Морозова А. И., Игнатюк Т. В., Лешко Г. В.

ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА JAPAN WOOD TECHNOLOGY

Брестский государственный технический университет, студентка факультета инженерных систем и экологии, кафедра ТСП.

Japan Wood Technology (JWT) — это технология строительства, которая использует инновационный метод соединения деревянных элементов без использования гвоздей, скоб и клея. JWT является японской разработкой. Представляет собой фахверковую технологию строительства, которая позволяет создавать крепкие и долговечные конструкции из дерева, выдерживающие даже сильные землетрясения, ураганы и пожары.

Данная технология обеспечивает прочность несущей конструкции, в которой используется стоечно-балочная конструкция, усиленная стеновыми панелями. Применение технологии JWT обеспечивает равномерное распределение нагрузки несущей конструкции дома. При строительстве японских домов «Иида» применяется клееная конструкционная балка (клееный брус) европейского стандарта качества и заданных параметров прочности.

Для дополнительной жесткости конструкции используются металлические крепежи из высокопрочной стали, импортируемые из Японии. Благодаря использованию японского крепежа обеспечивается плотное соединение узлов и минимальная усадка конструкции дома.

Стены японских домов «Иида» для состоят из нескольких слоев материалов.

1 – гипсокартон 2,5 мм; 2 – пароизоляционная пленка; 3 – конструкционная балка из клееного бруса 120 x 120 мм; 4 – минерально-ватные плиты 120 мм; 5 – фанера 12 мм; 6 – деревянная обрешетка 40 x 70 мм; 7 – минерало-ватные плиты высокой плотности 70 мм; 8 гидро-ветрозащитная мембрана; 9 – деревянная контробрешетка 20 мм; 10 – фиброцементная панель 14 мм.

Рисунок 1 – Конструкция стены

Технология Japan Wood Technology позволяет создавать более прочные, устойчивые и долговечные конструкции. Кроме того, технология Japan Wood

Technology может быть использована в строительстве экологически чистых и энергоэффективных зданий, что также является актуальным в современном мире.

Заводское изготовление домокомплекта по технологии JWT минимизирует вероятность человеческой ошибки и обеспечивает возможность быстрой сборки и внутренней отделки. Такая технология дает определенную свободу при проектировании зданий.

«Ида Сангё Рус» — российское подразделение международной японской компании «Иида Сангё» на протяжении двух лет возводит жилые смарт-комплексы «Литл Токио» в разных регионах страны. Срок строительства готового дома под ключ с сантехникой, отделкой и мебелью — полгода. Стиль отделки клиент выбирает сам. Японские коттеджи разработаны и построены в концепции «Кадзи-Досен», позволяющей комфортно передвигаться по дому. Вместе с ключами каждому владельцу дома в «Литл Токио» вручают сертификат Dom Pro — он подтвердит качество выполненных работ, в том числе скрытых.

Информация Dom Pro доступна следующим домовладельцам, банкам и страховым компаниям. Это повышает лояльность банков при одобрении кредита, снижает тарифы страховщиков и ликвидность объекта на вторичном рынке.

Технология JWT актуальна и для Беларуси. В Беларуси, где дерево является одним из основных материалов для строительства, использование технологии JWT может иметь несколько перспективных направлений:

- энергоэффективное строительство. Конструкции, созданные с помощью технологии JWT, имеют высокую теплоизоляцию и могут существенно снизить затраты на отопление зданий.
- экологически чистое строительство. Дерево является экологически чистым материалом, и его использование в строительстве может сократить воздействие на окружающую среду.
- сокращение сроков строительства. Сборка конструкций из дерева с помощью технологии JWT может занимать гораздо меньше времени, чем традиционные методы строительства, что позволяет сократить сроки строительства и снизить затраты на рабочую силу.
- создание уникальных архитектурных решений. Технология JWT позволяет создавать сложные и нестандартные конструкции из дерева, что может стать основой для создания уникальных архитектурных решений.

Однако, применение технологии JWT в Беларуси может столкнуться с некоторыми препятствиями, такими как ограничения в использовании дерева в строительстве в некоторых городах, а также недостаток специалистов, знакомых с этой технологией. Но, несмотря на это, применение технологии JWT может иметь большой потенциал для развития деревянного строительства в Беларуси.

В Беларуси технология строительства Japan Wood Technology (JWT) находит практическое применение. Например, в 2021 году в Минске был построен трехэтажный деревянный дом с использованием технологии JWT.

Одним из наиболее перспективных направлений для применения технологии JWT в Беларуси является строительство низкоэтажных домов и коттеджей. Кроме того, технология JWT может быть применена для строительства складов, торговых центров, кафе и ресторанов, где важным критерием является быстрое и экономичное возведение зданий.

Технология JWT может использоваться для создания архитектурных форм и конструкций, которые трудно или невозможно создать с помощью других технологий. Например, это могут быть купольные конструкции, деревянные башни и мосты.

Также технология JWT может быть использована для реконструкции и реставрации исторических зданий, которые требуют сохранения оригинальных деталей и архитектурных решений.

Несмотря на то, что пока в Беларуси применение технологии JWT еще не является массовым явлением, ее потенциал для деревянного строительства уже заметен. В будущем ожидается расширение применения технологии JWT и ее все большее использование в различных областях строительства в Беларуси.

Список использованных источников:

- 1. «Заезжай и живи» в «Литл Токио»: как строят и сдают японские дома под ключ [Электронный ресурс]. Режим доступа: https://www.business-gazeta.ru/article/485190
- 2. Немного о строительстве домов в Японии [Электронный ресурс]. Режим доступа: https://nikbara.ru/2022/01/09/nemnogo-o-stroitelstve-domov-v-japonii/

Кривецкий Н. С., Силюк Я. А.

АНАЛИЗ ПОТЕНЦИАЛА БЫТОВЫХ ТЕПЛОВЫДЕЛЕНИЙ В АУДИТОРИЯХ УНИВЕРСИТЕТА

Брестский государственный технический университет, студенты факультета инженерных систем и экологии группы ТВ-18. Научный руководитель Новосельцева Д. В., к. т. н., доцент кафедры природообустройства

Теплопоступления от людей поступают в окружающую среду в виде явной и скрытой теплоты. Явное тепло отдаётся окружающей среде в результате конвективного и лучистого теплообмена. Скрытое тепло представляет теплосодержание водяных паров, испаряющихся с поверхности тела и лёгких человека. Часто эти понятия объясняют так: явная теплота изменяет температуру воздуха внутри помещения, а скрытая теплота изменяет влажность воздуха внутри помещения.

Полное количество, выделяемой человеком теплоты зависит, в основном, от степени тяжести выполняемой работы и в меньшей мере от температуры помещения и теплозащитных свойств одежды. С повышением интенсивности работы и температуры окружающего воздуха увеличивается доля тепла, передаваемого в виде скрытого тепла испарения. При температуре воздуха 34 °C всё тепло, выработанное организмом, отдаётся путём испарения.

Таблица 1 – Количество тепла, выделяемого одним взрослым человеком

Тепловыделения	Температура окружающего воздуха, °С					
	10	15	20	25	30	35
В состоянии покоя						
явные	143	116	87	58	41	12
скрытые	23	29	29	35	52	81
полные	166	145	116	93	93	93
При легкой работе (категория I)						
явные	151	122	99	64	41	16
скрытые	29	35	52	81	105	130
полные	180	157	151	145	146	146