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4. Calculation of Statically Indeterminate Frames by an Area-Moment 

Method and Displacement Method 

4.1. Idea of the Area-Moment Method 

In the area-moment method, the calculation of statically indeterminate systems is 

reduced to well-known methods of calculating statically determinate systems. 

Statically determinate system used for statically redundant system is obtained by 

discarding so called redundant constraints (with their replacement by reactions that 

may arise in these constraints) and is called the primary system or principal system 

(P.S.) of the area-moment method. This system should also work as a statically re-

dundant system. 

To comply with this, the following conditions must be met for the primary system: 

1) In the primary system of the area-moment method, instead of redundant con-

straints, forces which correspond to the reactions in these constraints must be applied. 

In a statically indeterminate system, these constraints will experience reactive forces; 

these forces will be unknown of the area-moment method. As a result, the primary 

system will be under a set of loads – P and under unknowns – iX  (i = 1…r, where 

number of redundant constraints in the system – r); 

2) Deflections of points (sections) in the direction of discarded (redundant) con-

straints in the primary system should be zero, because in a statically indeterminate 

system in these directions are constraints. Thus for the primary system, which is un-

der a given loads (applied) – Pi and the unknowns of force method – iX  can be rec-

orded analytically in the form of a system of equations 

1 1 2
( , , ... ,X X  Хr, Р) = 0; 

2 1 2
( , , ... ,X X  Хr , Р) = 0;          (4.1) 

……………………………. 

Δ r 1 2
( , , ... ,X X  Хr , Р) = 0. 

 

The solution to this system of equations allows us to identify the primary un-

knowns of the area-moment method. 

By applying together, the values of forces which have been found by use of equa-

tions of a system 4.1, with the applied loads to the primary system, the diagrams of 

internal forces – M, Q, N will be able to be plotted by using of usual way (by way of 

calculating statically non-redundant structures). These diagrams will be diagrams of 

internal forces in a given statically redundant system. 

The following principles for calculating redundant systems are considered below. 

The calculation of redundant frames is represented in more detail and consistently 

with the allocation of all stages of calculation. 

 

https://translate.academic.ru/redundant%20constraint/en/ru/
https://translate.academic.ru/redundant%20constraint/en/ru/
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4.2. The Degree of Static Redundancy of the System 

The degree of static redundancy of the system is the number of redundant con-

straints, the removal of which will turn the system into a statically determinate sys-

tem. The number of redundant constraints equals the degree of freedom of the system 

with the reverse sign: Wr  . Formulas for determining the degree of freedom of the 

system are given and discussed in the section 2 "Kinematic analysis of structures" [1].  

The degree of static redundancy of frames can be determined by formulas: 

,3 hLr                (4.2) 

where: r – the number of redundancy; L – the number of closed loops (contours) 

which form the structures; h – the number of ordinary hinges: 

)23( оCHDr  ,                (4.3) 

where: D – the number of disks in the system; С0 – the number of kinematic re-

strictions (reactions at the supports) of the system. 
 

 

 

 

 

 

 

 

 
 

 

Figure 4.1        Figure 4.2    Figure 4.3 

Let's calculate the number of redundant constraints for the frames presented  

in the figure 24:  

a) for the frame on the figure 4.1:    

  ;674233)23(  оCHDr  

b) For the frame on the figure 4.2:  

;72333  hLr  

The frame contains completely closed loop redundant constraints can be found 

according to the formula: 

)23( оCHDr  ; 

c) for the frame on the figure 4.3: 

     ;27333  hLr  

  .231213)23(  оCHDr  

4.3. Choosing the Primary System of the Area-Moment Method 

The primary system (P.S.) of the force method is called a statically determinate, 

geometrically stable system (perfect frame). A geometrically stable system from a 
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given redundant system must be taken by discarding redundant constraints and re-

placing them with unknown forces (that can arise in these constraints). 

Stability of geometrical shape is determined by kinematic analysis of the prima-

ry system more precisely, by geometric analysis of the structure of the system (see 

«Kinematic Analysis of Structures»). Let's take a look at a few examples of selecting 

the principal systems of force method. 

Example 4.1 The frame presented in the figure 4.4 a, has two redundant  

constraints: 

,21133  hLr  

or:      ,261223)23(  оCHDr  

Some of primary systems shown in the figures 4.4b,e can be selected for it. The 

system depicted in the figure 4.4f cannot be accepted, as it is instantaneously variable 

system (at the top part of the frame) by the first sign of instant variability – three 

discs are connected by three hinges lying on one straight line.  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

Figure 4.4 
 

Example 4.2 The frame presented in the figure 4.4 a, has three redundant con-

straints: 

,36333  hLr  

or:     ,374243)23(  оCHDr
 
 

and for it, variants of the primary system are presented in the figure 4.5 b – 4.5 f. The 

schemes depicted on figure 4.5 g, cannot be accepted as primary system (by the first 

sign of instant variability – hinges lying on one straight line). Primary system on fig-

ure 4.5 h, cannot be accepted either because the system is variable in the right part, 

(which can rotate with respect to the hinge), and the left part is statically redundant, 

which is a consequence of incorrect discarding of redundant constraints). 
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Example 4.3. For the frame presented in the figure 4.6 a, the number of redundant 

constraints can be found:  
.30133  hLr  

 

b) 

c) d) 

e) f) 

r=3 

g) h) 
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P.S.4 

joining  
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Figure 4.5 
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The possible variants of the primary system of the force method are shown in the 

figure 4.6 b – 4.6 f. As can be seen from the examples, primary system can be ob-

tained by using the following approaches in discarding redundant constraints: 
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Figure 4.6 

 

 – discarding the supports. One constraint is removed when the hinged movable 

support is discarded, two constraints when the hinged immovable support is thrown 

away and three constraints when discarding the pinched support (embedding);  

– Discarding separate support constraints (the number of unknowns equals the 

number of discarded support constraints);  

– Cutting bracings. One connection acting along the bracing is removed; 

– Setting-in hinged point (one constraint (angular) is removed);  

– Sawing hinge (two constraints are removed when removed one ordinary hinge); 

– Sawing the rods (three constraints are removed). Analysis of presenting prima-

ry systems leads to the following conclusion:  

  !  For any statically redundant system, there are an infinite number of prima-

ry systems of the force method. 

To calculate by use of the force method, one primary system must be selected, 

which sometimes can be called the design primary system (D.P.S.) 

Most rational primary system should be considered.  

The rationality of the primary systems is determined by the following provisions: 

1) In the design primary system, determining reactions at the supports and plotting 

of diagrams of internal forces should be as simple as possible;  

2) The bending moment diagram should also be as simple as possible; 

3) Symmetrical design primary systems should be chosen for symmetrical frames. 

For the frame on the figure 4.4 – P.S.1 can be taken as the most appropriate 

design scheme; for the frame on the figure 4.5 – P.S.1; and for the frame  

on the figure 4.6 – P.S1 or P.S2. 

P.S.1 

P.S.4 

P.S.2 

P.S.3 P.S.5 

d) 

c) a) b) 

e) f) 

r=3 
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4.4. System of Canonical Equations of the Force Method   

The primary system of the force method adopted for calculation, as already stated 

(section 4.1), should be equivalent to a given statically redundant system, and this 

will be if these system is equally deformed and have the same deflections of all 

points. And accordingly, deflections (in the given P.S.) in the direction of discarded 

constraints should be zero (4.1), as in an actual statically redundant system. 

Then is writing down the condition of equivalence of the primary system (loaded 

with unknowns of force method – 1 2 3, , , ...X X X  Хr and an external applied force), 

a statically redundant system with n redundant constraints (4.1) in a deployed form, 

using the principle of independence of force. As a result, deflection in the direction  

of i-discarded constraint will have the appearance of: 

1 2 3
... ...i i i i ik

             i r 0
Pi   , 

where: ik  deflection in the direction of the i discarded constraint caused by 

the action of k unknown force ( kХ );  Рi  deflection in the direction of i discarded 

constraint from the action of a given loading.  

For linear-deformable systems, deflection caused by any force can be expressed 

in the form of a product of that force and the deflection in the same direction and the 

same sort (e.g. concentrated force causes linear deflection, point moment – angular 

deflection) from the action of the corresponding unit force: 

kikik X  . 

Expressing each of the deflections from the action of unknown forces through 

these forces and corresponding unit deflections, we get a system of canonical equa-

tions of the forces method in the form of: 

111 1 12 2 13 3 ...X X X       r Хr 1 0;P   

221 1 22 2 23 3 ...X X X       r Хr 1 0;P   

331 1 32 2 33 3 ...X X X       r Хr 3 0;P            (4.4) 

………………………………………………... 

………………………………………………... 

r1 1X δr 2 2X δr 3 3X      +δrr Хr +Δr 0,P   

where: ik  and  Pi  deflections, in the designations of which:  

– First index identifies the points (sections) that displace in the directions of their 

deflections (they coincide respectively with the points (sections) in which the forces 

of Xi are attached, and with the directions of these forces); 

– Second index points to the causes of these deflections, i.e. to the unit force of 

kХ  if the second index is k (unit action, unit moment). Or if the second index is P, 

this means to the structure acts the actual loading. 
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Equation coefficients (4.4) with the same indices ( ii ), will be termed hereafter 

principal deflection (coefficient), whereas the deflection such as ( ik ) with different 

indices – secondary deflection (coefficient), and aforementioned deflection due to 

applied loads ( Pi ) – absolute term. 

The principal deflections here will always be positive and can't be zero. Second-

ary deflections can take any value, including zero, and for them on the basis of the 

Maxwell theorem of reciprocal deflections, equality will be always equal between 

themselves: 

         ik ki  .                           (4.5) 

Depending on the type of iX  force, deflections of ik  and Pi  on physical 

sense can be: 

– linear deflection, if iX  concentrated (point) force; 

– angular deflection  if iX  – concentrated (point) moment; 

– reciprocal linear deflection (convergence or divergence) of two points if iX  – 

two concentrated forces, applied at two points in a straight line, towards each other or 

from each other; 

– the reciprocal angular deflection of the two-sections if iX  – two point mo-

ments attached in these sections turn towards each other or from each other.  

 

 

 

 

 

 

 

 

  Figure 4.7 

For example, for a frame depicted in a figure 4.7 a, when selecting the primary 

system of the force method in the view presented on the figure 4.7 b, will take place a 

system of three equations (4.4). 

The physical meaning of this system's coefficients (on the example of several 

coefficients) will be as follows: 

11  – vertical deflection of B point in the primary system from the action of the 

unit force 1X ; 

23  – mutual divergence of left and right sections in C point horizontally from 

the action of force of unit value – 3X ; 

3P
 
– mutual convergence of left and right sections in C hinge vertically from 

the action of the assigned (external) loads. 

)а

A 33233  ШКЛ
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The physical meaning of the equations as a whole will be: 

1st equation – vertical deflection of B point from the action of Х1, Х2, Х3 forces 

and applied loads should be zero, because in a given statically redundant system 

(Figure 4.7 a) at B point there is a vertical restriction; 

The 2nd equation, which should be zero, is a reciprocal divergence of left and 

right sections in C hinge horizontally from the action the forces of Х1, Х2, Х3 and ap-

plied loads, as these sections in actual construction are connected to each other  

by C hinge (Figure 4.7 a) and cannot diverge.  

The physical meaning of the 3rd equation is similar to the meaning of the 2nd 

with a difference in the direction of mutual divergence of sections (vertically). 

4.5. Calculating Deflections and Absolute Terms of Equations  

Deflections and absolute terms of equations (4.4) are physical deflections and can 

be calculated by the Mohr's formula (3.2). In this case, for frames, as broken systems, 

in the Mohr's formula usually neglect the influence of shear force and longitudinal 

force, which for such systems are insignificant, omitting the corresponding compo-

nents. As a result of the expression to determine the deflections and absolute terms of 

the systems of canonical equations of the force method will have in the form of: 

2

1 110 0 0

; ; ,
l l lnn n

Pii k i
ii iPik

M M dxM dx M M dx

EJ EJ EJ
              (4.6) 

where: )( ki MM  – law of change bending moment (diagram) in the primary system 

from action of Хi = 1 (Xk = 1); МР – law of change bending moment in the primary 

system from the action of applied loads; EJ – flexural rigidity of the rod (part); n – 

number of integration sites; l – length of these sites. 

Thus, in order to calculate the deflections and absolute terms of the canonical 

equations of the force method must be plotted in the primary system unit diagram of 

bending moment – iM  (i = 1 …r) from the action of unit unknown (Хi = 1) and dia-

gram of bending moment – МР from the action of the applied loads. After that, will 

be gotten correspond opportunities to determine the sought quantities.  

The principles of calculating of Morh's integrals (4.6) are set out in section 3.10. 

(Part I) [1]. After calculating the coefficients and absolute terms of the canonical 

equations by formula (4.6) it is necessary to check the correctness of the calculations, 

which can be used: 

a) Universal check of the correct calculation of secondary deflections: 





r

k
ik

r

i

n l

S

EJ

dxM

111 0

2

 ;          (4.7) 

Where the right part of the expression represents the sum of all coefficients of the 

system (4.4), and nS MMMM  ...21  – total unit diagrams.  

b) To determine which one equation (which row) has incorrectly deducted  

coefficients, if a universal check is not performed, we can make line checks recorded 

as a form of equation: 
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     



n

k
ik

N l
Si

EJ

dxMM

11 0

   (k = 1 … n);       (4.8) 

Where the right part represents the sum of all the coefficients in the i-system 

equation (4.4). 

Analysis of the performance or failure of separate line checks allows determining 

(at least approximately) which of the coefficient – ik  perhaps have been miscalculat-

ed. 

As it is easy to see, all (L) line checks replace the universal check, and vice versa. 

c) A column check of the correctness of calculating absolute terms (deflections 

due to applied loads) of the system of equations - is recorded as: 





L

i
iP

n l
PS

EJ

dxMM

11 0

;           (4.9) 

Where the right side of the expression (4.9) is the sum of all absolute terms of the 

system of equations (4.4).  

4.6. Plotting the Final Diagram and Verifying Them 

The calculated deflection and absolute terms of the system of canonical equations 

(4.4) is a heterogeneous system of linear algebraic equations and can be solved, for 

example, by the method of substitution, the way Gauss and other known ways.  

Note that after finding an unknown of the force method, it is necessary to check 

the correctness of the solution of the equation of system by substituting the found 

values of Xi (i = 1 … n) into all equations of the system. If don't do this, may be turn 

out that all further computations and analysis will be a waste of time. 

After determining the unknowns of force method – Xi (i = 1 … n), plotting of the 

final diagrams of internal forces in a designed statically determinate system can be 

done in two ways: 

1. Applied loads and all found unknowns can be attached to the primary system 

and we can plot in this primary system the diagrams – M, Q and N, as in the usual 

statically determinate system, which are the diagrams of internal forces in a given 

statically redundant system. 

2. Take into consideration that from the action of each of the unknowns – Xi of a 

unit magnitude and applied loads, the diagram of bending moment in the primary sys-

tem have already been plotted (before calculating the coefficients of the system’s 

equations – see section 4.5), they (diagrams) can be used. In this case, the final 

graphs of bending moment in a given redundant system can be constructed using the 

principle of independence of force, according to the formula: 

                      1 1 2 2 3 3M M X M X M X       
nn

XM  PM .         (4.10) 

Since they are used the results of diagrams and calculations of unknowns already 

performed earlier, this approach turns out simpler and faster leading to the goal, and 

therefore only this approach will be used. 

 

https://www.multitran.com/m.exe?s=system+of+equations&l1=1&l2=2
https://www.multitran.com/m.exe?s=system+of+equations&l1=1&l2=2
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The correctness of calculations and construction of a graph of bending moment  

is checked with deformation (kinematic) check, which can be introduced in two variants: 

1) Complete deformation check - recorded as: 

1 0

0

ln

SM M d x

EJ
 ;     (4.11) 

And in a physical sense of it a total deflection in the directions of all unknowns  

of force method – Xi (i = 1 … n) from the action of these unknowns and applied 

loads, should be zero, because in a given statically determinate system in the direc-

tion of these unknowns (Xi) there are constraints (this physical meaning of equation 

coinciding with the physical meaning of all put together canonical equations of force 

method – see Section 4.4); 

2) Line-up deformation (kinematic) checks have a form of: 
 

    i = 1 … n;    (4.12) 

The physical meaning of each of these checks is equality to zero deflections  

to the all directions of each of the unknowns – Xi (i = 1 … n) from actions of these 

unknowns and applied loads. Deflections must be zero, as in an assigned statically 

redundant system in these directions there are constraints (and this corresponds  

to the physical meaning of the respective canonical equations of the force method – 

see. Section 4.4). 

Altogether, line-up deformation checks (4.12) correspond to a complete defor-

mation check (4.11), and if a full (deformation) check is carried out, it makes no 

sense to perform line-up check. This (line-up check) should be done if a full defor-

mation check isn’t performed (in order to determine in which direction we have to 

look for errors). 

The diagram of the shear force of Q can be plotted on the diagram of M using 

the known differential dependence – 
dM

Q
d x

 , which for linear parts of the diagram 

of M can be presented as: 

l

MM
Q

leftright


  ,    (4.13) 

where: Mleft, Mright – the magnitude of bending moment on the ends of the site (left and 

right); if the stretched fibers at these bending moments are on different sides of the rod, 

one of them is taken positive, and the other negative.  

The sign before the absolute value in the formula (4.13) is accepted according  

to the rule (see figure 4.8): 

If we have to combine the rod on which the diagram of M is plotted, with the tan-

gent to this graph the rod must be rotated clockwise at the angle of the turn less than 

900, the sign " +" is accepted; if counterclockwise, the sign "   " is accepted. 

1 0

0 ,

ln

iM M d x

EJ



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Figure 4.9 

 

For curvilinear (parabolic) part of the diagram of M differential dependence –  

 
dM

Q
d x

  can be represented in the following form: 

     
l

MM
QQ

leftright



0

 ,        (4.14) 

where the second term is Qlin (shear force) from the linear part of the M diagram, and 

the first summand – Q0 takes into account the curvilinear part of M diagram and rep-

resents itself the diagram (law of change) of the shear forces in the site (area) of 

frame considered as simple beam, from the action of a uniformly distributed load (see 

Figure 4.8).  

For example, for the M on figure 4.9, represented by three areas with different 

laws of its change, the shear force in these areas (left to right) will be equal: 
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7
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2
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The Diagram of Longitudinal Force N are constructed on the diagram Q by the 

way of cutting out the nodes, i.e., cutting out the nodes of the frame, applying already 

known shear forces and unknown (as well as well-known) longitudinal forces  

(if applied concentrated forces are attached to the node, they are also must be taken 

into account) in area. The equilibrium equations are then drawn up: Σ X = 0; Σ Y = 0, 

from which unknown longitudinal forces are determined. 

After plotting the diagrams of internal forces, cutting out the supporting nodes 

and considering their balance, reactions can be found in the supports of the frame. 

Then we need to perform a static check of the balance of the frame as a whole using, 

for example, equations: 

    Хreact.at the supports +  Хactual load = 0; 

Y react.at the supports + Yactual load = 0;        (4.15) 

  МТ react.at the supports + МТ actual load = 0. 

4.7. Procedure for Calculation of Frames by Force Method 

Thus, on the basis of calculation above, the following order of calculating the 

frames by force method is proposed:  

1. Determine the degree of static redundancy of the frame (i.e. the number of re-

dundant connections in the frame – n), using, for example, formulas (4.2, 4.3).  

2. Choose the design principal system of force method by presenting several pos-

sible variants of the primary system in advance.  

3. Write down in general form the system of canonical equations of the force 

method (4.4) and find out the physical meaning of these equations and their constitu-

ents (values included in them). 

4. Plot unit bending moment diagrams – LMMM ,...,, 21  
and diagram of MR due to 

the actual loading in the D.P.S. of the force method. 

5. Calculate all coefficients – ik  and terms – 
Pi  of the system of canonical 

equations of the force method (4.6).  

6. Check the correct calculation of coefficients (4.7 or 4.8) and terms of the equa-

tions of system (4.9). 

7. Solve the system of canonical equations and find unknown – X1, X2, ... Хn; Per-

form the check of correctness of the system's equations by substituting the unknowns 

found in all equations.  

8. Plot the final diagram of bending moment – M in a given redundant frame 

(4.10).  

9. Perform a deformation check of the M diagram (see. 4.12 or 4.11). 

10. According to M graph plot the final diagram of the shear force – Q (using de-

pendencies 4.13 or 4.14).  

11. By cutting out the nodes on the diagram of Q, taking into account the actual 

loads in the nodes, the diagram of longitudinal force – N can be plotted.  

12. By cutting out the supporting joints, determine the reactions at the supports, 

and perform a static check of the balance of the frame as a whole (4.15). 
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кНР 10

q 12 м
кН

A
D

T

B
О.С.

1X

С

2,5 м

1,5 м 3 м 1,5 м

1 м

2 м



кНР 10

q 12 м
кН

A
D

C T

B

2E

E

E

3E

;8,0sin 
.6,0cos 

Л=1

4.8. Examples of Calculation 

Here is an example of the calculation of the frame by the force method with one 

redundant constraint. Principles and approaches in frame calculations with more than 

one redundant constraints are no different from those which are presented in this ex-

ample – the numbers will only be related to the difference, such as the number  

of equations in the system of equations, the number of design coefficients, the terms 

of the system’s equations, the number of unit bending moment diagrams that will 

need to be built (by the parameters mentioned above calculations are performed). 

Let's calculate the frame presented in the figure 4.10 a. 

1. This frame has one redundant constraint:  

,18333  hLr  

or    .140213)23(  оCHDr   

2. The accepted design diagram (scheme) of primary system of force method  

is shown in the figure 4.10 b. The choice of primary system here can also be made  

by discarding any other support restrictions, or by cutting the hinge in any section  

of the frame, except for the section lying at the intersection of the CD rod and the  

imaginary line of AB, (e.g. this case the design diagram is an instantaneously variable 

system, which is formed by three discs connected by three hinges lying on one 

straight line the first sign of instantaneously variable system – see Part 1, p.13 [1]).  

3. There will also be one canonical equation here representing in a physical sense 

the horizontal deflection of point B (in the primary system) from the action of 1X force 

and actual applied load, which should be zero, as in the original system (Figure 4.10 a) 

at B point this is a horizontal constraint (here is a hinged immovable support): 

11 1 1 0PX    ,                 (4.16) 

4. In the primary system of the force method, as in an ordinary statically determi-

nate system we need to plot a unit diagram of bending moment 1M  (Figure 4.10 c) 

from the action of the 1X  force of a unit magnitude  11 X  and a diagram PM  due 

to the actual loading (Figure 4.10 d).  

5. Calculate the coefficient of 11  and the term of P1 . Let's show here the calcu-

lation of these values in different ways: 
  

  

 

 

 

 

 

 

 

 

P.S. 

n=1 

a) b) 
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c) 
d) 

e) 
f) 
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0,25
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2,5 2,25
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11Х

6
1

6
1
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34,5

49,5
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24,55
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B
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10,19
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27,82
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1

2

q 12
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D

C T

B

Р 10

1,5 3 1,5

20,19

19,63

16,366

10,19
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проверка
Static 

checking 

Figure 4.10  
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a) according to the Vereshchagin's rule:  

 
 2

1
11

1
0

2,75 0,251 0,25 1,5 2 1
0,25 0,25 3 1,25 3

2 3 2

l
n M dx

EJ EJ EJ


 
           

  
  

 

 
 

































 25,25,0

3

2

2

325,275,2
5,2325,2

3

1
25,03

3

2

EJ
 

 

  ;
35,15

109,2271,6938,6031,0
1

25,2
3

2

2

5,225,2

2

1

EJEJEJ








 
  

 

 
 

 













 


n
l

Р

EJEJEJ

dxMM
P

1
0

1 3
2

5,195,49
25,135,19

1
25,0

3

2

2

5,15,191
1

 
 






























 5,0

3

2
25,23

2

5,345,49
5,235,34

3

1
25,03

3

2

EJ
 

22 12 3 1 1 2 309,906
3 2,5 34,5 2,5 2,25 ;

3 8 2 2 3EJ EJ

   
          

   

 

b) according to the Simpson’s formula: 

   
n

l

EJEJEJ

dxM

1 0

222222
2

1
11 75,225,1425,0

6

3
25,0125,040

6

5,1
  

 

   2 2 2 2 2 23 2,5 15,35
2,75 4 2,5 2,25 2,25 4 1,125 0 ;

6 3 6 2EJ EJ EJ
        

 

 

   
n

l

P
P EJEJEJ

dxMM

1 0

21
1 5,1925,0

6

3
5,1925,075,9125,040

6

5,1
 

  


 5,3425,25,555,245,4975,2
36

3
5,4975,25,3425,14

EJ
 

 
2,5 309,906

2,25 34,5 4 1,125 17,25 0 0 .
6 2EJ EJ

        
  

 

     Note that with such calculations of Mohr’s integrals it is possible to perform 

calculations in different ways at different areas (according to the Vereshchagin’s rule, 

according to the trapezoid formula, according to the Simpson’s formula), combining 

them in terms of the convenience of computations. 

7. Solve the canonical equation of the force method (4.16): 

1 1

15,35 309,906
0; 20,19X X

EJ EJ
   kN. 

8. Plot the final diagram of bending moment according to the formula (4.10): 

,11 PMXMM   

!
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multiplying all the characteristic ordinates of the 1M  diagram by 20.19 kN, and  

adding up the results with the corresponding ordinates of the PM diagram. The final 

diagram M is presented in the figure 4.10 e. 

9. Deformation (kinematic) check of the final diagram of М: 

 






 
 285,925,1455,2425,0

6

3
25,0

3

2

2

5,155,241
;0

1 0

1

EJEJEJ

dxMMn
l

 

   






 



 25,2

3

2

2

5,293,10

2

1
93,1025,202,55,2402,675,2

36

3
02,675,2

EJEJ
 

    ;0059,0375,13316,13
1

247,10509,1866,11069,3
1


EJEJ

 

Discrepancy 
13,316 13,375

100% 0,443% 1%
13,375


    is insignificant. 

10. Build the diagram of shear force in a given statically redundant system using 

formulas (4.13), (4.14). 

а) at the parts of AD and DC according to the formula (4.13) we will receive: 

24,55 0
16,366

1,5
ADQ


     kN;        

 24,55 6,02
10,19

3
DCQ

 
     kN; 

b) The formula should be used on the CT part (4.14): 

12 3 10,93 6,02
18 1,637

2 3
CTQ

 
       kN; 

18 1,637 16,363лев

CTQ      kN;        18 1,637 19,637npaв

CTQ       kN; 

c) On the TB part, get shear force according to the formula (4.13): 
 

10,93 0
4,37

2,5
TBQ


     kN. 

The diagram of the shear forces is depicted in the figure 4.10 е. 

11. The diagram of longitudinal forces of N  is plotted by the method of cutting out 

of nodes on the Q diagram: 

а) Node D b) Node C 

   

0;

10,19;

0;

16,366;

AD

DC

X

N

Y

N



 



 





0;

10 10,19 0;

20,19;

0;

16,366 16,363 0.

СT

CT

X

N

N

Y



  

 



 





left

CD
Q

right

CD
Q
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c) Node Т 

 

 

 
 

Diagram of longitudinal forces in a given statically redundant system are depicted 

in figure 4.10 g. 

12. Cutting out the supporting nodes,  

can be gotten reactions at the supports:   

      

 

                             
 

 

 

 

                                          Applying the external loads and reactions at the sup-

ports to the system (Figure 4.10 h), we can perform a static check of the balance of 

the frame: 

0; 10,19 10 20,19 0; 20,19 20,19 0;X        

0; 16,366 12 3 19,63 0; 35,999 36 0; 0;

12 3 1,5 10,19 3 16,366 1,5 19,63 4,5 20,19 2 0; 118,929 118,905 0;

CY M       

            

 
 

Discrepancy 
118,929 118,905

100% 0,02%
118,905


   is insignificant. 

Example 2 Consider the more complex frame shown in the figure 4.12 а. 

1. Frame has two redundant connections: 

,24233  HCr  

or    .253233)23(  оCHDr  

2. The accepted design primary system of force method is shown in the figure 

4.12 b. P.S. possible variants here may also be frames presented in figure 4.11. 

 

 

 

 

 

 

 

 

 

 

 

 

1X

О.С.2
2X

2X

1X

О.С.1

1X

2X

d) Node В 

  e) Node А 

P.S1. 
P.S2. 

a) b) 

0; 20,19 4,37 0,8 0,6 0; 27,823;

0; 19,637 4,37 0,6 27,823 0,8 0; 22,259 22,259 0.

TB TBX N N

Y

       

         





0; 10,19;

0; 16,366.

A

A

X H

Y R

 

 





0; 27,82 0,6 4,37 0,8 0; 20,19;

0; 27,82 0,8 4,37 0,6 0; 19,63.

B B

B B

X H H

Y R R

      

       





Figure 4.11  



20 

 

  

       

 

 

 

 

Figure 4.11 (continued) 

 

3. The system of canonical equations of the force method here will have a view: 
 

11 1 12 2 1

21 1 22 2 2

0;

0.

P

P

Х Х

Х Х

     

     

 

The physical meaning of equations: 
1st equation – is the angle of section rotation (angular displacement) in the rod 

above of A support (Figure 4.12b) from the forces 1X , 2X , and the given external 

load, which should be zero, as it is a cross-section in a given redundant frame rigidly 

attached to the base (the support at A point is a pinched); 

2nd equation – represents a mutual divergence of D and K points from the unit 

forces 1X , 2X , and the external (applied) load, which should be zero, as these points 

are connected by a rod (by bracing), which is considered non-stretch (in the calcula-

tion neglect longitudinal deformations of bracing). 

The physical meaning of coefficients and terms: 

12  angle of rotation (angular displacement) in the primary system of the cross-

section of force method over the A support from the action of the 2X  unit force; 

22  mutual divergence of D and K points in the primary system from the action 

of 2Х  unit force; 

2P   reciprocal divergence of D and K points in the primary system from exter-

nal loads. 

4. Plot in the primary system the unit bending moment diagrams 1M  and 2M  

from the action of unit unknowns 1Х  and 2X . Plot of PM  diagram from the action of 

the applied external loads. 

Note that the frame in the primary system is a three-hinged frame with supports in 

one level and the definition of reactions at the supports in it from any of the loads can 

be made, for example, from equations: 

0; 0; 0; 0,лев прав

A В С СМ М М М       

and we can use equations to check them:       0; 0.X Y    

The 
1

M , 
2

M  and 
P

M  diagrams  are showed in figure 4.12 c4.12 e. 

5. Calculating the coefficients of canonical equations: 

2X
1X

О.С.4

1X

2X

О.С.3P.S3. P.S4. 

c) d) 


left

C
M 

right

C
M
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а) Unit coefficients: 

  






 
 75,0

3

2

2

575,01
75,0875,041

6

3 222

1
0

2

1
11

EJEJEJ

dxMN
l

  

 2 2 21 0,375 3 2 6
0,375 0,375 4 0,125 0,125

2 3 6 2EJ EJ

 
       

 
 

1 0,125 1 2 3,505
0,125 ;

2 3EJ EJ

 
   

   
 

а) 

 

b) 

c)  d) 

e) f)  
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0,752M

9,75

19,5 2,25

6,75

3

12,75

7,5

2,25
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1,225
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2,793

2,793
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6,8
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D
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Figure 4.12
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g) h) 

Figure 4.12 (continued) 

   5,175,075,0875,0401
6

3

1 0

21
2112 EJEJ

dxMMn
l

  

   


 5,1125,075,025,040375,0
26

3
3025,2375,045,175,0

6

5

EJEJ

  ;
344,5

0125,075,0045,1125,0
26

3

EJEJ



  

  






 








 
 3

3

2

2

331
325,245,1

6

5
5,1

3

2

2

35,11 222

1 0

2
2

22 EJEJEJEJ

dxMn
l

  

;
75,39

25,1
3

2

2

35,1

2

1

EJEJ








 
  

b) Absolute terms: 

   5,1975,075,9875,0401
6

3

1
0

1

1
EJEJ

dxMMN
l

P

P
 

  






 
 75,6

3

2

2

3375,01
0025,2375,045,1975,0

6

5

EJEJ  

 


 75,12125,0325,0475,6375,0
26

3

EJ
 

  ;
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25,2
3

2

2

1125,01
25,2125,05,70475,12125,0
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3

EJEJEJ
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



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 



  

 



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

 
  0325,225,245,15,19

6

5
5,19
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2
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35,11

1
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2

2
EJEJEJ

dxMMN
l
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6. Checks correctly calculate unit coeffi-

cients and absolute terms: 

а) universal verification: 
 

  
 


N

l

i k
ik

S

EJ

dxM

1
0

2

1

2

1

2

,  

where:  21 MMMS  
a total unit 

bending moment diagram, having 

                   Figure 4.13      the view shown in the figure 4.13; 

   
222222

1 0

2

3875,1475,0
6

5
75,0125,041

6

3

EJEJEJ

dxMn
l

S  

 









 








 
 222 625,114375,0

26

3
375,0

3

2

2

3375,01
3

3

2

2

331

EJEJEJ
 

 

  ;
568,32

125,0
3

2

2

1125,01
125,075,04625,1

26

3 222

EJEJEJ








 



  

 

;
567,3275,39

2
344,5505,3

22211211

2

1

2

1 EJEJEJEJi
ik

k

 
 

  

 

Check is done; 

b) Column check: 





2

11
0

i
iP

N
l

PS

EJ

dxMM
;        ;

659,12313,19972,31
21

2

1 EJEJEJ
PP

i
iP 



 

  5,1975,075,9125,0401
6

3

1
0

EJEJ

dxMMN
l

PS
 

  






 
 75,6

3

2

2

3375,01
0325,2875,145,1975,0

6
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EJEJ
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

 75,12625,131475,6375,0
26

3

EJ
 

  ;
66,12
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2

2
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3

EJEJEJ
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


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

 

Check is done. 

1

0,75

1,875

3

3
1

0,75SM

0,375

1,625

0,125

0,125



24 

7. We solve the system of canonical equations: 














.0
313,1975,39344,5

;0
982,31344,5505,3

21

21

EJ
X

EJ
X

EJ

EJ
X

EJ
X

EJ
 

Find: .931,0;54,10
21

kNХkNmX   

We check the solution by substituting these values into equations: 









;0313,19931,075,3954,10344,5

;0972,31931,0344,554,10505,3
    

.0321,56325,56

;0947,36943,36




     

8. Plot the final diagram of bending moment in a given statically redundant sys-

tem according to the formula: 

PMXMXMM  2211 . 

For the convenience of calculations, can be plotted intermediate diagrams sepa-

rately 1 1M X  and 2 2M X  (see figure 4.14): 

 
 

 

 

 

 

 

 
 

Figure 4.14 

 

Adding together the ordinates of diagrams 1 1M X , 2 2M X  (figure 4.14) and 

РМ  (figure 4.12 e), can be gotten the final diagram of bending moment in a given 

statically redundant system in the form depicted in the figure 4.12 f. 

9. Deformation (kinematic) check of the diagram М: 

  
N

l

EJEJ

dxMM S

1
0

75,099,12125,0225,1454,101
6

3
;0  

  






 
 3

3

2

2
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3793,2875,110,4475,099,12

6

5

EJEJ
 

 









 
 625,1036,10333,014375,07,10

26

3
375,0

3

2

2

37,101

EJEJ
 

a) b) 

0,7

1,4

2,1

2,8
2,8

0,7

1,4

0,7 2Х2М

10,54

9,225

7,91 3,95

3,95

2,633

1,32

1,32

 1Х1М 0

погрешности

незначительны.
Discrepancies are 

insignificant 
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Рис. 4.15

  






 



 125,0

3

2

2

157,31
125,057,375,08,64625,1036,10

26

3

EJEJ
 

   149,0066,9741,2013,4379,8524,10835,9
1

EJ
 

  ;0
045,0

331,22376,22
1


EJEJ

 

Discrepancy %3%2,0%100
331,22

045,0
  is insignificant. 

10. Diagram of shear force Q can be plotted on the diagram of bending moment 

by using formulas (4.13), (4.14).  

At the same time, on the TC sloping section of the frame, the applied distributed 

load should be decomposed into components lengthways and perpendicularly to the 

rod. For this we must find a resulting force of applied distributed load Rq. At first we 

have to find 6 4 24 кНqR q l     , which will then be divided into two components 

(see figure 4.12 b). If now the component, acting normally to the rod, divide by the 

length of the sloping rod (5m), can be gotten the intensity of uniformly distributed 

load  19,2 / 5 3,84 кН / мo oq q  
 
to the TC section, which acts perpendicularly  

to this section of the frame. After that may be able to calculate the ordinates  

of the 
o

Q  diagram, included in the formula (4.13) – see Figure 4.15. 

The values of the ordinates of Q graph at the edges of the TC section will then be 

equal: 

;04,26,9
5

99,12793,2

2

584,3
kN

l

МM
QQ

leftright

oTC









  

             

 

At the parts of linear change of the M 

diagram we get: 

 

 

10,54 12,99
7,844 кН;

3

0 2,793
0,931 кН;

3

10,7 0
3,567 кН;

3

10,036 10,7
6,913 кН;

3
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
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 Figure 4.15  Qlin 

;64,1104,26,9 kNQleft
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 .56,704,26,9 kNQright
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3,57 10,036 0 3,57
2,156 кН; 3,567 кН;

3 1
KS SBQ Q

 
         

The diagram of the shear force in a given redundant frame is represented on the 

figure 4.12g. 

11. Diagram of longitudinal force can be plotted a way of cutting out of nodes: 

а) Node Т 

 

 

 

 

 

 

b) Node С 

 

 

 

 

 

 

 

c) Node F 

 

 

 

 

 

 

 
 

 

Similarly are cut out of K and S nodes. The final diagram of longitudinal force in 

a given redundant frame is presented in figure 4.12h. 

12. Cutting out the support nodes now and taking into account all kinds of forces 

in the support sections (М, Q, N), we can easily find the reactions at the A and B sup-

ports in nodes: 

d) Node А                                                             e) Node В 

 

 

 

 
 

 

13. After that, a static check of the balance of the frame has to be done: 
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4.9. Simplification in Calculations by the Force Method of Symmetrical 

Frames 

4.9.1. General Concepts and Definitions 

Symmetrical are frames that have symmetry w.r.t. a certain axis  

in the configuration of the rods, in the location and action of the support connections  

and in the rigidities of the rods. 

Symmetrical frames will be distinguished between three kinds of diagrams of forces: 

– Arbitrary diagrams;  

– Symmetrical diagrams;  

– Asymmetric diagrams. 

We will call them symmetrical diagrams, where the axes of symmetry of the 

frame have symmetry on the ordinates of internal forces and deflections (for the  

diagram M on stretched fibers). 

It should be noted that the symmetrical diagram of the shear force Q will have 

opposite signs in symmetrical sections (the physical action of the shear forces will  

be symmetrical, which is easy to check). 

Asymmetric are called diagrams, where the axes of symmetry of the frame have 

symmetry in the magnitude of the ordinates of internal forces, but opposite in deflections. 

If diagrams on one side of the axis of symmetry change deflections to opposite 

ones, these diagrams will become symmetrical.  

Note that the asymmetric diagram of Q in symmetrical sections will have  

the same signs.  
Applied load, forces (including unknowns of method of force) and impacts (influ-

ences), from which the symmetrical graphs of forces are obtained, will be called 

symmetrical loads, forces and influences. 

Accordingly, the applied load, forces and influences, from which the asymmetric 

diagrams of forces are obtained, will be called asymmetric (oblique symmetrical) 

loads, forces and influences. 

In the calculations of symmetrical frames by force method when selecting  

a certain type of primary systems – symmetrical primary systems, depending  

A

Т D K

C
F
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S
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on the type of actual loading, a number of significant simplifications of calculations 

are possible. They are presented below.  

4.9.2. Dividing the System of Equation into Two Independent Groups 

Consider the symmetrical frame depicted in the figure 4.16, having four redun-

dant connections:          

,42233  hLr  

or     4)62223()23(  оСhDn . 

If we choose for frame the primary systems of force method shown in the figure 

4.16, the system of canonical equations of the force method will have a form: 





















.0

;0

;0

;0

4444343242141

3434333232131

2424323222121

1414313212111

P

P

P

P

XXXX

XXXX

XXXX

XXXX









   (4.17) 

If we choose the primary system in the form presented in the figure 4.16 c, the 

system of equations (21) can be significantly simplified. In this case (in these primary 

systems) unit bending moment diagrams will be plotted (see Figure 4.16 d and figure 

4.16 g) and calculated one of coefficient of equations in the system (21): 

 






n

l
hh

ha
EJ

hh
ha

EJEJ

dxMM

1
0

41
4114 .0

2

2
)(

1

2

2
)(

1
  

The zero result (multiplication of diagrams was done by Vereshchagin's rule) is 

due to the fact that the 1M  diagram is symmetric, and   diagram 4M  is asymmetric 

And this result will always take place in such cases, i.e. 

  !  Deflections received "by multiplying" according to Mohr's formula of 

symmetrical diagrams will always be zero. 

In our case, respectively, zero will be the following unit coefficients: 

 ;03113   ;03223   .04224   

Since the products of all these zero unit coefficients on the unknowns in the sys-

tem of equations (4.17) will also give zero, the whole number of components in these 

equations will fall out, and as a result the system of equations (4.17) will essentially 

be reduced into two independent groups: 

















.0

;0

;0

;0

4444343

34343

2222121

1212111 33

P

P

P

P

XX

XX

XX

XX








  (4.18) 
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4.9.3. Simplifications of Symmetrical Frames with Symmetric (Asymmetric) 

Applied Loads 

If the symmetrical redundant frame is loaded with a symmetric applied load, such 

as the frame on the figure 4.16 a, when choosing a symmetrical primary system (see, 

for example, Figure 4.16 c) the diagram from applied external loads MR in the  

primary system will also be symmetrical (4.16 c).  

This means (see the conclusions of the previous section) that absolute terms P3  

and P4  will be zero, as received "by multiplying" of the symmetric diagram of MR on 

the unit asymmetric ones 3M  and 4M . As a result, the second group (system) of equa-

tions in (4.18) becomes a homogeneous algebraic system of equations, and the  

solution to it will be zero values of unknowns (X3 = 0; X4 = 0). As a result, only sym-

metrical unknowns (in this case of X1 and X2) remain unknowns in the calculation. 

Similar arguments can be held for the case of the loading of the symmetric frame 

with asymmetric applied load, and then the symmetric unknowns will turn to zero, 

and will remain only asymmetric unknowns. 
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Conclusion: When opting for a symmetrical redundant frame, the symmet-

rical primary system of the force method with symmetric and asymmetric  

unknowns and in the case of symmetric loading, all the asymmetric unknowns 

will be zero. In the case of an asymmetric loading, all symmetrical unknowns 

will be zero. 

4.9.4. Grouping of unknowns 

In some cases, when calculating symmetrical frames (e.g. frames with multiple 

spans) (see, for example, the frame depicted in figure 4.17 a), it is often difficult  

or even impossible to select a symmetrical P.S. in which the unknowns would imme-

diately satisfy the symmetry conditions. Herewith primary system would be either 

symmetric or asymmetric. This can only be done when all redundant restrictions 

(connections) are discarded at points (sections) lying on the axis of symmetry  

of frame. In other cases, when choosing a symmetrical configuration of primary sys-

tem, the unknowns of force method do not immediately satisfy the conditions of 

symmetry, these unknowns can be converted to symmetric and asymmetric. The basis 

for this transformation is that the received unknowns will act in symmetrical points 

(sections) and in symmetrical directions. This allows us separating such unknowns in 

a special way and the subsequent grouping of their parts to lead these unknowns to 

the satisfaction of the symmetry conditions. For example, for a frame on figure 4.17 

a, (symmetrical w.r.t. vertical axis) having four redundant connections 

( 45333  hLr ), the primary system of force method can be chosen  

in the form depicted in the figure 4.17 b, where the frame itself is symmetrical  

and unknowns – 1X  , 2X   and 3X  , 4X   are neither symmetric nor asymmetric. At the 

same time, these unknowns act in points (sec-

tions) and directions, symmetrical w.r.t. the 

axis of symmetry of the frame. Let's make a 

replace of such unknowns in accordance with 

dependencies which, mathematically, give a 

clear match of values (unambiguous corre-

spondence) between the values  

of the left and the right of their parts of these  

dependencies, because the system of two 

equations has two unknowns. 









;

;

414

411

XXX

XXX
  








,

;

323

322

XXX

XXX

     

       

(4.19) 

To grouping the eponymous unknowns on 

both sides of the axis of symmetry,  

we can get the primary system of force meth-

od, in which the unknowns will now  

be either symmetric or asymmetric. 

 

 Figure 4.17 

) 

b) 

Figure 4.17 
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In this case, the unknowns X1 and X2 are symmetrical, and the unknowns X3 and 

X4 are asymmetric. After such a transformation, called a grouping of unknowns, all 

of the above simplifications can be applied. 

        4.9.5. Decomposition of Applied Load on Symmetric and Asymmetric 

Any applied load acting on a symmetrical system can be presented as a sum  

of symmetric and asymmetric loads. And it is done as follows:  

1) a given applied load (see, for example, figure 4.18 a) are represented in the form  

of two identical halves (Figure 4.18 b);  

2) At symmetrical points w.r.t. the axis of frame symmetry in relation to those  

in which the given applied load acts, we apply the same halves of loads (Figure 4.18 

b), but only in different directions (Figure 4.18 c); the     loads added in this way  

mutually annihilate 

each other and thus they do not change the specified load; 

3) After grouping these halves on one side and the other against the axis  

of symmetry of frame, we get the sum of symmetric loads (Figure 4.18 d) and asym-

metric (Figure 4.18 e) loads.  

Now for the considered frame (Figure 4.18 a), containing four redundant  

constraints if we choose a primary system of force method, (for example, in the form 

shown in the figure 4.18 f), then, in accordance with the stipulations above (simplifi-

cations of the calculation of symmetric frames) and the principle of independence  

of force, the calculation for the considered frame will be divided essentially in two 

calculations. Separately, the symmetric load can be calculated in which we will have 

a system of two types of equations.  









,0

;0

2222121

1212111

sym

P

sym

P

XX

XX




 

In which the bending moment diagram in a statically redundant system can  

be plotted by a formula: 

.
2211

sym

P

sym MXMXMM   

And the diagram of bending moment from asymmetric load can be plotted  

according to the formula: 

.
4433

antisym

P

antisym MXMXMM 
 

Figure 4.17 
 

c) 

b) 

P.S. 
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Figure 4.18 

 

The diagram of bending moment corresponding to the original applied load, 

which is arbitrary in terms of symmetry, can eventually be obtained by the formula:  

.antisimsim МMM   

Analysis of the calculated procedure in comparison with the option without decom-

posing applied load shows that the simplification in the considered version associates with 

a reduction (approximately twice) in the volume of calculations of absolute terms of sys-

tem of canonical equations of the force method. Considering that calculation of deflection 

due to applied load under the Morh’s formula is usually the most laborious in comparison 

with the calculation of unit deflections (as far as plotting of MR diagram from applied 

loads in most cases are much more difficult than unit diagram 
i

M ), the decomposition of 

applied load on symmetric and asymmetric often makes sense. 

4.9.6. An Example of a Symmetrical Frame 

Consider the frame presented in the figure 4.19 a. Despite the fact that at A point 

there is a hinged fixed supports, in the symmetrical frame w.r.t. the axis of symmetry 

of the B point is a hinged movable support. This frame in terms of considered classi-

cal form of force method can be named as symmetrical, so we do not take into ac-

count longitudinal deformations of rods. If we only have to take into consideration 

bending deformations, the frame will be symmetrical (point B, like point A, cannot 

move horizontally either). Meanwhile applied load on the frame is asymmetric.  

1. The degree of static redundancy of the frame is equal to:  

510533  hLr , 

)а q
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a) b) c) 

d) e) f) 
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i.e. the frame has five redundant connections. 

2. The primary system of force method can be selected in the form shown in the 

figure 4.19 b, where unknowns 2Х  , 3Х   and 4Х   are fully satisfying the symmetry 

conditions, being either symmetric ( 3Х  , 4Х  ), or asymmetric ( 2Х  ), and the un-

knowns 1Х   and 5Х   do not satisfice the conditions of symmetry, but they act in 

symmetrical points and directions. Therefore, we can group by replacing them: 









.

;

515

511

ХХХ

ХХХ
 

To the given primary system, this replacement is taking into account, which  

is shown in the figure 4.19 c. Now the grouped unknown of 1Х  will be symmetrical 

and the unknown of 5Х  will be asymmetric. Given that the applied load is asymmet-

ric, the symmetrical unknowns should be zero, i.e. ;01 Х ;03 Х .04 Х  

Given this simplification, for this frame only two unknowns 2Х  and 5Х  will  

remain in the primary system of force method (see figure 4.19 d). 

а) б)  
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О.С.

2X

K C D

2X 2X
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3X '
3X '
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5X '

О.С.'
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a) b) 

c) d) 

e) f) 
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.P.S 

Figure 4.19 
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3. And the system of canonical equations of the force method, based on the sim-

plifications above, will have the appearance:  









.0

;0

5555252

2525222

Р

Р

ХХ

ХХ




                                    (4.20) 

The physical meaning of equations: 

1st equation is a mutual divergence in the primary system left and right sections from 

the cut at C point (see Figure 4.19 d) vertically (from the unit forces 2Х , 5Х , and applied 

loads). Meanwhile the divergence should be zero, because in the original frame these sec-

tions are rigidly connected to each other and then will not be able to diverge; 

The 2nd equation is a reciprocal divergence in primary system vertically in the 

KD line (K and D points, see Figure 4.19 a, d) from the action of unit forces 2Х ,  

5Х , and applied loads. Meanwhile the divergence should be zero, because at K and D 

points there are hinged fixed supports, fixing these points from vertical movements. 

 

 

g) h) 

i) 
 

j) 
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Figure 4.19 (continued) 
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4. In the design primary system (Figure 4.19 d) we plot unit bending moment  

diagram from the action of unknowns of unit values 2M , 5M  and bending moment 

diagram from applied loads РМ , (this are presented respectively on figure 4.19 e,  

f and figure 4.19 g). 

5. We calculate coefficients and absolute terms of equations: 

а) coefficients (unit deflections): 

  ;
6,111

3
3

2

2

331
353

1
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33
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
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


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




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
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4
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2
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1
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2
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
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


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  

b) absolute terms (deflections from applied loads): 

  ;
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3
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1
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4642164

36

4
2

1 0

5
5

EJEJEJEJ

dxMMn
l

P
P

.
667,2822

4
3

2

2

3431

EJEJ
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6. To perform the check of correctness of calculations of coefficients and absolute 

terms of the system’s equations, need to plot a total unit bending moment diagram of 

21 MMMS   (see Figure 4.19 h), after which can be performed check: 

а) universal verification:        
n

l

ik
S

EJ

dxM

1 0

2

 , 
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 Check is done; 
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b) column check: 

  
n l

iP
PS

EJ

dxMM

1 0

, где:    ;
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 Figure 4.20 

7. Solve the system of force method equations: 











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Х
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Check the solution by substituting the found values into equations: 

  ;00,1989108,1989;00,198955,1214463,16,111   

  .0667,2822806,2822;0667,282255,12222,20663,1144   
Discrepancies are insignificant, check is carried out. 
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8. Plot the final graph of bending moment according to the formula: 

PMXMXMM  5522 . 

Separately, are showed intermediate (the multiplied) unit diagrams (see.  

Figure 4.19 i, j). The final diagram M is presented in the figure 4.20 a. 

9. Perform a deformation test of the diagram of М: 
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Discrepancy %3%08,0%100
508,41

508,41542,41



 is insignificant. 

10. Diagram of Q shear force is plotted on the base of the M bending moment  

diagram using formulas (4.13) и (4.14): 
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The shear force diagram is shown in the figure 4.20 b.  

11. Diagram of longitudinal force in a given statically redundant system is plotted 

on the base of diagram – the way of cutting the node: 

а) Node Н       b) Node В 
 

 

 

 

 

 

 

 

          

             

             

 

 

 

F and A nodes are cut in the same way.  

N diagram is shown in the figure 4.20 b. 

12. Static frame balance check is in a Figure 4.20 d: 
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     

0; 7 7 14 0; 14 14 0;

0; 12,55 17,05 8 4 17,05 8 4 12,55 0;

0; 7 7 3 12,55 4 12,55 10 17,05 6 8 4 2 8 4 6 2 0;

320 320 0.
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        

               

 






 

4.10. Tasks to Solve Yourself 
 

Plot in the below represented frames the diagrams of bending moment, shear 

force and longitudinal force, performing their calculation by force method. 
 

 
 

 

Answers to these tasks are presented at the end of the manual in the "Key to 

Tasks for Self-Solution" section (p. 64-67). 

 

5. Calculation of Redundant Frames by Slope Deflection Method 

5.1. Approaches and Assumptions that Underlie the Slope Deflection 

Method 

In calculating statically redundant systems by force method for the unknown 

forces are accepted forces in redundant restrictions, after which internal forces (M, Q, 

N) and the deflections of frame points can easily be found in the determined sections. 

But the problem can be solved in the opposite direction. If first determine the deformed 

type of frame (deflections of sections of frame), then it is possible to establish the corre-

sponding distribution of internal forces, which illustrates the well-known dependence: 


 yEJM .  
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This is the approach used in the slope and deflection method (deflection method). 

At the same time, the analysis shows that the deformed view of the system is fully  

defined if the angles of twist (angular rotations) and linear displacements of its nodes 

are known. This is because the deflections of nodes are equal to the deflections  

of the ends of the rods connecting in these nodes, and the deformations of the rods  

are fully and unequivocally determined by the movements of the ends of the rods. 

The latter also applies to loaded rods, for which, however, the deformed form will 

depend additionally on the loads on them. 

Consider, for example, the frame depicted in the pic. 5.1 a. The deformed state  

of this frame is determined by linear displacement and twist of nodes 1 and 2.  

The number of these deflections and twists or rotations depends from the assumptions 

used in the method. Thus, in general, the number of deflections and angles of twist  

in the frame (Figure 5.1 b) is five; in the case of neglecting of shear and longitudinal 

deformations and ignoring of changing in the length of rods when they bend (the  

effect of these values for the curved frame-rod systems due to their smallness  

is usually neglected – the classical formulation of a problem) the number of these  

unknowns equal only two (Figure 5.1 c)   and  .  

1

3

2
4

5

5  

)a P )б P
1 2

 )в




P )г

 
Figure 5.1 

 

The number of independent angular and linear shifts of nodes completely and une-

quivocally defined by the deformed type of system is called the degree of its instability.  

All these independent nodes rotations and linear deflections are accepted as un-

knowns in the slope and deflection method. Hence the name of the method briefly is 

method of deflection.  

Note that in the classical form of the deflection method, as well as in the force 

method, the following assumptions are used: 

a) neglected shear and longitudinal deformations of elements of the system when 

it is deformed;  

b) Is accepted that the projection of the curved (de-

formed) rod on its original direction is equal to the orig-

inal length of the rod (Figure 5.2); 

c) Is assumed that the value of angles in rigid node 

do not change during the system's deformation process;  

дефl lдефl

l

Figure 5.2 

ldef ldef 

c) a) b) d) 



40 

      d) Angles of rotation of nodes and sections of rods at deformation of systems due  

to their small value are taken equal to tangents of these angles.  

It should be noted that for a number of redundant frames, the degree of instability 

(kinematic instability) is lower than the degree of static redundancy, and that the de-

flection method with an equal number of unknowns is somewhat easier to calculate 

some redundant systems than using the method of force.  
 

5.2. Determining the Degree of Instability of Frames 

The degree of instability of the system, i.e. the number of unknown independent 

angular and linear shifts of the nodes, must be found in order to determine the conju-

gate redundant system (C.S.), in according with the formula: 

n=na+nl        (5.1) 

Here: na – the number of independent angular twisting of nodes (unknowns of 

slope and deflection method), determined by the number of rigid nodes in the struc-

ture; at the same time, under the rigid nodes of the deflection method (then we will 

call them simply – rigid nodes) here we will understand those in which two condi-

tions are met: 

– in which two or more rods are rigidly connected at any angle. 

– where happens change of bending moment, which cannot be determined from 

the usual equilibrium equations (statics). 

For example, in a frame depicted in a figure 5.3 a, the rigid nodes where is met 

these conditions will be nodes: 1, 2, 3 (na = 3); for nodes: A, B, C, the second condi-

tion is not met, as they relate essentially to statically determinate parts of the struc-

ture, in which all internal forces can be determined by conventional method of calcu-

lating statically determinate systems; 

пl – the number of independent linear deflections of system’s nodes (unknowns), 

which can be determined in two ways: 

1. According to the number of possible independent linear displacements of rigid 

nodes (see definition of na), and hinged nodes of the structure based on the analysis of its 

possible elastic deformation taking into account some accepted assumptions (section 5.1).  

For example, in a frame on figure 5.3 a, we need to analyze the possibility and  

independence of deflections of 1, 2, 3 rigid nodes and 4, 5 hinge nodes with arbitrary 

possible elastic deformation of this system: 

1 node cannot move vertically, as it is fixed from vertical displacement with  

the help of the 1–D rod, which on the basis of a and b assumptions (section 5.1)  

not allow to diverge (or converge) of 1 and D points, and D pinched support; 
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Figure 5.3 

– horizontally, node of 1 can shift, as well as the rods of 1 to 2 and 4 to 3 can 

bend (horizontal displacement of 1 node is shown by an arrow with the number – 1);   

–The 2 node cannot be shifted vertically based on the same reasoning  

as has been considered for node of 1;  

–Horizontally, the same 2 node can shift, in respect that the rods: 1-2, 2-D,  

4-3 and 5-E can bend (horizontal displacement of 2 node is marked by an arrow with 

the number – 2);  

–The 3 node can move horizontally to the right or to the left (similar to 2 node). 

Moreover this shift will be the same as the horizontal displacement of 2 node, since 

the 2-3 rod connecting the nodes of 2 and 3, (based on a and b assumptions, section 

5.1) does not allow change the distance between these nodes; 

– On the vertical direction the 3 node, considering the possibility of elastic defor-

mation of rods: 1-4, 2-3 and 3-5, can shift (shown by an arrow with the number – 3);  

–The 4 hinge node in this case can move both horizontally rightward  

or leftward, the same as 1 node since the rod 1-4 does not allow for 1 and 4 sections 

to diverge (this is based on a and b assumptions (section 5.1)), and vertically but 

along with the node of 3 (due to the presence of 3-4 rod);  

–The 5 hinge node can't move nor vertically, neither horizontally, but it will shift 

to the same direction as nodes of 2 and 3. 

So for the frame on the figure 5.3 exists three independent deflections of nodes  

(n l = 3), and in total we get six unknowns when calculating the frame by the deflec-

tion method: 

n=na+nl 3 3 6   . 

2. A number of textbooks are proposing another formula to determine the nl: 

nl =Whinge frame scheme ,23 оCHD                      (5.2) 

According to which n l  equals the degree of freedom of the hinge scheme of the 

frame obtained by the introduction (cutting-in) of hinges in all rigid nodes of the 

structure, including pinched support. 

For example, for a frame on figure 5.1 a, the hinge scheme of frame has  

the appearance presented on the figure 5.1 g, according to which we will receive:  

a) b) 

C.S. 
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nl =Wh.f.s.= оCHD  23  = 142233  .         (4.3) 

For the frame of on figure 5.4 a, the hinge scheme of which is presented  

on the figure 5.4 b, we'll have:  

nl =Wh.f.s. 3 4 2 3 6 0.       

However, analysis of the possible frame  

deformation in the first way shows that 1 and 2 

nodes can shift horizontally (figure 5.4a).  

Thus, application of formula (5.2) leads here  

to an incorrect result caused by instantaneous  

variation (variability) of the hinged scheme  

of the considered frame (figure 5.4b).    

This situation can occur frequently, and the formula (5.2) will always give incor-

rect results in cases when hinge scheme creates an instantaneously variable system  

in the frame. Taken this into consideration, it is not recommended to use this version 

of calculation of nl, but is suggested in all cases to use the first option of the defini-

tion of nl, which is both simple and reliable. 

5.3. Conjugate System of Redundant Structure of the Slope and Deflection 

Method 

The conjugate system of the slope and deflection method can be gotten by intro-

duction of additional (imaginary) restrictions, fixing the nodes from their possible an-

gular twist and linear deflection, which were derived earlier (in computing the n degree 

of instability of the system). Thus, in all rigid nodes that can 

rotate (пl), we install additional pinched supports, fixing 

them from the rotation, and in all nodes (hinged), which can 

linearly shift (пl), we install additional supporting bars 

(which work as hinged movable supports) fixing from these 

shifts. These additional connections (together, of course, 

with nodes) are accepted as unknowns. Possible movements 

of these nodes (where were placed additional supports) are 

marked through Zi (i = 1…n). It should be noted that the additional pinched support, 

unlike the actual pinched support, has only one restriction that secures the node from 

the rotation (from linear deflection it does not fix). 

For the frame depicted in the figure 5.1 a, the conjugate system of the deflection 

method has the appearance presented on figure 5.5.  

Based on accepted assumptions and established additional supports, the nodes  

of the conjugate system will be stationary. Given that in the classical form  

of the slope and deflection method can be neglected by shear and normal forces,  

in conjugate system further we will build only the diagram of bending moment.  

At the same time, the impact on the areas of the conjugate system (external  

applied loads, forced displacement of nodes) will cause bending moments only  

in those areas that are directly exposed to these impacts; namely, through the pinched 

1

2

;

.

Z

Z



 

. .O C

1Z
2Z

1
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Figure 5.5 

a) b) 

C.S. 

Figure 5.4 
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support in rigid nodes and through the hinge nodes of the conjugate system bending 

impact will not be transmitted.  

    Thus, the conjugate system of the deflection method will be a set of individual 

one-span beams independent of each other. These beams, depending on the condi-

tions for attaching their ends to the nodes (support conditions) can be three types, the 

kinds of which are represented on the figure 5.6. 

 
 
 

        

 

Figure 5.6 

For the frame on the figure 5.3 a the conjugate system of the deflection method  

is represented by figure 5.3 b. 

5.4. Canonical Equations of the Slope and Deflection Method 

The calculation of frames by use of deflection method uses the conjugate system 

of this method. Extra supports are installed to nodes of frame that can shift; they need 

to restrict these shifts. At the same time, the conjugate system should work in the 

same way as the original system, in which there are no pointed out additional connec-

tions. As conditions equating the work of the conjugate system to the work of a given 

system, equality of zero reactions in additional supports is accepted, because they are 

not in the original system. For example, for a frame on figure 5.5 should be written 

down the reactions R1=0, R2=0. Given that reactions in the conjugate system arise 

from applied load and forced displacement of nodes, we will get: 

1 1 2( , , ) 0,R Z Z P            2 1 2( , , ) 0R Z Z P  . 

Taking advantage of the principle of independence of forces and external actions 

(displacement), these expressions can be presented as: 

1 2

1 2

1 1 11 1 1 2 1

2 1 2 2 2 2 2 2

0;( ) ( ) ( ) 0;
èëè

( ) ( ) ( ) 0, 0.

Z Z P

Z Z P

R R RR Z R Z R P

R Z R Z R P R R R

     
 

      

   or 

Since the Z1 and Z2 movements are not known, the reactions from their actions  

are expressed through appropriate single reactions .
ki Z ik kR r Z   

As a result, we get the next system of equations: 

11 1 12 2 1

21 1 22 2 2

0;

0.

P

P

r Z r Z R

r Z r Z R

  


    

This form of recording of deflection method equations is called – canonical.  

In general, the system of canonical equations of the slope and deflection method  

has the form of: 

)а )б
или

)в

or 

a) b) c) 

1 2

1 2

1 1 11 1 1 2 1

2 1 2 2 2 2 2 2

0;( ) ( ) ( ) 0;
èëè

( ) ( ) ( ) 0, 0.

Z Z P

Z Z P

R R RR Z R Z R P

R Z R Z R P R R R

     
 

      

!
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11 1 12 2 13 3 1 1 1

21 1 22 2 23 3 2 2 2

1 1 2 2 3 3

1 1 2 2

... ... 0;

... ... 0;

... ... 0;

k k n n P

k k n n P

i i i ik k in n iP

n n n

r Z r Z r Z r Z r Z R

r Z r Z r Z r Z r Z R

r Z r Z r Z r Z r Z R

r Z r Z r

       

       

                          

       

                          

  3 3 ... ... 0;nk k nn n nPZ r Z r Z R










     

  (5.3) 

 

Here: n – the number of unknowns (angular twists and linear deflections) of shifts 

of nodes in the system, or the degree of instability of the system; ( 1... )kZ k n   

unknown values of displacements (angular and linear) of nodes of a structure; i kr – 

reactive force (moment) in the i-additional restriction (fixed support, hinged movable 

support) from movement (rotation or linear deflection) of k-additional restriction 

(pinched support, hinged movable support) to a single amount of movement (Zk = 1);  

iPR   reactive force (moment, force) in i-additional restriction (pinched support, 

hinged movable support) from the action of applied loads. 

The physical meaning of the equations (for the i-equation): reactive force 

(moment) in the i-additional restriction (pinched support, hinged movable support) 

from the movements of all additional restrictions (rotations, linear deflections) 

1 2, , ..., nZ Z Z  and the given applied load is zero, as this i-restriction in the original 

(design) system is not. 

Here are examples of the physical meaning of coefficients and equations in gen-

eral, for example, for conjugate system of the slope and deflection method presented 

on figure 5.3: 

11r  – reactive moment in the 1-st extra pinched support from it same twist  

at a single angle; 

53r  – reactive force in the 5-th additional hinged movable support from  

the turn of the 3-rd additional pinched support to the angle which, equal to the unit; 

26r  – reactive moment in the 2-nd additional pinched support from the linear shift 

of the 6-th additional hinged movable support to the distance, equal to the unit; 

4PR  – reactive force in the 4-th additional hinged movable support from  

the action of the applied loads; 

3-rd equation: 31 1 32 2 33 3 3 3... 0n n Pr Z r Z r Z r Z R      ; a reactive moment  

in the 3-rd extra pinched support from moving all additional restrictions (supports)  

to the magnitude 1 2 6, , ...,Z Z Z  and from the effect of the external applied load is zero, 

because in a given system (Figure 5.3a) this (3-rd) pinched support does not exist. 
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Note that coefficients i kr  with the same indices (
11 22,r r ), are called the principal 

deflections, and the rest are called secondary deflections (coefficients); the principal 

deflections cannot be negative and zero, and secondary deflections (factors) should 

satisfy the theorem of reciprocity of unit reactions ( i k k ir r ).  

5.5. Slope and Deflection Method Table Diagrams  

To determine the i kr , iPR  reactive forces it is necessary to be able to identify  

internal forces (plot their diagrams) in the conjugate system of the slope and deflec-

tion method from unite displacements of additional restrictions or supports (together, 

of course, with the respective nodes) and from the action of the given applied loads. 

Plotting these diagrams, due to the fact that the conjugate system of the slope and de-

flection method is a set of individual beams, completely independent of each other, is 

associated with the ability to calculate these beams (Figure 5.6). External actions (ex-

posures) here will be turns of the pinched support, linear shifts of the hinge support 

and force factors (concentrated forces, concentrated moments, distributed loads).  

The calculation of such beams is usually done by force method, and the calculation 

results are tabulated (see table 5.1). 

 

 

 

Table 5.1 
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        5.6. Plotting of a Bending Moment Diagram from Unit Load and Bending 

Moment Diagram from Applied Loading in Conjugate System  

Plotting of an unit diagram of bending moment 1M  from the action of Zi shifting 

of unit magnitude (Zi =1) and PM diagram due to the actual applied loading to the 

conjugate system is carried out using ready-made (table) diagrams for individual sec-

tions of the conjugate system (see Table 5.1). Each part of a frame works regardless 

of others. Plotting of a diagram is performed as follows: depending on the actions di-

rectly on the structural element (concentrated force, concentrated moment, distributed 

load), the table moment diagram is selected, taking into account the specific parame-

ters of this area (element), and then transferred to the design area (onto the conjugate 

scheme). At the same time, when plotting unit diagrams, it is expedient to present the 

deforming scheme of the conjugate system from the appropriate displacement of the 

node. This allows us to identify which elements of the conjugate system “work”, how 

they “work” and with which side the fibers are stretched, and where the fibers are 

compressed (the bending moment diagram should be plotted from the stretched fibers 

side). Ordinates of unit diagrams, as can be seen from table diagrams, are expressed 

through the relative stiffness of the areas, which is the ratio of the real rigidity of the 

areas to their lengths /s s si EJ l . If we set the stiffness in general, it can cause some 

difficulty in comparing with the ordinates of unit diagrams at different sites. To avoid 

these difficulties, the next way is suggested: 

– we can choose one relative stiffness of the areas for the base (indicating it,  

for example, through i) and then, through it, express the relative stiffness  

of the rest of the system; So, for the frame on figure 5.10 a, the rigidity of the areas  

is recorded as follows: 

12

01 23 12; ,
EJ kEJ k EJEJ

i i i
h l hh 

     


 

and if we're noting 
EJ

i
h

  or EJ i h  , we'll get: 01 1223 ;
k

i i i i i    

(this manual uses further this approach of expressing the rigidity of the elements); 

– We can express the stiffness of the areas through a certain amount of EJ, com-

mon to all areas S SEJ EJ ; in this case for the frame on figure 5.10 a, we'll get: 

01 23 12; ;
kEJ

i i i EJh h
    

– We can conveniently set for the parameters ,i EJ  some numerical values for 

further calculations, from our point of view. This can be done, because when the final 

diagrams of the forces are plotted, the values that are common to all areas are re-

duced. So their parameters ,i EJ  do not affect the results of the calculation (area 

stiffness ratios have significance); for the frame on the figure 5.10 a, it is convenient, 

for example, to take: EJ=ih. 
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The frame presented in the figure 5.10a, as previously defined (Figure 5.1), has 

two unknowns of the slope and deflection method (the degree of its kinematic inde-

terminacy is two). The conjugate system of the deflection method for this frame has 

the appearance shown on the figure 5.10 b. Unit diagrams of M1 and M2 bending 

moments from the action of the Z1 and Z2 shifts of a unit magnitude (Zi =1) and 

PM diagram due to the actual applied loading (as well as deformation schemes corre-

sponding to unit displacements) are presented on figure 5.10 n - 5.10 g. 

5.7. Determining the Coefficients and Free Terms of the Canonical Equations  

Coefficients and free terms of equations in their physical meaning, as already not-

ed, can be two kinds – reactive moments in additional pinched supports ( ikr  or 
iPR ) 

and reactive forces in additional hinge supports ( ikr  or 
iPR ). Their definition, as the 

definition of any reactions, can be made on the basis of equilibrium equations either 

as a whole system or a part of it (static way). Experience has shown that it is more 

convenient to consider the balance of individual parts of the conjugate system, which 

are under the exposures from which the desired reactive force is determined. At the 

same time, the following rule of signs is used for reactive forces in additional sup-

ports (restrictions) – reactive force is considered positive if its direction coincides 

with the direction of movement of the appropriate additional restriction. In the pro-

cess of identifying unknowns, reactive forces should always be directed in positive 

directions.  

According to the above, the definition of the ikr  coefficients and iPR  terms  in the 

meaning of the reactive moments of the additional pinched supports, is most conven-

ient to perform on the basis of consideration of the equilibrium of nodes, in which 

were installed appropriate additional pinched supports, preliminarily cutting out these 

nodes. Then one after another the equilibrium equations for the nodes are derived up, 

(summing all the moments acting in the i-node, we get one equation). From these 

equations can be determined the desired reactive moments. 

So, for the frame on the figure 5.10 when determining the 11r
 
coefficient

 
repre-

senting the reactive moment in the 1-st additional fixed support from its rotation by a 

unit angle, it is necessary to cut the node 1 from the 1M  diagram, (which was built 

from the turn of the 1-st pinched support to a unit angle) (see Figure 5.10s), from the 

equilibrium of which we will get:  

1 11 11

3 30; 4 0; 4 .k kM r i i r i i       

Factor of 12r  can be found by cutting out 1 node on the 2M diagram  

(figure 5.10 и): 

1 12 12

6 6
0; 0; .

i i
M r r

h h
      

For definitions of 1PR  free term, we need to cut the 1 node on the PM  diagram 

(Figure 5.10 k): 
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2 2

1 1 10; 0; .
8 8

P P

ql ql
M R m R m       

Thus, the first index of the coefficient or free term here essentially shows  

the node number which has to be cut to determine this factor, and the second index 

indicates the diagram from which this node has to be cut. 

For example, to determine the 22r
 
coefficient, which is being a reactive force  

in the 2-nd additional hinge support from its own unit displacement, we can cut the 2 

node on the 2M diagram (Figure 5.11); As a result, we will receive:  

22 23 12 22 22 120; 0; .X r Q N r Q N                      

 The value of 23Q  is easy to determine by 2M dia-

gram, using, for example, a formula:  

          

,
l

МM
QQ

leftright

o


           (5.4) 

where: 
0Q  – takes into account the effect of the q  distributed load on the area  

of frame, i.e. it is a diagram of shear forces on the area, likewise in a simple beam  

(if q does not exist, then 0Q = 0); 
leftright

МM ,  – ordinates of bending moment on the 

right and left ends of the area; l  – length of the area;  

The sign before the module is accepted by the following rule: if the rod of frame 

on which the M is plotted must be rotated before combining with the straight line 

connecting the ordinates of 
right

M  and 
left

М  on the shortest path clockwise, the sign 

is taken “+”. If it's counterclockwise, it's a “-” sign.  

As a result, we will get for area 2-3 (Figure 5.10 g): 

23 2

3 / 0 3
0 .

i h i
Q

h h


    

It should be noted that the value of 23Q  can be obtained through a support reac-

tion in the 2-3 rod from the action of the accepted of 2 1Z 
 
linear unit deflection. 

Considering that the shear force nearby support section is equal to the value of the re-

action of the corresponding support, which is given in table diagrams, we can calcu-

late it. The shear force sign is determined by the usual rule of the signs for Q  or from 

М diagram. In order to determine the value of the 1 2N   
normal force in the 1-2 rod,  

it is necessary, first, by use of 2M diagram, and the formula (4), to plot a
 
diagram  

of 2
Q  shear-forces, and then the value of 1 2N   from the cutting of node can be found. 

This process, as we can see, is quite labor-intensive. 

It will be easier to determine the i kr , iPR  coefficients which are the reactions  

in the linear restrictions (in additional hinged supports), if we cut definite parts of the 

Figure 5.11 

12Q

12N

22r x

23Q

 2
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conjugate system instead of nodes. Thus, the equations of equilibrium should include 

only shear forces; and it is most convenient to use as equilibrium equations the sum 

of the projections of forces on the axis, parallel to the unknown reactive force.  

So to determine the 21r
 
coefficient it is convenient to cut out the top of the 1M  

diagram, shown on figure 10 l, out of balance of which we will get: 

21 21

6 6
0; 0; .

i i
X r r

h h
      

Similarly, we will find a coefficient 22r  (Figure 5.10 m) and the absolute term
2PR  

(Figure 10 n), cutting the corresponding parts of the conjugate system out  

of the 2M and 
PM diagrams: 

22 222 2 2

12 3 15
0; 0; ;

i i i
X r r

h h h
      

 

2 1 2 2 2 1

5 5
0; 0; .

16 16
P PX R P P R P P       

It should be noted that the ikr  and 
iPR  values can also be determined by Mohr’s 

formula. At the same time, the magnitudes of iir  and ikr  can be calculated by formulas: 

2

; ;
i ik

ik ii

M M ds M ds
r r

EJ EJ
         (5.5) 

The value of iPR  absolute term can be calculat-

ed according to the formula: 

,
i P

iP

M M ds
R

EJ


     (5.6) 

where: PM  – the diagram of bending moment from 

the action of the applied loads in a statically deter-

minate system obtained from a given system (or 

conjugate system) by removing redundant re-

strictions, including necessarily the restriction, the 

reaction of which is determined.  

Calculate for the example under consideration (Figure 5.10), the 12 22,r r
 
factors 

and 1PR
 
an absolute term. Unit diagrams in the conjugate system are shown on the 

figure 10, and one of the possible options for the PM 
 
diagram on the figure 5.12. 

Given that: 
1h

EJ i
 ,  and  

1 h

kEJ kEJ ki

 
  ,  we will find: 

Figure 5.12 

1P

q

2
h

2
h

2P

l

2

8

ql

1

2

Ph

PM 

1 2 2
hPh P

m

m
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21

12 21

6 6 6
2 4 ;

6

M M ds h i i i
r r i i

EJ EJ h h h

 
         

 
  

2 2 2 2 2

2

22 2

6 6 3 1,5 15
4 ;

6 6

M ds h i i h i i i
r

EJ EJ h h EJ h h h

          
                

          
  

 

2
1

1

2 2

15
4 4 4

6 2 6 8

1
6 1,5 ;

6 6 2 8

P
P

M M ds h m l ql k
R m i i i

EJ EJ kEJ

ql ki ql
mi m

i ki







   
              

   

 
       

 


 

The values calculated here are the same as values which were found by static 

method previously. 

5.8. Checks of Coefficients and Free Terms of Canonical Equations 

Checking the correct calculation of coefficients and absolute terms of canonical 

equations can be done similarly as the method of force. At the same time, a Unit To-

tal Diagram must be plotted to carry out the checking of sM , representing the sum of 

all unit diagrams in the conjugate system: 
 

31 2
... .s n

M M M M M           (5.7) 

 

The following checks can then be carried out in the method of deflection: 

а) Universal verification: 
2

1 1

,
n n

s

ik

i k

M ds
r

EJ  

              (5.8) 

where: ΣΣ i kr  – the sum of all unit deflections (the sum of factors of all equations): 

   11 12 1 21 22 2... ...i k n nr r r r r r r          

 1 2... ... .n n nnr r r    
 

 

If a universal check is performed, it confirms the correct calculations of coeffi-

cients (principal deflections, and secondary deflections), and absolute terms;  

if the universal check is not performed, then to find out which group of coefficients  

is an error, we can make so-called line checks. 

b) Line checks, i.e. checks of the coefficients that are included in each  

of the equations of the method of slope and deflection (1st, 2nd, ... n) has: 
 

1

( 1... ),
n

i s

i k

k

M M ds
r i n

EJ 

      (5.9) 
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where: ΣΣ i kr  – the amount of coefficients included in i -equation of the method of 

slope and deflection. 

Such checks, as can be seen, should carry out of n-times; some of them will be 

executed (this will mean that corresponding coefficients were calculated correctly), 

and some may not; analysis of the results reveals the coefficients in which errors 

were made. 

Note; if a universal check is carried out, there is no need to perform line checks.  

c) column check serves to check absolute terms and it is executed according  

to the formula: 

1

,
n

s P
iP

i

M M ds
R

EJ 


             (5.10) 

 

where: 
1 2 ...iP P P nPR R R R     – total number of all absolute terms; 

PM   – the diagram of bending moments from the applied loads in a statically de-

terminate system derived from a given system or a conjugate system by discarding 

redundant restrictions, including necessarily additional restriction, where are defined 

reactions iPR  (see Figure 5.12). 

5.9. Plotting the Final Diagram of Forces and Verifying Them 

The found values of coefficients and absolute terms are substituted into the sys-

tem of canonical equations (5.3), through which we can determine of  ( 1... )iZ i n
 

unknowns. After that, the final diagram of bending moment on the base of the princi-

ple of independence of force and actions (deflections) can be plotted according to the 

formula: 

1 221 ... .nn PM M Z M Z M Z M           (5.11) 

 

The final diagram of the shear forces is plotted out on the base of M diagram by 

using the formula (5.4). The final normal forces diagram is plotted out on the base of 

Q diagram by cutting out the joints. To confirm the correctness of calculations of М, 

Q and N final diagrams, the following checks are carried out:  

a) Checking the balance of the nodes on the base of M diagram; this check is 

important when frames are calculated with the deflection method. Because the bal-

ance of joints (in the conjugate system) is not performed on the iM  unit diagram or 

on the PM  diagram (from applied loads), without taking into account additional 

pinched supports (which the system does not really have); In the M final diagram the 

balance of the nodes must be performed;  

b) deformation (kinematic) check of the M diagram; this check can be done  

in the same way as in the method of force, but here to perform it for a given system, 

choose the primary system of the method of force (preliminarily determining  

the number of redundant restrictions). Then we need to plot a total unit diagram  
.methforce

S
М  from the unit values of all unknowns of method of force (or at least one  
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of the 
.methforce

i
М unit diagrams). In such case, the maximum number of areas of the 

system should be covered; after that the deformation check is performed by formula: 

 

(5.12) 

The physical meaning of this check here is the same as in the method of force; 

c) Checking the equilibrium of the nodes when plotting the N diagram out of 

the Q diagram; N diagram is plotted, as already noted, on the base of the Q diagram 

in the way of cutting nodes, i.e., normal forces can be found from equations of pro-

jections of forces to any two axes. Keeping the balance of all nodes in this way indi-

cates the correctness of the calculation. If at least one of the equilibrium equations is 

not performed in at least one of the nodes, it means that a mistake has been made in 

the calculation. Most often, this error is associated with incorrect determination of 

coefficients or absolute terms, which are reactive forces in additional restrictions 

(movable hinges);  

d) Static verification is performed in the same way as in the method of force.  

The projections of all the applied loads and support reactions to any two axes and the 

sum of the moments of forces w.r.t. any point should be zero. 

5.10. An Example of Calculation 

From the frame depicted in the figure 5.13 a, we can see the degree of instability 

of the system equals three (n=na+nl = 2 + 1 = 3). The conjugate system is presented 

in figure 5.13 b. The relative stiffness of the areas is:  

01 12 24 35 23; ;
2 4 6

EJ EJ EJ
i i i i i      

Through a common value for all areas – i = EJ / 12 (EJ = 12 i), we can receive: 

01 6 ;i i      12 24 35 233 ; 2 ;i i i i i i     

To be clear, this relative stiffness of areas is shown in the conjugate system of the 

deflection method (Figure 5.13 b). The 1 2 3, ,M M M  unit bending moments in con-

jugate system as shown respectively on figure 5.13 d, 5.13 g, 5.13 j, are plotted on the 

basis of deformation schemes of conjugate system from deflections of 1 2 3, ,Z Z Z  
nodes on unit values (Figure 5.13 c, 5.13 f, 5.13 i) using table diagrams (table.1). Unit 

coefficients or absolute terms of canonical equations are determined in a static way: 

reactive moments 1 2,k kr r  can be derived by cutting out 1 and 2 nodes of the kM  dia-

gram. The 3kr  reactive force can be derived from cutting out the top part  

of the frame on the kM diagram (Figure 5.13 i, 5.13 h, 5.13 k).   

– figure 5.13e:  

1 11 11

2 21 21

31 31

0; 12 18 0; 30 ;

0; 6 0; 6 ;

0; 9 0; 9 ;

M r i i r i

M r i r i

X r i r i

     


   


    



  

 

 

 

  

1Z 2Z
3Z

3i 2i

3i 3i
6i

. .O C

12
EJi 

1 2

0

3

5 4

.00

..



















EJ

MdsM
or

EJ

MdsM
methforce

i

methforce

S
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a)         b) 
 

 

 

 

 

 

 

 

 

 

 
 

  c)          d) 

 

 

 

 

 

 

 

 

 

 

   e) 
 

 

 

 

    f)        g) 
 

 

 

 

 

 

 

 

   

Figure 5.13 
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 h) 
 

 

 

 

   i)          j) 
 

 

 

 

 

 

 

 

 

 

  k) 
 

 

 

Figure 5.13 (continued) 

– figure 5.13h: 

1 12 12

2 22 22

32 32

0; 6 0; 6 ;

0; 6 12 12 0; 30 ;

0; 4,5 0; 4,5 ;

M r i r i

M r i i i r i

X r i r i

    


     


    





 

   а)            b) 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  Figure 5.14 
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c)                               d) Node 1 
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   e)         f) 
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Figure 5.14 (continued) 
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– Figure 5.13k:  

1 13 13

2 23 23

33 33

0; 9 0; 9 ;

0; 4,5 0; 4,5 ;

0; 4,5 2,25 0,5625 0; 7,3125 .

M r i r i

M r i r i

X r i i i r i

     


    


     





 

The diagram PM  in the conjugate system is presented in figure 5.14 a. Absolute 

terms are defined by analogy with coefficients (principal deflections and secondary 

deflections) (see Figure 5.14 b): 

1 1 1

2 2 2

3 3

0; 8 3 0; 5;

0; 8 3 0; 11;

0; 2,5 6 0; 3,5.

P P

P P

P P

M R R

M R R

X R R

     

    

    







 

After substituting the found values of coefficients and absolute terms in the sys-

tem of equations (3) we get the form of system: 

1 2 3

1 2 3

1 2 3

30 6 9 5 0;

6 30 4,5 11 0;

9 4,5 7,3125 3,5 0;

i Z i Z i Z

i Z i Z i Z

i Z i Z i Z

      


      
       

 

Having solved this system of equations, we will find unknown deflections of 

frame joints: 

1 2 3

0,0484 0,4839 0,7169
; ; ,Z Z Z

i i i
      

After that, the final diagram of bending moment is plotted according to the for-

mula: 

221 31 3 PM M Z M Z M Z M    . 

And it will have the look presented in figure 5.14 c; Figure 5.14 d shows the bal-

ance of nodes 1 and 2 on the final diagram M.  

To perform a deformation, check of diagram M, we have to select conjugate sys-

tem in the form shown in figure 5.14 e with four redundant restrictions (n = 4).  Total 

unit diagram              , is plotted at once from all the unknowns 1 4...X X  of unit val-

ues, shown in figure 5.14 f; then the deformation check can be recorded as : 

 

 

 

1 7,323 2 2 4 2,903 6 2 4
2 (10,323 2 4 5,597 0 2 2,484) 6 (4 2 3,194

2 3 6 2 3 6EJ

 
             
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5,387 0,419 8,677 5,387 1
9,613 4) (8 3) (8 1) (9,764 13,764

2 2 EJ

  
          


 

1
3,312 34,838 17,032 25,634 59,612 13,161) (88,559 88,558) 0;

EJ
          

Discrepancy 
88,559 88,558

100% 0,1%
88,558

 
  

 
 is negligible. 

The diagram of the shear force Q (Figure 5.15) can be plotted by use of areas, 

where diagram M changes continuously according to formula (4): 

0 1

7,323 0
3,661

2
Q 


     kN;          1

6 1 3 0
0;

2 1

лев

AQ 

 
     

1

6 1 3 0
6

2 1

npaв

AQ 

 
      kN; 

1 2

6 4 10,323 2,484
12 1,96 13,96

2 4

левQ 

 
      kN; 

1 2

6 4 10,323 2,484
12 1,96 10,04

2 4

npaвQ 

 
         kN; 

2 3

2,903 0
0,484

6
Q 


    kN;         4

8,677 ( 5,387)
14,064

1
BQ 

 
    kN; 

2

5,387 ( 0,419)
1,936

3
BQ 

 
     kN;       3 5

4 4 9,613 0
5,597

2 4

левQ 

 
     kN; 

3 5

4 4 9,613 0
8 2,403 10,403

2 4

npaвQ 

 
         kN. 

Normal force diagram (Figure 5.16) can be plotted by cutting out the nodes (from 

the diagram Q ): 

          Node 1                                            Node 2                                            Node 3       

 

 

 

 

 

 
 

 

 
 

 

Σ 0;X   N12= -3.661   kN; 

Σ 0;Y   10 19,96N    kN; 

Σ 0;X   23 5,597N    kN; 

Σ 0;Y   24 10,524N    kN; 

Σ 0;X   5,597 5,597 0;   

Σ 0;Y   35 0,484N   kN; 
 

Cutting out the supporting joints, we can determine the supporting reactions: 

6
y

13,960

10N
3,661

12N

 1 x
10,04

3,661

0,484

24N
1,936

23N

 2 x

y y

x

5,597

0,484

35N

5,597

 3

left

A
Q

1

right

A
Q

1

leftQ
21

rightQ
21

leftQ
53

rightQ
53

661.3
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               Node 0                           Node 4                                                  Node 5 
 

 
 

 

 

 
 
 

 Static check:  

 
Figure 5.17 

 

0; 3,661 14,064 10,403 4 4 16 0;X              30,064 30,064 0;   

0; 19,96 10,524 0.484 6 5 0;Y                   30,484 30,484 0;   

0; 6 5 2,5 16 3 4 4 2 3,661 2 14,064 4 10,403 4AM                 

19,96 1 10,524 5 0,484 11 8,667 9,613 0;          

178,193 178,191 0.   

All checks carried out, the frame calculation is done. 

 

5.11. Tasks to Self-Solution 

Plot the diagrams of bending moment, shear and normal forces according to the 

given frames. Perform their calculations by means of the slope and deflection method 

(key to tasks is presented at figure on pages 63-66). 

4 8,677RM 

8,677

10,524

14,064

4 14,064H 

4 10,524R 

 40 3,661H 

0 19,96R 

3,661

19,96

 0
5 10,403H 

5 0,484R 5 9,613RM 

 5

0,484

9,613 10,403
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Key to Tasks for Self-Solution  

Section 4. Calculating Statically Redundant Frames by Method of Force 
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Section 5. Calculation of the Statically Redundant Frames by Slope and 

Deflection Method 

5.1. The degree of instability of the frame is 

equal to two (r = 2) – the turn of the D node 

(Z1) and the linear shift (horizontally) of the D 

and Т nodes (Z2); at EJ = 1 deflections are equal 

to: Z1= 2,045 (clockwise), Z2= 10,020 (to the 

right). The internal forces are shown in the pic-

tures. 

5.2. The degree of instability of the frame is 

equal to two (r = 2) – turning of D node (Z1) 

and a linear shift (horizontally) D and Т nodes 

(Z2). When EJ = 1 the unknowns of the slope 

and deflection method are equal: Z1= 2,045 

(counterclockwise), Z2= 10,020 (to the right).  

r=2 
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The internal forces are shown in the pictures. 
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


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10,88

4

Q
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

 
 

5.3 The degree of instability (freedom) of the frame is one (r =1) – the upper 

hinge node can move linearly horizontally.  

When EJ = 108 the displacement of their nodes: Z1 is 0,4 (to the left). Internal 

force diagrams are shown in the pictures (N diagram is zero). 

4,2

M

  
  
  

  
  

  

5,46

1,91

6,17

5,655

2,29

12,37

4,65
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27,85

Эпюра M

9,375

Эпюра Q

12

5,95

0,4

4,6

9,1

9,2

8,8

9,6

20,1 13,025

18

13,025

9,375

6

4,6

2,975

2,975

12
6

 

5.4. The degree of instability (freedom) of the frame is equal to two (r = 2) – un-

knowns are the turns of 1 and 2 rigid nodes. When EJ = 12 these angles of turns of 

nodes are: Z1 = - 0,5 (counterclockwise), Z2 = 0,325 (clockwise). Diagrams of internal 

forces are shown in figures. 

 
 
 

Эпюра M
Эпюра Q6,4

1,2

5,2

6,4

1,4

Эпюра N8,355,4

3

5,15

2,6

10,3

8,85

8,85

4

0,50,51,4
1,4 1,4

0,5

0,5

9,652,6

2,6

4

 

Diagram «M» Diagram «Q» 

Diagram «M» 
Diagram «Q» 

Diagram «N» 
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