(2)(z) = µ(2)
(z − l

a

)
− g(1)(2l − z)− vp

(z − l
a

, l
)
, (19)

and in particular

g(2)(z) = g(2,1)(z) = µ(2)
(z − l

a

)
− g(1,0)(2l − z)− vp

(z − l
a

, l
)
, z ∈ [l, 2l]. (20)
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Continuing this process further, for the k-th iteration through the previous values
of the functions will be obtained using the relations

g(1)(z) = g(1,k)(z) = µ(1)
(
−z
a

)
−g(2,k−1)(−z)−vp

(
−z
a
, 0
)
, z ∈ [−kl,−(k−1)l], (21)

g(2)(z) = g(2,k)(z) = µ(2)
(z − l

a

)
− g(1,k−1)(2l − z)− vp

(z − l
a

, l
)
, z ∈ [kl, (k + 1)l],

(22)
k = 1, 2, 3, . . . . From the formulas (21) – (22) it is clear that the values of the
functions g(j), j = 1, 2, are defined piecewise on the corresponding segments through
the values of the given functions f, ϕ, ψ, µ(j) (j = 1, 2). Therefore, if we require
sufficient smoothness of these functions, then the functions g(j,k) will also be smooth
on the corresponding segments (see (21), (22)), for example, from the class C2, j =
1, 2; k = 1, 2, 3 . . . . Consequently, the solution (14) of the problem (1) – (3) will
be piecewise smooth in Q. We need the function (14) to be from the class C2(Q)
on the whole set Q. According to theorem 1, vp ∈ C2(Q), if f ∈ C1(Q). We
require that the functions (16), (21), (22) and their derivatives of the first and
second orders coincide at common points of contact. Calculating the derivatives of
functions g(j,k) (j = 1, 2; k = 1, 2, 3 . . . ), represented by formulas (21) and (22), we
get their expressions

d

dz
g(1,k)(z) = −1

a
dµ(1)

(
− z

a

)
+ d g(2,k−1)(−z) +

1

a

∂

∂x0

vp

(
x0 = −z

a
, 0
)
,

d2

dz2
g(1,k)(z) =

1

a2
d2 µ(1)

(
− z

a

)
− d2g(2,k−1)(−z)− 1

a2

∂2

∂x2
0

vp

(
x0 = −z

a
, 0
)
,

z ∈ [−kl,−(k − 1)l], k = 1, 2, . . . ,

(23)

d

dz
g(2,k)(z) =

1

a
dµ(2)

(z − l
a

)
+ d g(1,k−1)(2l − z)−

− 1

a

∂

∂x0

vp

(
x0 =

z − l
a

, l
)
,

d2

dz2
g(2,k)(z) =

1

a2
d2 µ(2)

(z − l
a

)
− d2g(1,k−1)(2l − z)−

− 1

a2

∂2

∂x2
0

vp

(
x0 =

z − l
a

, l
)
,

z ∈ [kl, (k + 1)l], k = 1, 2, . . . .

(24)

So that the function g(1), defined by the functions g(1,k), (k = 0, 1, 2, . . . ), is from
C2((−∞, l]), and the function g(2), composed of g(2,k), (k = 0, 1, 2, . . . ), is from
C2([0,∞)), if the equalities are valid

g(1,k+1)(−kl) = g(1,k)(−kl), d g(1,k+1)(−kl) = d g(1,k)(−kl),
d2g(1,k+1)(−kl) = d2g(1,k)(−kl), k = 0, 1, 2, 3, . . . ,

(25)

g(2,k)(kl) = g(2,k−1)(kl), d g(1,k)(kl) = d g(1,k−1)(kl),

d2g(1,k)(kl) = d2g(1,k−1)(kl), k = 1, 2, 3, . . . .
(26)
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In the ratios (16), (21), (22) we assume that f ∈ C1(Q), ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]),
µ(j) ∈ C2([0,∞)), (j = 1, 2).

If we analyze the relationship (16) – (26), we can conclude the following.
Lemma 1. Let f ∈ C1(Q), ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]), µ(j) ∈ C2([0,∞)), (j =

1, 2). Equalities (25) and (26) are fulfilled if and only if equalities (25) are fulfilled
only for k = 0, and (26) are fulfilled for k = 1. In addition, equality (25) for
k = 0, and equality (26) for k = 1 are valid if and only if homogeneous compatibility
conditions are fulfilled (4), (5), i.e.

ϕ(0)− µ(1)(0) = 0, dµ(1)(0)− ψ(0) = 0,

a2 d2 ϕ(0)− d2 µ(1)(0) + f(0, 0) = 0,
(27)

µ(2)(0)− ϕ(l) = 0, dµ(2)(0)− ψ(l) = 0,

d2µ(2)(0)− a2 d2ψ(l)− f(0, l) = 0.
(28)

Proof. From relations (16), (18) – (22) using mathematical induction method,
it can be concluded that all equalities (25), (26) are satisfied if and only if some of
them are valid for one number k, only for example, as stated in the lemma, the first
for k = 0, and the second ones for k = 1.

And now we will check under what conditions the values of the functions and
their derivative relations (16) – (24) for k = 0. We write equality (25) for k = 0
through the specified problem functions (1) – (3):

g(1,1)(0) = µ(1)(0)− g(2)(0)− vp(0, 0) =

= µ(1)(0)− 1

2
ϕ(0)− C = g(1,0)(0) =

1

2
ϕ(0)− C,

d g(1,1)(0) = −1

a
dµ(1)(0)− d g(2)(0) +

1

a

∂

∂x0

vp(x0 = 0, 0) =

= −1

a
dµ(1)(0) +

1

2
dϕ(0) +

1

2a
ψ(0) =

= d g(1,0)(0) =
1

2
ϕ(0)− 1

2a
ψ(0),

d2 g(1,1)(0) =
1

a2
d2 µ(1)(0)− d2 g(2,0)(0)− 1

a2

∂2

∂x2
0

vp(x0 = 0, 0) =

=
1

a2
d2 µ(1)(0)− 1

2
d2 ϕ(0)− 1

2a
dψ(0)− 1

a2
f(0, 0) =

= d2 g(1,0)(0) =
1

2
d2ϕ(0)− 1

2a
dψ(0).

(29)

Equations (27) follow from the relations (29). Conversely, if the conditions (27) are
satisfied, then the equalities (29) are fulfilled, and accordingly – and equalities (25)
for k = 0.

In the detailed record, we represent the equalities (26) for k = 1. As a result, we
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obtain the ratio:

g(2,1)(l) = µ(2)(0)− g(1,0)(l)− vp(0, l) =

= µ(2)(0)− 1

2
ϕ(l) +

1

2a

∫ l

0

ψ(ξ)dξ + C =

= g(2,0)(l) =
1

2
ϕ(l) +

1

2a

∫ l

0

ψ(ξ)dξ + C,

d g(2,1)(l) =
1

a
dµ(2)(0) + d g(1,0)(l)− 1

a

∂

∂x0

vp(x0 = 0, l) =

=
1

a
dµ(2)(0) +

1

2
dϕ(0)− 1

2a
ψ(l) = d g(2,0)(l) =

1

2
dϕ(0) +

1

2a
ψ(l),

d2g(2,1)(l) =
1

a2
d2µ(2)(0)− d2 g(1,0)(l)− 1

a2

∂2

∂x2
0

vp(x0 = 0, l) =

=
1

a2
d2µ(2)(0)− 1

2
d2ϕ(0) +

1

2a
dψ(l)− 1

a2
f(0, l) =

= d2g(2,0)(l) =
1

2
d2ϕ(l) +

1

2a
dψ(l).

(30)

It is clear from equalities (30) that equalities (26) for k = 1 are fulfilled if and only
if homogeneous compatibility conditions are fulfilled (28).

Constructed functions g(j,k) : D(g(j,k)) =
{
z| z ∈ [(−1)jkl, (−1)jkl + l]

}
3 z →

g(j,k)(z) define functions g(j) according to the formulas

g(j)(z) = g(j,k)(z), z ∈ D(g(j,k)(z)), j = 1, 2; k = 0, 1, 2, . . . . (31)

Lemma 2. If the functions f ∈ C1(Q), ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]), µ(j) ∈
C2([0,∞)), (j = 1, 2), and homogeneous compatibility conditions (27) and (28) are
fulfilled, then the functions defined by the formulas (31), (16), (21), (22) have the
representations

g(j)(z) = g̃ (j)(z) + (−1)jC, j = 1, 2, (32)

where C is an arbitrary constant from R. In addition, functions g̃(j) are uniquely
defined and g̃(1) ∈ C2((−∞, l]), g̃(2) ∈ C2([0,∞)).

Proof. The conditions of lemma 2 and the formulas (16), (21), (22) imply
that the functions g(i,k) are to the corresponding classes C2(D(g(i,k))). According
to the definition of functions g(j) by the relations (31) from lemma 1, equalities
(25), (26) and homogeneous compatibility conditions (27) and (28) it follows g(1) ∈
C2((−∞, l]), g(2) ∈ C2([0,∞)).

Further, starting with the formulas (16) the functions for each k = 1, 2, 3, . . .
are determined by relations (21), (22). Using mathematical induction, it is easy to
show, that

g(j,k)(z) = g̃ (j,k)(z) + (−1)jC, (33)

where g̃ (j,k) for each pair of indices are determined uniquely, the arbitrary constant C
in all relations (33) is the same. Thus, representations (33), definitions of functions
g(j) by equalities (31) prove the representation (32). From this and the fact that
g(1) ∈ C2((−∞, l]), g(2) ∈ C2([0,∞)) the second statement of lemma 2 follows.
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Theorem 2. If functions f ∈ C1(Q̄), ϕ ∈ C2([0, l]), ψ ∈ C1([0, l]), µ(j) ∈
C2([0,∞]), j = 1, 2, then the function of the form (14) is the only classical solution
from the class C2(Q̄) of the problem (1) - (3) if and only if homogeneous compatibility
conditions (27) and (28) are fulfilled for the given functions of the problem, where
the functions g(j)(j = 1, 2) are determined by the relations (31), (16), (21), (22).

Proof of the theorem 2 follows from the previous arguments, theorem 1, lemmas
1, 2.

5 Non-uniform compatibility conditions (4) - (5)

Let’s suppose now, that the homogeneous compatibility conditions (27), (28) are
partially or completely not fulfilled.

In other words, we have non-uniform compatibility conditions defined by the
formulas (4), (5).

As in the previous case of homogeneous compatibility conditions, we start the
study with the general solution (14) of the equation (1).

Repeating the previous arguments for functions g(j) (j = 1, 2), we obtain the
formulas (16) – (22). Since the function vp, defined by the relations (7), (8),
according to theorem 1 is to the class C2(Q), if f ∈ C1(Q), for the functions
g(j,k)(j = 1, 2; k = 0, 1) we obtain the following values through the compatibility
conditions (4), (5) at the common points of their contact z = 0, z = l:

g(1,0)(0)− g(1,1)(0) = ϕ(0)− µ(1)(0) = δ(1),

g(2,1)(l)− g(2,0)(l) = µ(2)(0)− ϕ(l) = σ(1),

dg(1,0)(0)− dg(1,1)(0) =
1

a

(
dµ(1)(0)− ψ(0)

)
= δ(2),

dg(2,1)(l)− dg(2,0)(l) =
1

a

(
dµ(2)(0)− ψ(l)

)
= σ(2),

d2g(1,0)(0)− d2g(1,1)(0) =
1

a2

(
a2d2ϕ(0)− d2µ(1)(0) + f(0, 0)

)
= δ(3),

d2g(2,1)(l)− d2g(2,0)(l) =
1

a2

(
d2µ(2)(0)− a2d2ϕ(l)− f(0, l)

)
= σ(3).

(34)

Further, using the mathematical induction method, in the general case the rela-
tions are proved:

dpg(1,k−1)(l − kl)− dpg(1,k)(l − kl) =

{
δ(p+1), k = 1, 3, 5, . . . ,

(−1)pσ(p+1), k = 2, 4, 6, . . . ,
(35)

dpg(2,k)(kl)− dpg(2,k−1)(kl) =

{
σ(p+1), k = 1, 3, 5, . . . ,

(−1)pδ(p+1), k = 2, 4, 6, . . . ,
(36)

for p = 0, 1, 2.
Thus, the presence of non-uniform compatibility conditions violates the conti-

nuity of functions g(j) or their derivatives, or altogether. This conclusion can be
formulated as the following statement.
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Statement 1. If homogeneous compatibility conditions (27), (28) are not ful-
filled for given functions f, ϕ, ψ, µ(j) (j = 1, 2), then no matter how smooth these
functions are, the problem (1) – (3) has no classical solution defined in Q = [0,∞)×
[0, l].

Let the given functions of the equation (1), the boundary conditions (2), (3)
be sufficiently smooth and such as in theorem 2: f ∈ C1(Q), ϕ ∈ C2[0, l], ψ ∈
C1[0, l], µ(j) ∈ C2[0,∞), j = 1, 2. Under given assumptions, the given functions are
defined g(j)(j = 1, 2). Since the compatibility conditions (4), (5) are non-uniform,
for δ(p+1) and σ(p+1), p = 0, 1, 2, not partially equal to zero or completely, we obtain
discontinuous functions g(j) or their derivatives according to the expressions (35) –
(36).

Let us consider first, according to the formula (14) the partially defined solutions

u(k,m)(x) = g(1,k)(x1 − ax0) + g(2,m)(x1 + ax0) + vp(x)

for x ∈ Q, where z = (x1− ax0) ∈ (−kl,−(k− 1)l), z̃ = (x1 + ax0) ∈ (ml, (m+ 1)l).
Let us introduce the notation of new functions r(1,k) : R2 ⊃ Q ⊃ D(r(1,k)) 3 x →
r(1,k)(x) = g(1,k)(x1 − ax0) ∈ R, r(2,m) : R2 ⊃ Q ⊃ D(r(2,m)) 3 x → r(2,m)(x) =
g(2,m)(x1 + ax0) ∈ R. Thus,

u(k,m)(x)− vp(x) = r(1,k)(x) + r(2,m)(x), (37)

where the domain D(u(k,m)) of the function u(k,m) is the intersection of the domains
D(r(1,k)) and D(r(2,m)), i.e. D(u(k,m)) = D(r(1,k)) ∩ D(r(2,m)). Since the values of
an arguments x are within the domain Q, for most indices k and m D(u(k,m)) = ∅,
∅ is an empty set. We are interested in functions u(k,m) for which D(u(k,m)) 6= ∅,
k,m ∈ {0, 1, . . .}.

If we analyze the domains of definition of functions g(j,k), j = 1, 2, k = 0, 1, 2, . . . ,
then in (37) D(u(k,m)) = ∅ under the condition that |k −m| > 1. This means the
following: D(u(k,m)) 6= ∅ for k = 1, 2, . . . , if, accordingly m = k − 1, k, k + 1, and
D(u(0,m)) 6= ∅, if m = 0, 1.

We denote through Q(k,m) = D(u(k,m)) subdomains the domain Q, k = 0, 1, 2, . . . ,
m = k−1, k, k+1, Q(0,−1) = ∅. Note that the boundary points z = x1−ax0 = −kl,
z = x1 − ax0 = −(k − 1)l of the functions g(1,k) determine the characteristics of
the equation (1) in the domain Q, k = 1, 2, . . . , of one family, and the boundary
points z = x1 + ax0 = ml, z = x1 + ax0 = (m + 1)l, m = 1, 2, . . . , in Q define the
characteristics of another family. These non-intersecting subdomains Q(k,m) of the
domain Q in the Cartesian coordinate system of the plane R2 of variables x0, x1 are
described by the following relations:

Q(0,−1) = ∅,

Q(0,0) =

{
x ∈ Q | x1 ∈

(
0,
l

2

]
, 0 < x0 <

x1

a

}
∪

∪
{

x ∈ Q | x1 ∈
[
l

2
, l

)
, 0 < x0 <

l − x1

a

}
,

76



Q(k,k−1) =

{
x ∈ Q | x1 ∈

(
0,
l

2

]
,
x1 + (k − 1)l

a
< x0 <

kl − x1

a

}
, k = 1, 2, . . . ,

Q(k−1,k) =

{
x ∈ Q | x1 ∈

(
l

2
, l

)
,
kl − x1

a
< x0 <

x1 + (k − 1)l

a

}
, k = 1, 2, . . . ,

Q(k,k) =

{
x ∈ Q | x1 ∈

(
0,
l

2

]
,
kl − x1

a
< x0 <

x1 + kl

a

}
∪

∪
{

x ∈ Q | x1 ∈ [
l

2
, l),

x1 + (k − 1)l

a
< x0 <

(k + 1)l − x1

a

}
, k = 1, 2, 3, . . . .

For clarity, the subdomains Q(k,m) are shown in the figure 2 in the Cartesian
coordinate system of variables x0, x1.

xl0

t

Q(k+1,k) Q(k,k+1)

Q(k,k)

Q(k,k-1) Q(k-1,k)

Q(k-1,k-1)

Q(2,1) Q(1,2)

Q(1,1)

Q(1,0) Q(0,1)

Q(0,0)

x-at=-(k-1)l

x+at=kl

Figure 2: Dividing the domain Q into subdomains Q(k,m).

We denote by Q̃ way of unification Q(k,m), namely: Q̃ =
∞⋃
k=0

k+1⋃
m=k−1

Q(k,m). Clearly

Q̃ ⊂ Q.
Along with the subdomains Q(k,m) of the domain Q , we denoteM(j,k) intervals

the characteristics of the equation

∂2
x0
u(x)− a2∂2

x1
u(x) = f (x) ,
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is Q and passing through the points
(
k l
a
, 0
)
, k = 0, 1, . . . , j = 1, 2. Notations

M(j,k) can be viewed as a subset of the domain Q and M(j,k) = {x ∈ Q | x1 =
(−1)j−1ax0 + (k − 2 + j)l, x1 ∈ (0, l), k = 1, 2, . . . , j = 1, 2}.

Thus Q = Q̃ ∪ (
∞⋃
k=1

2⋃
j=1

M(j,k)), Q = Q̃.

Let us denote ũ the function defined on the set Q̃ in the following way:

ũ(x) = u(k,m)(x) = g(1,k)(x1 − ax0) + g(2,m)(x1 + ax0) + vp(x) =

= r(1,k)(x) + r(2,m)(x) + vp(x),
(38)

where k = 0, 1, 2, . . . , m = k − 1, k, k + 1; u(2,−1)(t, x) ≡ 0.
The following theorem is valid.
Theorem 3. Let the functions be the following f ∈ C1(Q), ϕ ∈ C2[0, l], ψ ∈

C1[0, l], µ(j) ∈ C2[0,∞), j = 1, 2, and
3∑
p=1

[(
δ(p)
)2

+
(
σ(p)
)2
]
6= 0. Then the function

ũ from the class C2(Q̃) is the only solution to the problem (1) – (3) if and only if
the compatibility conditions (4), (5) are fulfilled .

Proof of theorem 3 follows from the previous arguments.
Numerous characteristics M(j,k) can be divided into two classes:

M(σ) = (
∞⋃
s=1

M(1,2s−1)) ∪ (
∞⋃
s=1

M(2,2s)),

M(δ) = (
∞⋃
s=1

M(1,2s)) ∪ (
∞⋃
s=1

M(2,2s−1)).

Corollary 1. If δ(1) 6= 0 and σ(1) 6= 0, then in terms of the relations (35), (36)
the function ũ for each k = 1, 2, . . . and j = 1, 2 on M(j,k) is discontinued when
passing through the given characteristic interval x1 = (−1)j−1x0 + (k − 2 + j)l. In
addition, on the set M(δ) for each of theirs points, the gap is equal to the same
number δ(1), on M(σ) and the gap is equal to σ(1). The derivatives of the first order
function ũ on sets M(δ) and M(σ) suffer the gap equal to δ(2) and σ(2) respectively.
Similarly, second-order derivatives of solution ũ on these sets suffer gaps equal to
the numbers δ(3) and σ(3) respectively.

Theorem 4. Let the functions be the following f ∈ C1(Q), ϕ ∈ C2[0, l], ψ ∈
C1[0, l], µ(j) ∈ C2[0,∞), j = 1, 2, δ(1) = σ(1) = 0. Then a function ũ from the
domain C(Q̄)∩C2(Q̃) is the only solution to the problem (1) – (3) if and only if the
compatibility conditions (4), (5) are fulfilled.

Proof follows in fact from the theorem 3 and corollary 1. Indeed, if δ(1) = σ(1) =
0 then the solution ũ on the sets M(δ) and M(σ) is continuous. Consequently,
besides the solution ũ ∈ C2(Q̃), it is a continuous function in the domaim Q, ũ ∈
C(Q).

Theorem 5. Let the conditions of theorems 3 and 4 be fulfilled and, moreover
δ(2) = σ(2) = 0. Then the solution ũ of the problem (1) – (3) is to the class C1(Q)∩
C2(Q̃) and is unique if and only if the compatibility conditions (4), (5) are fulfilled.
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Proof follows easily from theorems 3, 4 and corollary 1, since in this case ũ
it is not only continuous on M(δ) ∪M(σ), but by virtue (35) has of continuous
derivatives of first order.

Remark 1. If δ(p) = 0, p = 1, 2, 3, then the solution ũ, defined by the formula
(38), of the problem (1) – (5) can have gaps together with its derivatives of the first
and second orders only on M(σ). In this case ũ is from the domain C2(Q̃∪M(δ)).
We can formulate analogous theorems, where in theorems 3 - 4 the set C2(Q̃) should
be replaced by the set C2(Q̃ ∪M(δ)).

If σ(p) = 0, p = 1, 2, 3, then a similar remark is valid, where C2(Q̃ ∪M(δ)) in
this case instead C2(Q̃ ∪M(σ)).

Remark 2. The problem (1) – (3) with conjunction conditions on characteristics
can be formulated as follows.

We need find the classical solution of the equation (1), with the Cauchy condi-
tions (2), the boundary conditions (3) and conjugation conditions[(

∂px1ũ
)+ −

(
∂px1ũ

)−]
(x0, x1 = ax0 − (k − 1)l) =

=

{
δ(p+1), k = 3, 5, . . . ,

(−1)pσ(p+1), k = 2, 4, 6, . . . ,
ax0 ∈ [kl, (k − 1)l],

(39)

[(
∂px1u

)+ −
(
∂px1u

)−]
(x0, x1 = −ax0 + kl) =

{
σ(p+1), k = 1, 3, 5, . . . ,

(−1)pδ(p+1), k = 2, 4, 6, . . . ,
(40)

where the numbers δ(j) and σ(j), j = 1, 2, 3, from the conditions (4) – (5), ()± are
the limiting values of the function u and its derivatives ∂x1u, ∂2

x1
u from different

sides on the characteristics x1 − ax0 = −(k − 1)l and x1 + ax0 = kl, i.e.(
∂px1ũ

)±
(x0, x1 = ax0−(k−1)l) = lim

∆x1>0,∆x1−→0

(
∂px1ũ

)
(x0, x1±∆x1 = ax0−(k−1)l),

(
∂px1u

)±
(x0, x1 = −ax0 + kl) = lim

∆x1>0,∆x1−→0

(
∂px1
)

(x0, x1 ±∆x1 = −ax0 + kl).

Note that such the formulation of the considered problem with conjugation con-
ditions is more acceptable for its numerical implementation.

6 The method of characteristic parallelogram.

The formula for solving the first mixed problem

for a one-dimensional wave equation

In the domain Q we consider rectangles Q(m) =
(
(m− 1) l

a
,m l

a

)
,m = 1, 2, ... (see.

fig. 1). It is obvious that, Q̄ =
⋃
m

Q̄(m).

Let the point x = A = A(m) with coordinates (x0, x1) is to Q̄(m),m > 2. Through
A the conduct of the characteristic y0 = y1

a
+ x0 − x1

a
, y0 = −y1

a
+ x0 − x1

a
to the
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intersection with the side parts of the boundary ∂Q of the area Q at the points B and
C respectively (fig. 3). The points B and C have coordinates B = (x0− x1

a
, 0), C =

(x0 + x1
a
− l

a
, l), where x0 and x1 - coordinates A = A(m). Through B and C we

make new characteristics that intersect at the point A(m−1) = (x0 − l
a
, l − x1). We

get the characteristic parallelogram A(m)BCA(m−1).
According to the formulas 14, (21) and (22) the solution of the problem (1) - (3)

at the point x = A(m) is written in the following way:

A=A(m)

B(m)

C(m)

B(m-1)

B(m-2)

C(m-1)

C(m-2)

Q(m)

A(m-2)

A(m-1)

y0

y10 l

Q(m-1)

Q(m-2)

Q(1)

ml
a

(m-1)l
a

(m-2)l
a

l
a

Figure 3:

u(x) = u(A(m)) = µ(1)(x0 −
x1

a
) + µ(2)(x0 +

x1

a
− l

a
)+

+ g(1,m−1)(2l − x1 − ax0)g(2,m−1)(ax0 − x1)+

+ vp(x)− vp(x0 −
x1

a
, 0)− vp(x0 +

x1

a
− l

a
, l).

(41)
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If we compare the obtained formula (41) with the coordinates of the vertices of
the characteristic parallelogram A(m)BCA(m−1), then we can write it in the following
form

u(x) = u(A(m)) = u(B) + u(C) + vp(A
(m))−

−vp(B)− vp(C) + vp(A
(m−1))− u(A(m−1)).

(42)

This process can be continued further. The point A(m−1) is the point from the
area Q(m−1). If Q(m−1) it is not Q(1), through A(m−1) and A(m−2) = (x0− 2l

a
, x1) then

we draw characteristics again and build a characteristic parallelogram
A(m−1)B(m−1)C(m−1)A(m−2), where B(m−1) = (x0+x1

a
− 2l

a
, 0), C(m−1) = (x0−x1

a
− l
a
, l).

Similarly to the formula (42) we write the values of the solution of the problem
(1) - (3) at the point A(m−1) = (x0 − l

a
, l − x1) through the values at the points

B(m−1), C(m−1), A(m−2). We continue this construction until we reach the value of
the solution of the problem at the point of the set Q̄(1).

Consider the rectangle Q̄(1). It is divided into four parts Ω(1,k), k = 1, 2, 3, 4.
Subdomains Ω(1,k) can be analytically described in the following way:

Ω(1,1) =

{
y ∈ Q(1) : y1 ∈

(
0,
l

2

]
, 0 < y0 <

y1

a

}⋃{
y ∈ Q(1) : y1 ∈

[
l

2
, l

)
,

0 < y0 <
l − y1

a

}
,

Ω(1,2) =

{
y ∈ Q(1) : y1 ∈

(
0,
l

2

)
,

y1

a
< y0 <

l − y1

a

}
,

Ω(1,3) =

{
y ∈ Q(1) : y1 ∈

(
l

2
, l

)
,

l − y1

a
< y0 <

y1

a

}
,

Ω(1,4) =

{
y ∈ Q(1) : y1 ∈

(
0,
l

2

]
,

l − y1

a
< y0 < l

}⋃{
y ∈ Q(1) : y1 ∈

[
l

2
, l

)
,

y1

a
< y0 < l

}
.

If we consider the circuits, then Q̄(1) =
4⋃

k=1

Ω̄(1,k).

For z ∈ Q̄(1) the completely characteristic parallelogram it does not work, but
only its part, where z - is one of its vertices. The configuration of the parts of each
characteristic parallelogram differs from each other depending on the fact that the
point z has a set Q̄(1,k) for each k = 1, 2, 3, 4. Therefore, the formulas for solving
the problem (1) - (3) will also be different. Let us consider each case z ∈ Ω̄(1,k), k =
1, 2, 3, 4.
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1. z ∈ Ω̄(1,1). According to the formulas (14) and (16) the solution value of the
problem (1) - (3) at the point z ∈ Ω̄(1,1) is represented as

u(z) = u(A(1)) = g(1,0)(z1 − az0) + g(2,0)(z1 + az0) + vp(z) =

=
1

2
[ϕ(z1 − az0) + ϕ(z1 + az0)] +

1

2a

z1+az0∫
z1−az0

ψ(ξ)dξ + vp(z) =

= g(1,0)(E(0)) + g(2,0)(F (0)) + vp(z), A(1) ∈ Ω̄(1,1).

(43)

where E(0) = (0, z1 − az0), F (0) = (0, z1 + az0) (fig. 4).

2. z ∈ Ω̄(1,2). According to the formulas (14), (16) and (21) in this case, the
value u(z) at the point z = A(1) ∈ Ω̄(1,2) is determined by the formula

u(z) = u(A(1)) = g(1,1)(z1 − az0) + g(2,0)(z1 + az0) + vp(z) =

=
1

2
[ϕ(z1 + az0)− ϕ(az0 − z1)] +

1

2a

z1+az0∫
az0−z1

ψ(ξ)dξ + µ(1)(z0 −
z1

a
)+

+ vp(z) = u(B(1)) + g(2,0)(F (0))− g(2,0)(E(1)) + vp(z)− vp(B(1)),

z ∈ Ω̄(1,2),

(44)

where B(1) = (z0 − z1
a
, 0), E(1) = (0, az0 − z1) (fig.5).

y10 l

Ω
(1,1)

l
a

y0

A(1)=z

E(0) F(0)

y
1+ay

0=l
y 1=
ay 0

Figure 4:

y10 l

l
a

y0

A(1)=z

E(1) F(0)

y
1+ay

0=l
y 1=
ay 0

Ω
(1,2)

B(1)

Figure 5:
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3. z ∈ Ω̄(1,3). Let z = A(1) ∈ Ω̄(1,3). According to the formulas (14), (16), (22)
the value of the function u at the point z ∈ Ω̄(1,3) is determined by the formula

u(z) = u(A(1)) = g(1,0)(z1 − az0) + g(2,1)(z1 + az0) + vp(z) =

=
1

2
[ϕ(z1 − az0)− ϕ(2l − z1 − az0)] +

1

2a

2l−z1−az0∫
z1−az0

ψ(ξ)dξ+

+ vp(z) + µ(2)(z0 +
z1

a
− l

a
)− vp(z0 +

z1

a
− l

a
, l) =

= u(C(1)) + g(1,0)(E(0))− g(1,0)(F (1)) + vp(z)− vp(z0 +
z1

a
− l

a
, l),

(45)

where C(1) = (z0 + z1
a
− l

a
, l), E(0) = (0, z1− az0), F (1) = (0, az0− z1 + 2l) (fig.

6).

4. z ∈ Ω̄(1,4). In this case, according to the formulas (14), (16), (21), (22) , the
solution of the problem (1) - (3) is determined by the formula (fig. 7)

u(z) = vp(z) + g(2,1)(z1 + az0) + g(1,1)(z1 − az0) =

= −1

2
[ϕ(az0 − z1) + ϕ(2l − z1 − az0)] +

1

2a

2l−z1−az0∫
az0−z1

ψ(ξ)dξ+

+ µ(1)(z0 −
z1

a
) + µ(2)(z0 +

z1

a
− l

a
) + vp(z)− vp(z0 −

z1

a
, 0)−

− vp(z0 +
z1

a
− l

a
, l) = u(B(1)) + u(C(1))− g(2,0)(E(1))−

− g(1,0)(F (1)) + vp(z)− vp(z0 −
z1

a
, 0)− vp(z0 +

z1

a
− l

a
, l).

(46)
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y
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0=l
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y
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Ω
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Figure 7:

Thus, to obtain the solution to the problem (1) - (3) using the method of char-
acteristic parallelogram, we find this solution in Q̄(1) using the formulas (43) - (46).
In this case, we use the given conditions (2) and (3), as well as the values of the
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function on the right side of the equation (1), which determines the particular so-
lution vp by the formulas (8), (7), (10). Then, using the formula (42), we find the
values of the solution of the problem (1) - (3) on Q̄(2), on Q̄(3) etc. Moving on Q̄(j),
j = 1, 2, . . ., you can find the solution values and in Q̄(m) for any number m.

This process of finding the solution to a problem (1) - (3) can be somewhat
generalized. Let x = A = A(m), B = B(m), C = C(m). Considering the con-
structed parallelograms for each rectangle Q̄(j), we determine the coordinates of all
the vertices. If x = A(m), then through the coordinates x0, x1, the numbers a and l
determine the coordinates of all the other vertices. Namely:

A(j) =


(
x0 − (m−j)l

a
, x1

)
, j = m,m− 2,m− 4, . . . ,(

x0 − (m−j)l
a

, l − x1

)
, j = m− 1,m− 3, . . . ,

B(j) =


(
x0 − x1

a
− (m−j)l

a
, 0

)
, j = m,m− 2,m− 4, . . . ,(

x0 + x1
a
− (m−j+1)l

a
, 0

)
, j = m− 1,m− 3, . . . ,

(47)

C(j) =


(
x0 + x1

a
− (m−j−1)l

a
, l

)
, j = m,m− 2,m− 4, . . . ,(

x0 − x1
a
− (m−j)l

a
, l

)
, j = m− 1,m− 3, . . . .

Note that the sequences (47) end in the numbering j = 1. The coordinates
of a point A(1) in the chain of sequences (47) depend on parity m. If m is the

even number, then A(1) =

(
x0 − m−1

a
l, l − x1

)
, if m is the odd number, then

A(1) =

(
x0 − m−1

a
l, x1

)
.

Taking into account (47) the representation of the solution by the formula (42)
at the point x = A(m) can be proceeded further. To do this, according to the same
formula, we replace the value u(A(m−1)) through u(A(m−2)) and the specified values u
through the boundary conditions (3) u(B(m−1)), u(C(m−1)), the corresponding values
of the particular solution vp, then u(A(m−2)) through u(A(m−3)) etc. Continue this
procedure until we get in the analytical representation u(A(m)) through u(A(1)), the
boundary terms and the values of the particular solution. But the specific form of
this representation depends again on the parity of the number m. Let us consider
each case separately and write down the solution formulas.

Let m be an even number, x ∈ Q̄(m). If we trace in this case the construction of
the solution of the problem (1) - (3), then we obtain its value u(x) at the point x
as a formula
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u(x) = u(A(m)) =
m∑
j=1

(−1)j[u(B(j))− vp(B(j))]+

+
m∑
j=1

(−1)j[u(C(j))− vp(C(j))] + vp(x) + vp(A
(1))− u(A(1)), (48)

where A(1) =

(
x0 − m−1

a
l, l − x1

)
. If m is the odd number, then

u(x) = u(A(m)) =
m∑
j=1

(−1)j[u(B(j))− vp(B(j))]+

+
m∑
j=1

(−1)j[u(C(j))− vp(C(j))] + vp(x)− vp(A(1)) + u(A(1)), (49)

where A(1) =

(
x0 − m−1

a
l, x1

)
. The value u(A(1)) is determined by one of the

formulas (43) - (46) depending on the coordinates of the point x = (x0, x1) and the
parity of the number m. Note that the values u(B(j)) are the values of the function
µ(1) from the first coordinates of points B(j) from (47), and u(C(j)) similarly, the
values of the function µ(2) from the first coordinates of points C(j) from (47).

Statement 2. The formulas (48) and (49) show that the problem solution (1)
- (3) value u(x) is determined for any rectangle Q̄(m)(m = 1, 2, . . .) through the
boundary values (2) of the given functions ϕ and ψ, the boundary values (3) of
the given functions µ(1) and µ(2), the values of the particular solution vp at the
corresponding boundary points B(j) and C(j), at the point x and A(1), the value of
the searched solution at the point A(1) ⊂ Q̄(1) bypassing its calculations on the sets
Q̄(m−1) etc (m > 2).

Like splitting the rectangle Q(1) =

(
0, l

a

)
×
(

0, l

)
into subdomains Ω(1,j), j =

1, 2, 3, 4, we divide the rectangle Q(m) =

(
(m−1) l

a
,m l

a

)
×(0, l) into characteristics

y1 − ay0 = −(m − 1)l, y1 + ay0 = ml into corresponding subdomains Ω(m,j), j =
1, 2, 3, 4 (see fig.8). Correspondence here should be understood in the sense that
if x = (x1, x0) ∈ Ω(m,j), j ∈ {1, 2, 3, 4}, then the point x̃ with coordinates x̃ =(
x0 − m−1

a
l, x1

)
= (x̃0, x1) is Ω(1,j) for the same j ∈ {1, 2, 3, 4}.

Remark 3. If the compatibility conditions (4) and (5) are non-uniform, i.e.
3∑
j=1

[(δ(j))2 + (σ(j))2] 6= 0, then the solution of the problem (1) - (3) or its derivatives

suffers the discontinuity of the form (35) or (36) on some or all of the characteristics
y1−ay0 = (1−j)l, y1+ay0 = jl, j = 1, 2, . . . ,m. Therefore, in this case, the solution
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on the characteristics y1 − ay0 = (1 −m)l, y1 + ay0 = ml is considered as a limit
value on the characteristic from inside the corresponding area Ω(m,s), s ∈ {1, 2, 3, 4}.

In the formula (48) (m is the even number) the point A(1) has coordinates A(1) =
(x0 − m−1

a
l, l − x1). This means the following. If x ∈ Ω̄(m,1), then A(1) ∈ Ω̄(1,1), if

x ∈ Ω̄(m,4), then also A(1) ∈ Ω̄(1,4). If x ∈ Ω̄(m,2), then A(1) ∈ Ω̄(1,3), and vice versa
if x ∈ Ω̄(m,3), then A(1) ∈ Ω̄(1,2).(see fig. 9)
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In the formula (49) (m is the odd number) there is the full correspondence,
namely: if x ∈ Ω̄(m,j), then the point A(1) with the coordinates A(1) = x̃ = (x̃0, x1) =
(x0 − m−1

a
l, x1) is to the set Ω̄(1,j) for the same j as x ∈ Ω̄(m,j), j ∈ {1, 2, 3, 4}.(see

fig. 9)
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