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4. Calculation of Statically Indeterminate Frames by an Area-Moment
Method and Displacement Method

4.1. Idea of the Area-Moment Method

In the area-moment method, the calculation of statically indeterminate systems is
reduced to well-known methods of calculating statically determinate systems.

Statically determinate system used for statically redundant system is obtained by
discarding so called redundant constraints (with their replacement by reactions that
may arise in these constraints) and is called the primary system or principal system
(P.S.) of the area-moment method. This system should also work as a statically re-
dundant system.

To comply with this, the following conditions must be met for the primary system:

1) In the primary system of the area-moment method, instead of redundant con-
straints, forces which correspond to the reactions in these constraints must be applied.
In a statically indeterminate system, these constraints will experience reactive forces;
these forces will be unknown of the area-moment method. As a result, the primary
system will be under a set of loads — P and under unknowns — X; (i = /...r, where

number of redundant constraints in the system — r);

2) Deflections of points (sections) in the direction of discarded (redundant) con-
straints in the primary system should be zero, because in a statically indeterminate
system in these directions are constraints. Thus for the primary system, which is un-
der a given loads (applied) — P; and the unknowns of force method — X; can be rec-

orded analytically in the form of a system of equations
( Al(Xl, X2’ ., Xr, P) =0;
Ay (Xy Xy, Xr, P)=0; (4.1)

oooooooooooooooooooooooooooooooooo

L Ar(Xy, Xy, e, X1, P)=0.

The solution to this system of equations allows us to identify the primary un-
knowns of the area-moment method.

By applying together, the values of forces which have been found by use of equa-
tions of a system 4.1, with the applied loads to the primary system, the diagrams of
internal forces — M, Q, N will be able to be plotted by using of usual way (by way of
calculating statically non-redundant structures). These diagrams will be diagrams of
internal forces in a given statically redundant system.

The following principles for calculating redundant systems are considered below.
The calculation of redundant frames is represented in more detail and consistently
with the allocation of all stages of calculation.
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4.2. The Degree of Static Redundancy of the System

The degree of static redundancy of the system is the number of redundant con-
straints, the removal of which will turn the system into a statically determinate sys-
tem. The number of redundant constraints equals the degree of freedom of the system
with the reverse sign: r =—-W . Formulas for determining the degree of freedom of the
system are given and discussed in the section 2 "Kinematic analysis of structures" [1].

The degree of static redundancy of frames can be determined by formulas:

r=3L-h, (4.2)
where: r — the number of redundancy; L — the number of closed loops (contours)
which form the structures; h — the number of ordinary hinges:

r=—(3D-2H-C,), (4.3)
where: D — the number of disks in the system; Co — the number of kinematic re-
strictions (reactions at the supports) of the system.
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Figure 4.1 Figure 4.2 Figure 4.3
Let's calculate the number of redundant constraints for the frames presented
in the figure 2+4:
a) for the frame on the figure 4.1:

r=—3D-2H-C,)=—(3-3-2-4-7)=6;

b) For the frame on the figure 4.2:

r=3L-h=3.3-2=7,;
The frame contains completely closed loop redundant constraints can be found

according to the formula:
r=—(3D-2H-C,);

c) for the frame on the figure 4.3:

r=3L-h=3.3-7=2

r=—(3D-2H-C,)=—(3-1-2-1-3)=2.

4.3. Choosing the Primary System of the Area-Moment Method

The primary system (P.S.) of the force method is called a statically determinate,
geometrically stable system (perfect frame). A geometrically stable system from a
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given redundant system must be taken by discarding redundant constraints and re-
placing them with unknown forces (that can arise in these constraints).

Stability of geometrical shape is determined by kinematic analysis of the prima-
ry system more precisely, by geometric analysis of the structure of the system (see
«Kinematic Analysis of Structures»). Let's take a look at a few examples of selecting
the principal systems of force method.

Example 4.1 The frame presented in the figure 4.4 a, has two redundant
constraints:

r=3L-h=3.1-1=2,
or. r=—3D-2H-C,)=-(3-2-2-1-6)=2,

Some of primary systems shown in the figures 4.4b,e can be selected for it. The
system depicted in the figure 4.4f cannot be accepted, as it is instantaneously variable
system (at the top part of the frame) by the first sign of instant variability — three
discs are connected by three hinges lying on one straight line.
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Example 4.2 The frame presented in the figure 4.4 a, has three redundant con-
straints:

r=3L-h=3.3-6=3,
or: r=—3D-2H-C,)=—(3-4-2-4-7)=3,

and for it, variants of the primary system are presented in the figure 4.5 b —4.5f. The
schemes depicted on figure 4.5 g, cannot be accepted as primary system (by the first
sign of instant variability — hinges lying on one straight line). Primary system on fig-
ure 4.5 h, cannot be accepted either because the system is variable in the right part,
(which can rotate with respect to the hinge), and the left part is statically redundant,
which is a consequence of incorrect discarding of redundant constraints).
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Example 4.3. For the frame presented in the figure 4.6 a, the number of redundant
constraints can be found:

r=3L-h=3.1-0=3.



The possible variants of the primary system of the force method are shown in the
figure 4.6 b — 4.6 f. As can be seen from the examples, primary system can be ob-
tained by using the following approaches in discarding redundant constraints:
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d)

— discarding the supports. One constraint is removed when the hinged movable
support is discarded, two constraints when the hinged immovable support is thrown
away and three constraints when discarding the pinched support (embedding);

— Discarding separate support constraints (the number of unknowns equals the
number of discarded support constraints);

— Cutting bracings. One connection acting along the bracing is removed;

— Setting-in hinged point (one constraint (angular) is removed);

— Sawing hinge (two constraints are removed when removed one ordinary hinge);

— Sawing the rods (three constraints are removed). Analysis of presenting prima-
ry systems leads to the following conclusion:

@ For any statically redundant system, there are an infinite number of prima-

ry systems of the force method.
To calculate by use of the force method, one primary system must be selected,

which sometimes can be called the design primary system (D.P.S.)

Most rational primary system should be considered.

The rationality of the primary systems is determined by the following provisions:

1) In the design primary system, determining reactions at the supports and plotting
of diagrams of internal forces should be as simple as possible;

2) The bending moment diagram should also be as simple as possible;

3) Symmetrical design primary systems should be chosen for symmetrical frames.

For the frame on the figure 4.4 — P.S.; can be taken as the most appropriate
design scheme; for the frame on the figure 4.5 — P.S.;; and for the frame
on the figure 4.6 — P.S; or P.S..



4.4. System of Canonical Equations of the Force Method

The primary system of the force method adopted for calculation, as already stated
(section 4.1), should be equivalent to a given statically redundant system, and this
will be if these system is equally deformed and have the same deflections of all
points. And accordingly, deflections (in the given P.S.) in the direction of discarded
constraints should be zero (4.1), as in an actual statically redundant system.

Then is writing down the condition of equivalence of the primary system (loaded

with unknowns of force method — X;, X,, X5, ... X; and an external applied force),

a statically redundant system with n redundant constraints (4.1) in a deployed form,
using the principle of independence of force. As a result, deflection in the direction
of i-discarded constraint will have the appearance of:

Aj = Ajy + Ay +Ajg ot Ay + o Air+ A =0,

where: A; — deflection in the direction of the i discarded constraint caused by
the action of k unknown force (X ); A,, — deflection in the direction of i discarded

constraint from the action of a given loading.

For linear-deformable systems, deflection caused by any force can be expressed
in the form of a product of that force and the deflection in the same direction and the
same sort (e.g. concentrated force causes linear deflection, point moment — angular
deflection) from the action of the corresponding unit force:

A =0 - Xy -

Expressing each of the deflections from the action of unknown forces through
these forces and corresponding unit deflections, we get a system of canonical equa-
tions of the forces method in the form of:

. O Xy + 0, Xy +013 X3+ ..+ 0 r Xr+Ap =0;
Oy Xy + 0,0 Xo + 0,3 Xg+ ..+ O, r Xr+Ap =0;
) Oaq X+ Ogp Xy 4+ 835 Xy + o4+ 831 Xr+Agp =0; (4.4)

L Orq1 X{+0ry X, +0rg Xg+  +0rr Xr +Arp =0,

where: &; and Ajp — deflections, in the designations of which:

— First index identifies the points (sections) that displace in the directions of their
deflections (they coincide respectively with the points (sections) in which the forces
of X; are attached, and with the directions of these forces);

— Second index points to the causes of these deflections, i.e. to the unit force of
X, if the second index is k (unit action, unit moment). Or if the second index is P,

this means to the structure acts the actual loading.
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Equation coefficients (4.4) with the same indices (0;j;), will be termed hereafter

principal deflection (coefficient), whereas the deflection such as (0;) ) with different

indices — secondary deflection (coefficient), and aforementioned deflection due to
applied loads (A;,) — absolute term.

The principal deflections here will always be positive and can't be zero. Second-
ary deflections can take any value, including zero, and for them on the basis of the
Maxwell theorem of reciprocal deflections, equality will be always equal between
themselves:

Oik = Oi- (4.5)
Depending on the type of X; force, deflections ofoo; and Ajp on physical

sense can be:
— linear deflection, if X; — concentrated (point) force;

— angular deflection if X; — concentrated (point) moment;
— reciprocal linear deflection (convergence or divergence) of two points if X; —

two concentrated forces, applied at two points in a straight line, towards each other or
from each other;
— the reciprocal angular deflection of the two-sections if X; — two point mo-

ments attached in these sections turn towards each other or from each other.

D gt e 40 -
" xﬂxs X,
B B
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7 Figure 4.7 7

For example, for a frame depicted in a figure 4.7 a, when selecting the primary
system of the force method in the view presented on the figure 4.7 b, will take place a
system of three equations (4.4).

The physical meaning of this system's coefficients (on the example of several
coefficients) will be as follows:

011 — vertical deflection of B point in the primary system from the action of the

unit force Xq;

0,3 — mutual divergence of left and right sections in C point horizontally from
the action of force of unit value — X3;

Asp — mutual convergence of left and right sections in C hinge vertically from
the action of the assigned (external) loads.




The physical meaning of the equations as a whole will be:

1st equation — vertical deflection of B point from the action of X1, X2, X3 forces
and applied loads should be zero, because in a given statically redundant system
(Figure 4.7 a) at B point there is a vertical restriction;

The 2nd equation, which should be zero, is a reciprocal divergence of left and
right sections in C hinge horizontally from the action the forces of X1, X2, X3 and ap-
plied loads, as these sections in actual construction are connected to each other
by C hinge (Figure 4.7 a) and cannot diverge.

The physical meaning of the 3rd equation is similar to the meaning of the 2nd
with a difference in the direction of mutual divergence of sections (vertically).

4.5. Calculating Deflections and Absolute Terms of Equations

Deflections and absolute terms of equations (4.4) are physical deflections and can
be calculated by the Mohr's formula (3.2). In this case, for frames, as broken systems,
in the Mohr's formula usually neglect the influence of shear force and longitudinal
force, which for such systems are insignificant, omitting the corresponding compo-
nents. As a result of the expression to determine the deflections and absolute terms of
the systems of canonical equations of the force method will have in the form of:

Mde

5ii=$£ éJ : .k—ZI : AiP:Z::

where: Mj (M) — law of change bending moment (diagram) in the primary system

— > (456)

from action of X; = 1 (Xk = 1); M» — law of change bending moment in the primary
system from the action of applied loads; EJ — flexural rigidity of the rod (part); n —
number of integration sites; | — length of these sites.

Thus, in order to calculate the deflections and absolute terms of the canonical
equations of the force method must be plotted in the primary system unit diagram of
bending moment — M; (i = 1...r) from the action of unit unknown (X; = 1) and dia-
gram of bending moment — Mp from the action of the applied loads. After that, will
be gotten correspond opportunities to determine the sought quantities.

The principles of calculating of Morh's integrals (4.6) are set out in section 3.10.
(Part 1) [1]. After calculating the coefficients and absolute terms of the canonical
equations by formula (4.6) it is necessary to check the correctness of the calculations,
which can be used:

a)Universal check of the correct calculation of secondary deflections:

Where the right part of the %pression _represents the sum of all coefficients of the
system (4.4),and Ms =M1+ M2 +...+ M —total unit diagrams.

b) To determine which one equation (which row) has incorrectly deducted
coefficients, if a universal check is not performed, we can make line checks recorded
as a form of equation:

10




iljw:ga‘ik k=1...n) (4.8)

Where the right part represents the sum of all the coefficients in the i-system
equation (4.4).

Analysis of the performance or failure of separate line checks allows determining
(at least approximately) which of the coefficient —o;, perhaps have been miscalculat-

ed.
As it is easy to see, all (L) line checks replace the universal check, and vice versa.
c) A column check of the correctness of calculating absolute terms (deflections
due to applied loads) of the system of equations - is recorded as:

LT m ZL:AiP ; (4.9)

Where the right side of the expression (4.9) is the sum of all absolute terms of the
system of equations (4.4).

4.6. Plotting the Final Diagram and Verifying Them

The calculated deflection and absolute terms of the system of canonical equations
(4.4) is a heterogeneous system of linear algebraic equations and can be solved, for
example, by the method of substitution, the way Gauss and other known ways.

Note that after finding an unknown of the force method, it is necessary to check
the correctness of the solution of the equation of system by substituting the found
values of Xj (i = I ... n) into all equations of the system. If don't do this, may be turn
out that all further computations and analysis will be a waste of time,

After determining the unknowns of force method — X (i =1 ... n), plotting of the
final diagrams of internal forces in a designed statically determinate system can be
done in two ways:

1. Applied loads and all found unknowns can be attached to the primary system
and we can plot in this primary system the diagrams — M, Q and N, as in the usual
statically determinate system, which are the diagrams of internal forces in a given
statically redundant system.

2. Take into consideration that from the action of each of the unknowns — X; of a
unit magnitude and applied loads, the diagram of bending moment in the primary sys-
tem have already been plotted (before calculating the coefficients of the system’s
equations — see section 4.5), they (diagrams) can be used. In this case, the final
graphs of bending moment in a given redundant system can be constructed using the
principle of independence of force, according to the formula:

M:MI'X1+M2'X2+M3'X3+...+mn'xn+Mp. (410)

Since they are used the results of diagrams and calculations of unknowns already
performed earlier, this approach turns out simpler and faster leading to the goal, and
therefore only this approach will be used.

11
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The correctness of calculations and construction of a graph of bending moment
Is checked with deformation (kinematic) check, which can be introduced in two variants:
1) Complete deformation check - recorded as:

| —
v (MsMdx _ .
lel—EJ 0: (4.11)

And in a physical sense of it a total deflection in the directions of all unknowns
of force method — Xj (i = 1 ... n) from the action of these unknowns and applied
loads, should be zero, because in a given statically determinate system in the direc-
tion of these unknowns (X;) there are constraints (this physical meaning of equation
coinciding with the physical meaning of all put together canonical equations of force
method — see Section 4.4);

2) Line-up deformation (kinematic) checks have a form of:

v Md
ZI %<0, j=1..n (4.12)

The physical meaning of each of these checks is equality to zero deflections

to the all directions of each of the unknowns — X (i = 1 ... n) from actions of these
unknowns and applied loads. Deflections must be zero, as in an assigned statically
redundant system in these directions there are constraints (and this corresponds
to the physical meaning of the respective canonical equations of the force method —
see. Section 4.4).

Altogether, line-up deformation checks (4.12) correspond to a complete defor-
mation check (4.11), and if a full (deformation) check is carried out, it makes no
sense to perform line-up check. This (line-up check) should be done if a full defor-
mation check isn’t performed (in order to determine in which direction we have to
look for errors).

The diagram of the shear force of Q can be plotted on the diagram of M using

the known differential dependence — Q = 3—M which for linear parts of the diagram
X

of M can be presented as:

(inl\/lrightI Ivlleft‘ ’ (413)
where: Miet, Mright — the magnitude of bending moment on the ends of the site (left and
right); if the stretched fibers at these bending moments are on different sides of the rod,
one of them is taken positive, and the other negative.

The sign before the absolute value in the formula (4.13) is accepted according
to the rule (see figure 4.8):

If we have to combine the rod on which the diagram of M is plotted, with the tan-
gent to this graph the rod must be rotated clockwise at the angle of the turn less than
90°, the sign " +" is accepted; if counterclockwise, the sign "' _" is accepted.

12
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For curvilinear (parabolic) part of the diagram of M differential dependence —

Q= Z—M can be represented in the following form:
X

(4.14)

where the second term is Qiin (shear force) from the linear part of the M diagram, and
the first summand — Qo takes into account the curvilinear part of M diagram and rep-
resents itself the diagram (law of change) of the shear forces in the site (area) of
frame considered as simple beam, from the action of a uniformly distributed load (see
Figure 4.8).

For example, for the M on figure 4.9, represented by three areas with different
laws of its change, the shear force in these areas (left to right) will be equal:

left, right _+q|1 ‘4_(_12) :+3'4 left

1 —-4=46-4; =42 1right =-10;

2 4

11-4 -7-11

= —2; =+ =+6.
Q=55 S
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The Diagram of Longitudinal Force N are constructed on the diagram Q by the
way of cutting out the nodes, i.e., cutting out the nodes of the frame, applying already
known shear forces and unknown (as well as well-known) longitudinal forces
(if applied concentrated forces are attached to the node, they are also must be taken
into account) in area. The equilibrium equations are then drawn up: XX =0; Y =0,
from which unknown longitudinal forces are determined.

After plotting the diagrams of internal forces, cutting out the supporting nodes
and considering their balance, reactions can be found in the supports of the frame.
Then we need to perform a static check of the balance of the frame as a whole using,
for example, equations:

ZXreact.at the supports + ZXactual load — O;
XY react.at the supports + ZYactuaI load = O; (4-15)

ZMT react.at the supports +2MTactuaI load = 0.

4.7. Procedure for Calculation of Frames by Force Method

Thus, on the basis of calculation above, the following order of calculating the
frames by force method is proposed:

1. Determine the degree of static redundancy of the frame (i.e. the number of re-
dundant connections in the frame — n), using, for example, formulas (4.2, 4.3).

2. Choose the design principal system of force method by presenting several pos-
sible variants of the primary system in advance.

3. Write down in general form the system of canonical equations of the force
method (4.4) and find out the physical meaning of these equations and their constitu-
ents (values included in them).

4. Plot unit bending moment diagrams — M,,M,,...,M| and diagram of Mr due to
the actual loading in the D.P.S. of the force method.
5. Calculate all coefficients — & and terms — A;, of the system of canonical

equations of the force method (4.6).

6. Check the correct calculation of coefficients (4.7 or 4.8) and terms of the equa-
tions of system (4.9).

7. Solve the system of canonical equations and find unknown — Xz, X», ... Xn; Per-
form the check of correctness of the system's equations by substituting the unknowns
found in all equations.

8. Plot the final diagram of bending moment — M in a given redundant frame
(4.10).

9. Perform a deformation check of the M diagram (see. 4.12 or 4.11).

10. According to M graph plot the final diagram of the shear force — Q (using de-
pendencies 4.13 or 4.14).

11. By cutting out the nodes on the diagram of Q, taking into account the actual
loads in the nodes, the diagram of longitudinal force — N can be plotted.

12. By cutting out the supporting joints, determine the reactions at the supports,
and perform a static check of the balance of the frame as a whole (4.15).

14



4.8. Examples of Calculation

Here is an example of the calculation of the frame by the force method with one
redundant constraint. Principles and approaches in frame calculations with more than
one redundant constraints are no different from those which are presented in this ex-
ample — the numbers will only be related to the difference, such as the number
of equations in the system of equations, the number of design coefficients, the terms
of the system’s equations, the number of unit bending moment diagrams that will
need to be built (by the parameters mentioned above calculations are performed).

Let's calculate the frame presented in the figure 4.10 a.

1. This frame has one redundant constraint:

r=3L-h=3.3-8=1,
or r=—3D-2H-C,)=—(3-1-2-0-4)=1.

2. The accepted design diagram (scheme) of primary system of force method
Is shown in the figure 4.10 b. The choice of primary system here can also be made
by discarding any other support restrictions, or by cutting the hinge in any section
of the frame, except for the section lying at the intersection of the CD rod and the
imaginary line of AB, (e.g. this case the design diagram is an instantaneously variable
system, which is formed by three discs connected by three hinges lying on one
straight line the first sign of instantaneously variable system — see Part 1, p.13 [1]).

3. There will also be one canonical equation here representing in a physical sense
the horizontal deflection of point B (in the primary system) from the action of X, force
and actual applied load, which should be zero, as in the original system (Figure 4.10 a)
at B point this is a horizontal constraint (here is a hinged immovable support):

o1 Xy +Ap =0, (4.16)
4. In the primary system of the force method, as in an ordinary statically determi-
nate system we need to plot a unit diagram of bending moment M, (Figure 4.10 c)

from the action of the X; force of a unit magnitude (X1 =1) and a diagram Mp due

to the actual loading (Figure 4.10 d).
5. Calculate the coefficient of 6;, and the term of A,p. Let's show here the calcu-

lation of these values in different ways:

Q) _, ) and=i2 m
P=10 kN P=10 kN|C T
sina=0,8; 2m
EJ|l cosa=0,6.

T B 411
1m

A < :>

&0 A b

/!’ 1,5m 3m L L5m ’g&)
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a) according to the Vereshchagin's rule:

M7dx 1 (0,25-15) 2 1 (2,75+0,25)
11—ZJ. ( > j-50,25+E{—(0,Z5-3)-1,25+ 5 -3x

x(33—0,25J L (2,25.3)-2,5+(2’75_2’25)'3-(30,5+2,25j +
3 3EJ 2 3

L1 (2,25-2’5)32,25_ (0,031+ 6,938 + 6,271+ 2,109) =
2EJ 2 3 EJ

I'I\W1 M,dx 1 19,5-1,5)2
0

15,35 35

495-195) 5

n 1 (

= —-0,25+—]—-(19,5-3)-1,25 —
2 Bl 2 J3 +EJ{ (195-3)

x@s—o,zs)}i —(345-3)-25- (49’5;34’5)-3(2,2%%0,5}

3B
2123 5]5]- L (134,5-2,5)32,25:—309’906;
2EJ 2 3 EJ

b) according to the Simpson’s formula:

Zj My dx 61[’; (02 +4-0125% +0,25%)+ 6[‘; (0,252 +4-1,25% + 2,75% )+

3
+
6- 3EJ

M. Mp dx 15
ZI - 6EJ

2,5 (2,252+4.1,1252 02) 1535,
EJ EJ

(2,752+4-2,52+2,252)+

°

2 _
(0 +4-.0125-9,75+0,25 19,5)+ 6EJ

0,25-19,5 -

~4.1,25-345— 2,75.49,5)—%(— 2,75-495—-4.2,5.555-2,25-34,5)+

2,5 309,906

(2 25-34,5+4-1,125-17,25+0- O)
6-2EJ EJ

@ Note that with such calculations of Mohr’s integrals it is possible to perform
calculations in different ways at different areas (according to the Vereshchagin’s rule,
according to the trapezoid formula, according to the Simpson’s formula), combining
them in terms of the convenience of computations.

7. Solve the canonical equation of the force method (4.16):

15,35 X 309,906

1= =0; X, =20,19 kN.
EJ EJ
8. Plot the final diagram of bending moment according to the formula (4.10):
M = Ml . Xl + Mp ,
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multiplying all the characteristic ordinates of the M, diagram by 20.19 kN, and
adding up the results with the corresponding ordinates of the Mp diagram. The final
diagram M is presented in the figure 4.10 e.

9. Deformation (kinematic) check of the final diagram of A:

n vy .
ZI M, M dx o, 2 (24’55 1’5)-30,25+i(o,25-24,55—4-1,25-9,285+
Ty B EJ 2 3 6EJ
+2,75-6,02)+ 3 (2,75-6,02—4-2,5-5,02+2,25-10,93)+ L (10’93'2'5j32,25=
6-3EJ 2EJ 2 )3

_ EiJ(3,069 ~ 11,866 1,509 +10,247) = Eij(lg,,gl(; 13.375)0059 ~0;

13,316 13,375
13,375
10. Build the diagram of shear force in a given statically redundant system using
formulas (4.13), (4.14).
a) at the parts of AD and DC according to the formula (4.13) we will receive:

Discrepancy

‘-100%=O,443% < 1% is insignificant.

Quo =+‘M‘ 116,366 KN;  Qpe =— 24’55_(_6’02)‘ — 10,19 kN;
b) The formula should be used on the CT part (4.14):
Q.. _,12:3 [10,93-6,02| _+18-1637 KN:
2 3 |
o =+18-1,637 =16,363 kN; oo =—18-1,637 =—19,637 kN;
c) On the TB part, get shear force according to the formula (4.13):
Qs =+‘10’93_0‘ =+4,37 kN.

The diagram of the shear forces is depicted in the figure 4.10 e.
11. The diagram of longitudinal forces of N is plotted by the method of cutting out

of nodes on the Q diagram: \y
a) Node D b) Node C P=10 ! New
Ly Y X =0; —Ic "l —
' =0; ’ 10,19 1
NDCT 10,19 EX O’10 19 L0F1019=Ne, =0; - 1030

16,366 <*=—— AD T T N, =—20,19; 116,366
| x  2Y=0;

B ————— ZY :O,

NAD D NDC :_16,366,

16,366 —16,363 ~ 0.
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c) Node T S ' J
2X=0; 2019-437-08+Ny-06=0 N,=-27.823 79y 7TNa,

ZYzO; -19,637-4,37-0,6+27,823-0,8=0; —22,259+ 22,259 =0. 4’37,/\‘

N
Diagram of longitudinal forces in a given statically redundant system are deprgted
in figure 4.10 g. d) Node B
12. Cutting out the supporting nodes, ) Node B 27 82\

can be gotten reactions at the supports: 4,377 4
>.X=0; H,=10,19;

Y =0; R,=16,366.

e) Node A

' A x 2 X=0; 27,82-0,6+4,37-0,8—-H,=0; H,=20,19;
W “10,19 XY =0; —27,82.0,8+4,37-0,64+R, =0; R, =19,63.
Applying the external loads and reactions at the sup-

ports to the system (Figure 4.10 h), we can perform a static check of the balance of
the frame:

2 X=0; 10,19+10-20,19=0; 20,19-20,19=0;
2Y =0, 16,366-12-3+19,63=0; 35,999 - 36 ~ 0; > M. =0;
12-3-1,5-10,19-3+16,366-1,5-19,63-4,5+20,19-2=0; 118,929-118,905~0;
118,929-118,905

Discrepancy 116,905

‘ -100% = 0,02% is insignificant.

Example 2 Consider the more complex frame shown in the figure 4.12 a.
1. Frame has two redundant connections:

r=3C-H=3.2-4=2,
or r=—3D-2H-C,)=—(3-3-2-3-5)=2,

2. The accepted design primary system of force method is shown in the figure
4.12 b. P.S. possible variants here may also be frames presented in figure 4.11.

ot
a
‘xz

—e
Figure 4.11
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E—

Figure 4.11 (continued)

3. The system of canonical equations of the force method here will have a view:
O X, +0,X,+A, =0;
{621)(1 +3,,X,+A,, =0.
The physical meaning of equations:

1st equation — is the angle of section rotation (angular displacement) in the rod
above of A support (Figure 4.12b) from the forces X;, X,, and the given external

load, which should be zero, as it is a cross-section in a given redundant frame rigidly
attached to the base (the support at A point is a pinched);

2nd equation — represents a mutual divergence of D and K points from the unit
forces Xy, X,, and the external (applied) load, which should be zero, as these points

are connected by a rod (by bracing), which is considered non-stretch (in the calcula-
tion neglect longitudinal deformations of bracing).

The physical meaning of coefficients and terms:

01, — angle of rotation (angular displacement) in the primary system of the cross-

section of force method over the A support from the action of the X, unit force;

05, — mutual divergence of D and K points in the primary system from the action
of X, unit force;

A,p — reciprocal divergence of D and K points in the primary system from exter-

nal loads.
4. Plot in the primary system the unit bending moment diagrams M; and M,

from the action of unit unknowns X; and X,. Plot of M, diagram from the action of

the applied external loads.

Note that the frame in the primary system is a three-hinged frame with supports in
one level and the definition of reactions at the supports in it from any of the loads can
be made, for example, from equations:

XM, =0;  EIM,=0; XYM =0, XM=,

and we can use equations to check them: XX =0, 2Y=0.
The M,, M, and M, diagrams are showed in figure 4.12 c+4.12e.
5. Calculating the coefficients of canonical equations:
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a) Unit coefficients:

N | "7 2 .
S, :ZJ'Ml dx _3 (12 +4.0,875° +O,752)+i(mj-20,75+
™) E]  6EJ EIl 2 )3
LA (01375'3).30,375+ 6 (0,375 +4-0,125% +0,125%) +
EJ 2 3 6-2EJ
+L(0’125'1).30,125:3’505;
EJ 2 3 EJ
I TTT3% 172 A S ¢ ﬁ%];qi6ﬂzzi}jz
C EJ 7 F
2EJ 3 cos =192 ¢
Ey |P=10kN Rq o= /'\éb‘P‘
T - Do—Ko<— —F ~ P=10 kN
sina =0,6; RS
'EJ cosa =0,8. 27 3m
A EJ B
777777 ‘ St——os B
4m 3m 1m | S
d)
0,375 ’ 3

— 2,25
0,25 0,75
0,125 1,5 =X =1 1,5
™0
e

Figure 4.12
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9) 3,567 3,567 ) 6,913
CHLIEIIF 6,913 HISRIIE
80,931 T F

+,—\7 56 e 18,535 <

~7.844 .0, 931 D K
D2 156 {K 0913 T

3,567 = o Tost’]
A 2,156/

13,567

11,64 <

X

=S

[T

>
\
:g

U:j:lllll [T

w
(.ﬂ
\]

77844 2156 B 20,433

Figure 4.12 (continued)

1.0-4.0,875-0,75-0,75 -1,5)+

6EJ(

n 'mw
512=521=ZJ.
1o

3

+i(—o,75-1,5—4.o,375.2,25—0.3)+
6EJ

3
6-2EJ

2
dX 1(15-3) 2 5 2 2 2 1(3-3) 2
ZI ( . j 515+ 6E\](15 +4.2,252 43 )+EJ( j 3+

1 (1,5-3) 2 39,75 75

= (0,375-0+4-0,25-0,75+0,125-1,5)+

5,344

+ (o,125-1,5+4-0-0,75+o,125.o):_’E_J;

+— —15-2=
2EJ\ 2 3 EJ

b) Absolute terms:

A ZIM M, dx

+%(—o,75.19,5+4.0,375-2,25+o-o)+

3 (1-0-4-0,875-9,75-0,75-19,5)+
~ BEJ

1 (0,375.3 2q2e,
Bl 2 )3

3
6-2EJ

- 0,125-12,75+4-0-7,5+0,125-2,25)+%(

+ (0,375-6,75-4-0,25-3-0,125-12,75) +

3
6-2EJ

+ £225=_22"1%
2

0125-1) 2 31,972
3" EJ

=ifl , M, dx 1 (1,5-3) 2

.—19,5+i(19,5-1,5—4-2,25.2,25 +3-0)+
EBIL 2 )3 6EJ

3 (0-6,75-4.0,75.3-15.12,75) - — > (1,5.12,75+4.0,75.7,5+0-2,25) =
6-2EJ 6-2EJ

19,313
EJ

+
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0,375 6. Checks correctly calculate unit coeffi-
1,875 3 cients and absolute terms:
— 1 a) universal verification:
0,75 N Imzdx 2 2
Ho% ) I
0,125 @ 0.75 1 0 EJ i=1 k=1
1 | where: Mg =M; +M, — a total unit
0,12543;"’9& bending moment diagram, having
Figure 4.13 the view shown in the figure 4.13;
n | 2
> [ME_ 3 (24 4.01252 +075%)+ > (0,757 + 41875 + )+
1Y EJ 6EJ 6EJ
+i(ﬁj 234 1 (0’375'3)-20,375+i(0,3752+4-12+1,6252)+
EJ\L 2 )3 EJ 2 3 6-2EJ
b3 (16257 +4.0,752 +01252 )+ i(o,125-1j 20,125 = 32°%.
6-2EJ EJ 3 EJ
2, 2 3,505 5,344 39,75 32,567
S, +0,+0, +0,, = - 2=
E é ik 11 12 21 22 EJ EJ EJ EJ

Check is done;
b) Column check:

N M M,dx 2 2 31972 19313 12,659
TSP _SA L Aip =Ap +Agp =—— =
;_{[ ; i E ip = A1p T Azp EJ + = =
N 'm
zj = J(1-0—4-0,125-9,75+o,75.19,5)+
1%
i(o 75.195—4.1875.2,25+3-0)+ — (0’375'3]26,75+
6EJ EJL 2 3
3 (0,375-6,75—4-1-3-1,625-12,75) +
6-2EJ
+i(—1,625-12,75—4-0,75-7,5+o,125-2,25)+ 1 (0’125'1)-32,25= 12,66,
6-2EJ EJL 2 3 B

Check is done.
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7. We solve the system of canonical equations:

3,505 5,344 31 982
X 1 X 2
EJ EJ EJ

5344 39,75 19,313
— X +— X, +——
EJ EJ EJ
Find: X, =10,54 kNm; X, =0,931 kN.
We check the solution by substituting these values into equations:
{3,505-10,54 —5,344-0,931-31972=0; 36,943—-36,947 ~0;  piscrepancies are

=0;

=0.

~5,344.10,54 +39,75-0,931+19,313=0; 56,325-56,321~0. insignificant

8. Plot the final diagram of bending moment in a given statically redundant sys-
tem according to the formula:

M=M; -X;+Ms-X,+Mp.
For the convenience of calculations, can be plotted intermediate diagrams sepa-
rately M, - X, and M, - X, (see figure 4.14):
b) 2,8
2,8
2,1

Figure 4.14

Adding together the ordinates of diagrams M, - X,, M, - X, (figure 4.14) and
M p (figure 4.12 e), can be gotten the final diagram of bending moment in a given

statically redundant system in the form depicted in the figure 4.12 f.
9. Deformation (kinematic) check of the diagram M:

ZJMM o %(1-10,54—4-1,225-0,125+12,99-0,75)+
+i(12,99-0,75—4-4,10-1,875+2,793-3)+ L (2’793'3j.23+
6EJ EJ 2 3

+i(wj-go,375+ 3 (10,7.0,375+4-1.0,333 ~10,036 -1.625) +
gl 2 )3 6-2EJ
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43 (£10036-1,625-4-68-0,75-357- 0,125)+i(3’5_7'1j.§0,125 _
6-2EJ Bl 2 )3
_ E_1J(9,835 10,524 +8,379 + 4,013 — 2,741 — 9,066 + 0,149) =
= E—l‘](22,376 _22,331)=29%

Discrepancy 0,045 -100% = 0,2% < 3% is insignificant.
22,331

10. Diagram of shear force Q can be plotted on the diagram of bending moment
by using formulas (4.13), (4.14).

At the same time, on the TC sloping section of the frame, the applied distributed
load should be decomposed into components lengthways and perpendicularly to the
rod. For this we must find a resulting force of applied distributed load Rq. At first we
have to find R, =q-1=6-4=24KN, which will then be divided into two components
(see figure 4.12 b). If now the component, acting normally to the rod, divide by the
length of the sloping rod (5m), can be gotten the intensity of uniformly distributed
load q, (g, =19,2/5=384kN/m) to the TC section, which acts perpendicularly
to this section of the frame. After that may be able to calculate the ordinates
of the Q, diagram, included in the formula (4.13) — see Figure 4.15.

The values of the ordinates of Q graph at the edges of the TC section will then be
equal:

M_. —-M : _
0. —q ¢+ M ~Mu|_ 384-5 |2793 129 _ 964200 KN
| 2 5 |
right

" = 19,6+2,04 =11,64 kN; o =-9,6+2,04 =-7,56 kN.

At the parts of linear change of the M
diagram we get:

0 - 10,54—(—12,99)‘27’844 N

=+0,931 kN;

0-2,793
SR

10,7-0
QCF ==

‘:—3,567 KN;

QFK =+ =6,913 kN,

10,036—(—10,7)‘

Figure 4.15

25



0-3,57
QKS -

‘3,57 —10,036‘

= 2,156 kN; Qe =—‘ ‘=—3,567 KN;

The diagram of the shear force in a given redundant frame is represented on the
figure 4.129.

11. Diagram of longitudinal force can be plotted a way of cutting out of nodes:
a) Node T

Y411,64 Nt > X =0; 7,844 +11,64-0,6+ N'.0,8=0;
X N = 18,535kN;
o
T[/‘B““’ SY =0; -N,,—1164-0,8—(~18,535).0,6=0;
S 7,844 ) N
N N,, = 20,433 kN;
b) Node C
M 3567 =0; ~ N9 .0,6-7,56-0,8+3,567 =0;

7,56 }/[’—'T NCF N/ — _4,135kN:;

> X =0; —(~4,135)-0,8+7,56-0,6 - 0,931+ N¢. =0;

rlght O 931
N =-6,913kN;
¢) Node F
3,567 1Y
! | x 2 X=0; 6,913 -6,913 =0;
—>1 F_x

h’ —
) N, =3567 kN.

Similarly are cut out of K and S nodes. The final diagram of longitudinal force in
a given redundant frame is presented in figure 4.12h.

12. Cutting out the support nodes now and taking into account all kinds of forces
in the support sections (M, Q, N), we can easily find the reactions at the A and B sup-
ports in nodes:

d) Node 4 YA e) Node B AY
YX =0; H,=7844kN; 2433 > if He x
0 B —on 432KN- Ball 1\10,54 2,156 o
ZYZO, RA:20,433kN, 7844”17A, ¥ 1 B
XM, =0; Mg, =10,54 kNm, M\$/_H.A"’ YX =0; H, =2156kN;
“ 1R, YY =0; R,=3567kN.

13. After that, a static check of the balance of the frame has to be done:
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=6\
iy 4=0 V. X —0;

C
3| 7,844+2,156-10=0;10-10=0;
o k| pa0®™ | Zv=o
' T ©20,433+3,567-6-4=0; 24— 24=0;
3m >M,. =0;
— 7,844 sL__2198 | 1054+20,433-4-7,844-6-
BT —~(6-4)-2+10-3-2,156-6 -
L 4m ‘ 3w Lam 20T _3567.4=0; 122,27-122,27=0,

4.9. Simplification in Calculations by the Force Method of Symmetrical
Frames

4.9.1. General Concepts and Definitions

Symmetrical are frames that have symmetry w.rt. a certain axis
in the configuration of the rods, in the location and action of the support connections
and in the rigidities of the rods.

Symmetrical frames will be distinguished between three kinds of diagrams of forces:

—Arbitrary diagrams;

—Symmetrical diagrams;

—Asymmetric diagrams.

We will call them symmetrical diagrams, where the axes of symmetry of the
frame have symmetry on the ordinates of internal forces and deflections (for the
diagram M on stretched fibers).

It should be noted that the symmetrical diagram of the shear force Q will have
opposite signs in symmetrical sections (the physical action of the shear forces will
be symmetrical, which is easy to check).

Asymmetric are called diagrams, where the axes of symmetry of the frame have
symmetry in the magnitude of the ordinates of internal forces, but opposite in deflections.

If diagrams on one side of the axis of symmetry change deflections to opposite
ones, these diagrams will become symmetrical.

Note that the asymmetric diagram of Q in symmetrical sections will have
the same signs.

Applied load, forces (including unknowns of method of force) and impacts (influ-
ences), from which the symmetrical graphs of forces are obtained, will be called
symmetrical loads, forces and influences.

Accordingly, the applied load, forces and influences, from which the asymmetric
diagrams of forces are obtained, will be called asymmetric (obliqgue symmetrical)
loads, forces and influences.

In the calculations of symmetrical frames by force method when selecting
a certain type of primary systems - symmetrical primary systems, depending
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on the type of actual loading, a number of significant simplifications of calculations
are possible. They are presented below.

4.9.2. Dividing the System of Equation into Two Independent Groups

Consider the symmetrical frame depicted in the figure 4.16, having four redun-
dant connections:

r=3L-h=3.2-2=4,
or n=—(3D-2h-C,)=—(3-2-2-2-6)=4.

If we choose for frame the primary systems of force method shown in the figure
4.16, the system of canonical equations of the force method will have a form:

014X + 015Xy +013K3 + 01, X + A =0

091 K1 F 00Ky + 055X+ 0,, X, + Ay = 0;
531X1 + 532X2 + 533X3 + 534X4 + A, = 0;
Og Ky +049XK5 +0,43X5+ 04X, + A, =0.

(4.17)

If we choose the primary system in the form presented in the figure 4.16 c, the
system of equations (21) can be significantly simplified. In this case (in these primary
systems) unit bending moment diagrams will be plotted (see Figure 4.16 d and figure
4.16 g) and calculated one of coefficient of equations in the system (21):

h+2h 1 h h+ 2h

Ea‘ ) 2 :0.

M, M4 dx
O14 =041 = ZI EJ( -h)-
The zero result (multiplication of diagrams was done by Vereshchagin's rule) is
due to the fact that the M, diagram is symmetric, and diagram M, is asymmetric
And this result will always take place in such cases, i.e.
@Deflections received by multiplying" according to Mohr's formula of

symmetrical diagrams will always be zero.
In our case, respectively, zero will be the following unit coefficients:

013 =031 =0, 093 =03 =0; 024 =042 =0.

Since the products of all these zero unit coefficients on the unknowns in the sys-
tem of equations (4.17) will also give zero, the whole number of components in these
equations will fall out, and as a result the system of equations (4.17) will essentially
be reduced into two independent groups:

{511X1+§12X2 + A1p =0; {533)(3 + 034X 4 +Agp =0;

(4.18)
021X1+ 022X +Agp =0, 543)(3 + 044X 4 + Ayp =0.
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4.9.3. Simplifications of Symmetrical Frames with Symmetric (Asymmetric)
Applied Loads

If the symmetrical redundant frame is loaded with a symmetric applied load, such
as the frame on the figure 4.16 a, when choosing a symmetrical primary system (see,
for example, Figure 4.16 c) the diagram from applied external loads Mg in the
primary system will also be symmetrical (4.16 c).

This means (see the conclusions of the previous section) that absolute terms As;p

and A4p will be zero, as received "by multiplying" of the symmetric diagram of Mg on

the unit asymmetric ones M3 and M. As a result, the second group (system) of equa-
tions in (4.18) becomes a homogeneous algebraic system of equations, and the
solution to it will be zero values of unknowns (X3 = 0; X4 = 0). As a result, only sym-
metrical unknowns (in this case of X; and Xz) remain unknowns in the calculation.

Similar arguments can be held for the case of the loading of the symmetric frame
with asymmetric applied load, and then the symmetric unknowns will turn to zero,
and will remain only asymmetric unknowns.
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Conclusion: When opting for a symmetrical redundant frame, the symmet-
rical primary system of the force method with symmetric and asymmetric
unknowns and in the case of symmetric loading, all the asymmetric unknowns
will be zero. In the case of an asymmetric loading, all symmetrical unknowns
will be zero.

4.9.4. Grouping of unknowns

In some cases, when calculating symmetrical frames (e.g. frames with multiple
spans) (see, for example, the frame depicted in figure 4.17 a), it is often difficult
or even impossible to select a symmetrical P.S. in which the unknowns would imme-
diately satisfy the symmetry conditions. Herewith primary system would be either

/mmetric or asymmetric. This can only be done when all redundant restrictions
wonnections) are discarded at points (sections) lying on the axis of symmetry
of frame. In other cases, when choosing a symmetrical configuration of primary sys-
tem, the unknowns of force method do not immediately satisfy the conditions of
symmetry, these unknowns can be converted to symmetric and asymmetric. The basis
for this transformation is that the received unknowns will act in symmetrical points
(sections) and in symmetrical directions. This allows us separating such unknowns in
a special way and the subsequent grouping of their parts to lead these unknowns to
the satisfaction of the symmetry conditions. For example, for a frame on figure 4.17
a, (symmetrical w.r.t. vertical axis) having four redundant connections
(r=3L-h=3-3-5=4), the primary system of force method can be chosen
in the form depicted in the figure 4.17 b, where the frame itself is symmetrical
and unknowns — X{, X5 and X3, X} are neither symmetric nor asymmetric. At the

same time, these unknowns act in points (sec-

a) ~ tions) and directions, symmetrical w.r.t. the
£k Const axis of symmetry of the frame. Let's make a
/| replace of such unknowns in accordance with
dependencies which, mathematically, give a
#% #» — clear match of values (unambiguous corre-
‘\{Q( spondence) between the values

of the left and the right of their parts of these

X dependencies, because the system of two
equations has two unknowns.
/vf.r
£ :;;‘_4 {X]’_:X1+X4; {Xé:X2+X3;
1\/&’2{-\ Xl"r:Xl_X4; Xé:XZ_X3’
A (4.19)
X3 To grouping the eponymous unknowns on

both sides of the axis of symmetry,

X, |x, Wwe can get the primary system of force meth-

— od, in which the unknowns will now
Figure 4.17 be either symmetric or asymmetric.
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In this case, the unknowns X; and X, are symmetrical, and the unknowns Xs and
X4 are asymmetric. After such a transformation, called a grouping of unknowns, all
of the above simplifications can be applied.

4.9.5. Decomposition of Applied Load on Symmetric and Asymmetric

Any applied load acting on a symmetrical system can be presented as a sum
of symmetric and asymmetric loads. And it is done as follows:
1) a given applied load (see, for example, figure 4.18 a) are represented in the form
of two identical halves (Figure 4.18 b);
2) At symmetrical points w.r.t. the axis of frame symmetry in relation to those
in which the given applied load acts, we apply the same halves of loads (Figure 4.18
b), but only in different directions (Figure 4.18 c); the loads added in this way
mutually annihilate
each other and thus they do not change the specified load;

3) After grouping these halves on one side and the other against the axis
of symmetry of frame, we get the sum of symmetric loads (Figure 4.18 d) and asym-
metric (Figure 4.18 e) loads.

Now for the considered frame (Figure 4.18 a), containing four redundant
constraints if we choose a primary system of force method, (for example, in the form
shown in the figure 4.18 f), then, in accordance with the stipulations above (simplifi-
cations of the calculation of symmetric frames) and the principle of independence
of force, the calculation for the considered frame will be divided essentially in two
calculations. Separately, the symmetric load can be calculated in which we will have
a system of two types of equations.

511X1 + 6‘12X2 + Aslle =0;
0y X, +0,X,+ A7 =0,

In which the bending moment diagram in a statically redundant system can
be plotted by a formula:

M =M X, +M,X, +M"
And the diagram of bending moment from asymmetric load can be plotted
according to the formula:
M antisym — MSXS + M4X4 + M ;ntisym.
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The diagram of bending moment corresponding to the original applied load,
which is arbitrary in terms of symmetry, can eventually be obtained by the formula:

M — M sim +Mantisim.

Analysis of the calculated procedure in comparison with the option without decom-
posing applied load shows that the simplification in the considered version associates with
a reduction (approximately twice) in the volume of calculations of absolute terms of sys-
tem of canonical equations of the force method. Considering that calculation of deflection
due to applied load under the Morh’s formula is usually the most laborious in comparison
with the calculation of unit deflections (as far as plotting of Mr diagram from applied
loads in most cases are much more difficult than unit diagram M), the decomposition of
applied load on symmetric and asymmetric often makes sense.

4.9.6. An Example of a Symmetrical Frame

Consider the frame presented in the figure 4.19 a. Despite the fact that at A point
there is a hinged fixed supports, in the symmetrical frame w.r.t. the axis of symmetry
of the B point is a hinged movable support. This frame in terms of considered classi-
cal form of force method can be named as symmetrical, so we do not take into ac-
count longitudinal deformations of rods. If we only have to take into consideration
bending deformations, the frame will be symmetrical (point B, like point A, cannot
move horizontally either). Meanwhile applied load on the frame is asymmetric.

1. The degree of static redundancy of the frame is equal to:

r=3L-h=3-5-10=5,
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I.e. the frame has five redundant connections.
2. The primary system of force method can be selected in the form shown in the
figure 4.19 b, where unknowns X5, X35 and X, are fully satisfying the symmetry

conditions, being either symmetric (X3, X,), or asymmetric (X5), and the un-
knowns X; and Xg do not satisfice the conditions of symmetry, but they act in
symmetrical points and directions. Therefore, we can group by replacing them:

X{ =X+ Xs;
{Xé =X, - X:.

To the given primary system, this replacement is taking into account, which
is shown in the figure 4.19 c. Now the grouped unknown of X; will be symmetrical
and the unknown of X will be asymmetric. Given that the applied load is asymmet-
ric, the symmetrical unknowns should be zero, i.e. X; =0; X5 =0; X, =0.

Given this simplification, for this frame only two unknowns X, and Xy will
remain in the primary system of force method (see figure 4.19 d).

a) N b) : ' :
T 978 T X g X
3EJ |[F C C 3ETJ ] AN\
K g D [2m T T . X'T
—| bLEJ —_— 1 Xa' X S
P=7kN P=T7TFkN
3Im
| EJ EJ.
A 5 B

c) Xsa X 2o X3 d) C D
/YN
1X1 th X le tX5 XZTlX2 Xsl
1X5 XS‘ X1=0;
X,=0.
) 3 m/?{ L 4 /4\m
3 U/‘/N f\ku\m . 1
X,=1 Xs=1 Xs=
> i @/ﬂl |4
3 \3 4
Figure 4.19
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Figure 4.19 (continued)

3. And the system of canonical equations of the force method, based on the sim-
plifications above, will have the appearance:

{522)(2 + 525X5 +A,, = 0;

(4.20)
05, X, + 0 X + A, =0.

The physical meaning of equations:
1st equation is a mutual divergence in the primary system left and right sections from
the cut at C point (see Figure 4.19 d) vertically (from the unit forces X,, X5, and applied

loads). Meanwhile the divergence should be zero, because in the original frame these sec-
tions are rigidly connected to each other and then will not be able to diverge;

The 2nd equation is a reciprocal divergence in primary system vertically in the
KD line (K and D points, see Figure 4.19 a, d) from the action of unit forces X,,

X5, and applied loads. Meanwhile the divergence should be zero, because at K and D
points there are hinged fixed supports, fixing these points from vertical movements.
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4. In the design primary system (Figure 4.19 d) we plot unit bending moment
diagram from the action of unknowns of unit values M,, Mz and bending moment

diagram from applied loads M, , (this are presented respectively on figure 4.19 e,
f and figure 4.19 g).

5. We calculate coefficients and absolute terms of equations:
a) coefficients (unit deflections):

MZdx [ 1 1(3-3) 2.] 1116
S0 = 5).3+——| =223 |=—"=2;
2 Zj {SEJ( j +EJ(2)3} EJ

M2Ms d 1 3 5 i(ﬁjg4 :_144’0-
EJ 3

Médx [ 1 (4-4)2, 1 1(4.3) 2. 206222
= —4+—(4-5)-4+— =4 = ;
955 ZI {35\1(2)3 EJ( ) ( )3}

b) absolute terms (deflections from applied loads):

I_
Azpzzflvlzlvlpdx:z{ L (64.2)-34 ] (64+43.3j.3+i(43-3).33}=1989,O_
1'% EJ EJ

025 =05p = ZI

EJ 2 EJ\L 2 ) 3 EJ '
n & M:Mp dx 4 1 1 (64+43
Asp = STPR 2 ~4.16-2—64-4)——(64-2)-4—— 34—
°F ;! EJ {6-3EJ( ) EJ( ) EJ( 2 )
_i(43'3).34 _ 2822,667
EJ\L 2 ) 3 EJ

6. To perform the check of correctness of calculations of coefficients and absolute
terms of the system’s equations, need to plot a total unit bending moment diagram of
Mg = M; + M, (see Figure 4.19 h), after which can be performed check:

MS dx

a) universal verification: ZJ

=22 ik »

1116 144 206,222 29822
where: O = Oon + Ooc + Oy + O = ——— — 2+ =——;
D> Sik =022 + G5 + 5 + Jss E1 EJ EJ EJ

n I _2 . . .
BN 1 (44)2,, 1 (39)25, Ly, 1(19)2)) e
s EJ 3BJ\ 2 )3 5HEJ\ 2 )3 EJ EJ\ 2 ) 3 EJ

Check is done;
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b) column check:

1989,0 2822,667 _ 833,667

n ¢ M Mp d
s Mp OX
Vs Me X S Aip tie: S Aip = Agp + Agp =
21:’([ £] S Aip.tae; 2 Aip=Agp +Asp EJ £ =

n v
ijzg 4 (_4.16.2_64.4)_i(64.2).1_L(Mj.3 1—
1y EJ 6-3EJ EJ 2

_i(ﬁjgl = —833’667; Check is done.
EJ EJ
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Figure 4.20
7. Solve the system of force method equations:

1116 , 144 1989

— X, +—X. +——=0; X, =-1,63 kN;
EJ EJ EJ Find:
—%Xz + 206E’.]222 X, +—282§3667 =0. X, =12,55 kN.

Check the solution by substituting the found values into equations:
111,6-(~1,63)-144-12,55+1989,0=0; —1989,108 +1989,0 ~ 0;

—144-(-1,63)+ 206,222 - 12,55 — 2822,667 =0; 2822,806 — 2822,667 ~ 0.
Discrepancies are insignificant, check is carried out.
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8. Plot the final graph of bending moment according to the formula:
M IMZ'X2+M5'X5+MP.

Separately, are showed intermediate (the multiplied) unit diagrams (see.
Figure 4.19 i, ). The final diagram M is presented in the figure 4.20 a.
9. Perform a deformation test of the diagram of M:

N M - My dx 4 1 (489.3) 2 1
—0; 2 4.91.2-138-4 ! .£3-~(891-2)1
gl { ( )- 5EJ( j EJ( )1+

6-3EJ 2 3

12,09- 3) 2

1} _ L (41,542 - 41,508) ~ 0;
2 3] EJ

+i(1-3) 1,59+ (
EJ EJ

41,542 - 417508| -100% = 0,08% < 3% is insignificant.
41508 |

10. Diagram of Q shear force is plotted on the base of the M bending moment
diagram using formulas (4.13) u (4.14):

Discrepancy

M g —M :
QK;: :Qo_ rlghtI Ieft‘_ 8 4 138 0%=+16—3,45KN’
« =+16-3,45=+12,55kN; I =-16-3,45=—-19,45kN;
4,89—(—4,89 ,91-8,
Qe =+‘ ( )‘=1,63 KN: Q. =[231=8 91‘=OkN;
12,09-(-8,91 - ~
o — 412 (-8.99)_ KN: QAA=—‘ 12,096 12’09‘:—4,03kN.

The shear force diagram is shown in the figure 4.20 b.
11. Diagram of longitudinal force in a given statically redundant system is plotted
on the base of diagram — the way of cutting the node:

a) Node H b) Node B Y
163 71 1945 2L O8f
IH X
N‘FH_T' i NAB 4,03 IB___E
[T VR
tRs
> X =0; N, =0; > X=0; N, =+7 kN;

> X =0, N,,=+2108 kN; > X =0; R,=-17,05 kN.

F and A nodes are cut in the same way.
N diagram is shown in the figure 4.20 b.
12. Static frame balance check is in a Figure 4.20 d:
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DX =0; 7+7-14=0; 14-14=0;

Y =0; 12,55+17,05-8-4-17,05+8-4-12,55=0;

>M,=0; (7+7)-3+12,55-4+12,55-10+17,05-6—(8-4)-2-8-4(6+2)=0;
320-320=0.

4.10. Tasks to Solve Yourself

Plot in the below represented frames the diagrams of bending moment, shear
force and longitudinal force, performing their calculation by force method.

AT/ P=5kN — AT/ —
4= 6 kN/m l g;-o g , 4 kEN/m P=8 N[5,
e TP,/
EJ=const |4m
EJ=const 4m
L 6m L 3 mJ, 3m ,J“ 7557 & ,g.i, —

il 1

4= 2 kN/m P=6 1N “P=6 kN

IR T "
2ES Im E:; Ej F:‘?i 3m
EJ EJ '0*5 —F 2ES ,_~,:l m
Im :-E 2m
L 5 B — Bl
) 2 ”’,!/ 2mAL 4 m ,,l' ,,I' 4m J, 2m 1

Answers to these tasks are presented at the end of the manual in the "Key to
Tasks for Self-Solution” section (p. 64-67).

5. Calculation of Redundant Frames by Slope Deflection Method

5.1. Approaches and Assumptions that Underlie the Slope Deflection
Method

In calculating statically redundant systems by force method for the unknown
forces are accepted forces in redundant restrictions, after which internal forces (M, Q,
N) and the deflections of frame points can easily be found in the determined sections.

But the problem can be solved in the opposite direction. If first determine the deformed
type of frame (deflections of sections of frame), then it is possible to establish the corre-
sponding distribution of internal forces, which illustrates the well-known dependence:

M=EJ-y"
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This is the approach used in the slope and deflection method (deflection method).
At the same time, the analysis shows that the deformed view of the system is fully
defined if the angles of twist (angular rotations) and linear displacements of its nodes
are known. This is because the deflections of nodes are equal to the deflections
of the ends of the rods connecting in these nodes, and the deformations of the rods
are fully and unequivocally determined by the movements of the ends of the rods.
The latter also applies to loaded rods, for which, however, the deformed form will
depend additionally on the loads on them.

Consider, for example, the frame depicted in the pic. 5.1 a. The deformed state
of this frame is determined by linear displacement and twist of nodes 1 and 2.
The number of these deflections and twists or rotations depends from the assumptions
used in the method. Thus, in general, the number of deflections and angles of twist
in the frame (Figure 5.1 b) is five; in the case of neglecting of shear and longitudinal
deformations and ignoring of changing in the length of rods when they bend (the
effect of these values for the curved frame-rod systems due to their smallness
is usually neglected — the classical formulation of a problem) the number of these
unknowns equal only two (Figure 5.1 ¢) A and ¢.

a) P B AL P A IALP A

0 N o TTINC AN :

e o f S~ _ |/

3 |/ AQ—_/ / /@ /

;| Bs=@ |, / /

/ / / /
Veccd 7J77 Veccd Veccd 7'L7 Vecdd 75> 75

Figure 5.1

The number of independent angular and linear shifts of nodes completely and une-
quivocally defined by the deformed type of system is called the degree of its instability.

All these independent nodes rotations and linear deflections are accepted as un-
knowns in the slope and deflection method. Hence the name of the method briefly is
method of deflection.

Note that in the classical form of the deflection method, as well as in the force
method, the following assumptions are used:

a) neglected shear and longitudinal deformations of elements of the system when
it is deformed,;

b) Is accepted that the projection of the curved (de- | e /\ lger = |
formed) rod on its original direction is equal to the orig- /'\
inal length of the rod (Figure 5.2); (,/

c) Is assumed that the value of angles in rigid node s
do not change during the system's deformation process; \

Figure 5.2
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d) Angles of rotation of nodes and sections of rods at deformation of systems due
to their small value are taken equal to tangents of these angles.

It should be noted that for a number of redundant frames, the degree of instability
(kinematic instability) is lower than the degree of static redundancy, and that the de-
flection method with an equal number of unknowns is somewhat easier to calculate
some redundant systems than using the method of force.

5.2. Determining the Degree of Instability of Frames

The degree of instability of the system, i.e. the number of unknown independent
angular and linear shifts of the nodes, must be found in order to determine the conju-
gate redundant system (C.S.), in according with the formula:

N=Na+N| (51)

Here: n, — the number of independent angular twisting of nodes (unknowns of
slope and deflection method), determined by the number of rigid nodes in the struc-
ture; at the same time, under the rigid nodes of the deflection method (then we will
call them simply — rigid nodes) here we will understand those in which two condi-
tions are met:

— in which two or more rods are rigidly connected at any angle.

— where happens change of bending moment, which cannot be determined from
the usual equilibrium equations (statics).

For example, in a frame depicted in a figure 5.3 a, the rigid nodes where is met
these conditions will be nodes: 1, 2, 3 (n,= 3); for nodes: A, B, C, the second condi-
tion is not met, as they relate essentially to statically determinate parts of the struc-
ture, in which all internal forces can be determined by conventional method of calcu-
lating statically determinate systems;

n, — the number of independent linear deflections of system’s nodes (unknowns),
which can be determined in two ways:

1. According to the number of possible independent linear displacements of rigid
nodes (see definition of ny), and hinged nodes of the structure based on the analysis of its
possible elastic deformation taking into account some accepted assumptions (section 5.1).

For example, in a frame on figure 5.3 a, we need to analyze the possibility and
independence of deflections of 1, 2, 3 rigid nodes and 4, 5 hinge nodes with arbitrary
possible elastic deformation of this system:

1 node cannot move vertically, as it is fixed from vertical displacement with
the help of the 1-D rod, which on the basis of a and b assumptions (section 5.1)
not allow to diverge (or converge) of 1 and D points, and D pinched support;
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— horizontally, node of 1 can shift, as well as the rods of 1 to 2 and 4 to 3 can
bend (horizontal displacement of 1 node is shown by an arrow with the number — 1);

—The 2 node cannot be shifted vertically based on the same reasoning
as has been considered for node of 1;

—Horizontally, the same 2 node can shift, in respect that the rods: 1-2, 2-D,
4-3 and 5-E can bend (horizontal displacement of 2 node is marked by an arrow with
the number — 2);

—The 3 node can move horizontally to the right or to the left (similar to 2 node).
Moreover this shift will be the same as the horizontal displacement of 2 node, since
the 2-3 rod connecting the nodes of 2 and 3, (based on a and b assumptions, section
5.1) does not allow change the distance between these nodes;

— On the vertical direction the 3 node, considering the possibility of elastic defor-
mation of rods: 1-4, 2-3 and 3-5, can shift (shown by an arrow with the number — 3);

—The 4 hinge node in this case can move both horizontally rightward
or leftward, the same as 1 node since the rod 1-4 does not allow for 1 and 4 sections
to diverge (this is based on a and b assumptions (section 5.1)), and vertically but
along with the node of 3 (due to the presence of 3-4 rod);

—The 5 hinge node can't move nor vertically, neither horizontally, but it will shift
to the same direction as nodes of 2 and 3.

So for the frame on the figure 5.3 exists three independent deflections of nodes
(n1=3), and in total we get six unknowns when calculating the frame by the deflec-
tion method:

N=na+n =3+3=06.
2. A number of textbooks are proposing another formula to determine the ni:
n :Whinge frame scheme = 3D —2H - C,, (5.2)

According to which n; equals the degree of freedom of the hinge scheme of the
frame obtained by the introduction (cutting-in) of hinges in all rigid nodes of the
structure, including pinched support.

For example, for a frame on figure 5.1 a, the hinge scheme of frame has
the appearance presented on the figure 5.1 g, according to which we will receive:
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M=Whts= 3D—-2H -C, = 3-3-2.2-4=1. (4.3)

For the frame of on figure 5.4 a, the hinge scheme of which is presented
on the figure 5.4 b, we'll have:

N =Whts.=3-4—2-3—6=0.

However, analysis of the possible frame
deformation in the first way shows that 1 and 2 1 2 )
nodes can shift horizontally (figure 5.4a).
Thus, application of formula (5.2) leads here
to an incorrect result caused by instantaneous
variation (variability) of the hinged scheme i
of the considered frame (figure 5.4b). Figure 5.4

This situation can occur frequently, and the formula (5.2) will always give incor-
rect results in cases when hinge scheme creates an instantaneously variable system
in the frame. Taken this into consideration, it is not recommended to use this version

of calculation of n;, but is suggested in all cases to use the first option of the defini-
tion of n;, which is both simple and reliable.

a) ¥ b A

7507

5.3. Conjugate System of Redundant Structure of the Slope and Deflection
Method

The conjugate system of the slope and deflection method can be gotten by intro-
duction of additional (imaginary) restrictions, fixing the nodes from their possible an-
gular twist and linear deflection, which were derived earlier (in computing the n degree

of instability of the system). Thus, in all rigid nodes that can 7 ~

rotate (72;), we install additional pinched supports, fixing @? ' @ £
. . . . R 4

them from the rotation, and in all nodes (hinged), which can

linearly shift (7)), we install additional supporting bars @

(which work as hinged movable supports) fixing from these >=7.

shifts. These additional connections (together, of course, 1=

with nodes) are accepted as unknowns. Possible movements 1 7, =A. L

of these nodes (where were placed additional supports) are Figure 5.5

marked through Z; (i = 1...n). It should be noted that the additionai pincned support,
unlike the actual pinched support, has only one restriction that secures the node from
the rotation (from linear deflection it does not fix).

For the frame depicted in the figure 5.1 a, the conjugate system of the deflection
method has the appearance presented on figure 5.5.

Based on accepted assumptions and established additional supports, the nodes
of the conjugate system will be stationary. Given that in the classical form
of the slope and deflection method can be neglected by shear and normal forces,
in conjugate system further we will build only the diagram of bending moment.
At the same time, the impact on the areas of the conjugate system (external
applied loads, forced displacement of nodes) will cause bending moments only
in those areas that are directly exposed to these impacts; namely, through the pinched
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support in rigid nodes and through the hinge nodes of the conjugate system bending
impact will not be transmitted.

@Thus, the conjugate system of the deflection method will be a set of individual
one-span beams independent of each other. These beams, depending on the condi-
tions for attaching their ends to the nodes (support conditions) can be three types, the
kinds of which are represented on the figure 5.6.

& © g gﬁ

a) b)
2

N R
N [\

For the frame on the figure 5.3 a the conjugate system of the deflection method

Is represented by figure 5.3 b.

L&ls p7994

or

Figure 5.6

5.4. Canonical Equations of the Slope and Deflection Method

The calculation of frames by use of deflection method uses the conjugate system
of this method. Extra supports are installed to nodes of frame that can shift; they need
to restrict these shifts. At the same time, the conjugate system should work in the
same way as the original system, in which there are no pointed out additional connec-
tions. As conditions equating the work of the conjugate system to the work of a given
system, equality of zero reactions in additional supports is accepted, because they are
not in the original system. For example, for a frame on figure 5.5 should be written
down the reactions R;=0, R,=0. Given that reactions in the conjugate system arise
from applied load and forced displacement of nodes, we will get:

R(Z,,Z,, P)=0, R,(Z,,Z,, P)=0.

Taking advantage of the principle of independence of forces and external actions
(displacement), these expressions can be presented as:

+ + R, =0;
R(Z)+R.(Z,) +R,(P)=0 {E e
Ry(Zy) + Ry(Z,) + Ry(P) =0, 22, ez T e =5
Since the Z; and Z, movements are not known, the reactions from their actions
are expressed through appropriate single reactions R, 7, = G L.
As a result, we get the next system of equations:
nZ, +1,2,+R;p =0,
rZ, +1,2,+R,; =0.
This form of recording of deflection method equations is called — canonical.

In general, the system of canonical equations of the slope and deflection method
has the form of:
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2, + V0,2, +1.l+...+0, 2 +..+1,Z +R,=0;

In"=n

(2, + 0l + 02+ A0 2, .+ 1, Z +R,, =0;

2n“n

X (5.3)

L+, + 0 Lo+ + 0 L+ 41 2+ R, =0;

Here: n — the number of unknowns (angular twists and linear deflections) of shifts
of nodes in the system, or the degree of instability of the system; Z, (k=1...n)

unknown values of displacements (angular and linear) of nodes of a structure; I, -

reactive force (moment) in the i-additional restriction (fixed support, hinged movable
support) from movement (rotation or linear deflection) of k-additional restriction
(pinched support, hinged movable support) to a single amount of movement (Zx = 1);

R, [ reactive force (moment, force) in i-additional restriction (pinched support,
hinged movable support) from the action of applied loads.

The physical meaning of the equations (for the i-equation): reactive force
(moment) in the i-additional restriction (pinched support, hinged movable support)
from the movements of all additional restrictions (rotations, linear deflections)
Z,7Z,,..,Z, and the given applied load is zero, as this i-restriction in the original

(design) system is not.

Here are examples of the physical meaning of coefficients and equations in gen-
eral, for example, for conjugate system of the slope and deflection method presented
on figure 5.3:

I, — reactive moment in the 1-st extra pinched support from it same twist
at a single angle;

I, — reactive force in the 5-th additional hinged movable support from

the turn of the 3-rd additional pinched support to the angle which, equal to the unit;

I, — reactive moment in the 2-nd additional pinched support from the linear shift
of the 6-th additional hinged movable support to the distance, equal to the unit;

R,» — reactive force in the 4-th additional hinged movable support from
the action of the applied loads;

3-rd equation: I, Z, + 1,2, + 2+ ...+, Z +R,, =0; a reactive moment
in the 3-rd extra pinched support from moving all additional restrictions (supports)
to the magnitude Z,, Z,, ..., Z, and from the effect of the external applied load is zero,

because in a given system (Figure 5.3a) this (3-rd) pinched support does not exist.
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Note that coefficients I;, with the same indices (r,,, r,,), are called the principal

rll’
deflections, and the rest are called secondary deflections (coefficients); the principal
deflections cannot be negative and zero, and secondary deflections (factors) should

satisfy the theorem of reciprocity of unit reactions (F, =1I,;).

5.5. Slope and Deflection Method Table Diagrams

To determine the I, ,R, reactive forces it is necessary to be able to identify

internal forces (plot their diagrams) in the conjugate system of the slope and deflec-
tion method from unite displacements of additional restrictions or supports (together,
of course, with the respective nodes) and from the action of the given applied loads.
Plotting these diagrams, due to the fact that the conjugate system of the slope and de-
flection method is a set of individual beams, completely independent of each other, is
associated with the ability to calculate these beams (Figure 5.6). External actions (ex-
posures) here will be turns of the pinched support, linear shifts of the hinge support
and force factors (concentrated forces, concentrated moments, distributed loads).
The calculation of such beams is usually done by force method, and the calculation
results are tabulated (see table 5.1).

Table 5.1
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5.6. Plotting of a Bending Moment Diagram from Unit Load and Bending
Moment Diagram from Applied Loading in Conjugate System

Plotting of an unit diagram of bending moment M, from the action of Z; shifting
of unit magnitude (Zi =1) and Mp diagram due to the actual applied loading to the

conjugate system is carried out using ready-made (table) diagrams for individual sec-
tions of the conjugate system (see Table 5.1). Each part of a frame works regardless
of others. Plotting of a diagram is performed as follows: depending on the actions di-
rectly on the structural element (concentrated force, concentrated moment, distributed
load), the table moment diagram is selected, taking into account the specific parame-
ters of this area (element), and then transferred to the design area (onto the conjugate
scheme). At the same time, when plotting unit diagrams, it is expedient to present the
deforming scheme of the conjugate system from the appropriate displacement of the
node. This allows us to identify which elements of the conjugate system “work”, how
they “work” and with which side the fibers are stretched, and where the fibers are
compressed (the bending moment diagram should be plotted from the stretched fibers
side). Ordinates of unit diagrams, as can be seen from table diagrams, are expressed
through the relative stiffness of the areas, which is the ratio of the real rigidity of the

areas to their lengths i, = EJ, /1. If we set the stiffness in general, it can cause some

difficulty in comparing with the ordinates of unit diagrams at different sites. To avoid
these difficulties, the next way is suggested:

— we can choose one relative stiffness of the areas for the base (indicating it,
for example, through i) and then, through it, express the relative stiffness
of the rest of the system; So, for the frame on figure 5.10 a, the rigidity of the areas
Is recorded as follows:

.. _EJ. . EJno kEJ k EJ

by =13 = h b, = | _a-h_a' h '
o . EJ . . Mok
and if we're noting T—I or EJ=i-h,we'll get: iy =3 =1; by =/

(this manual uses further this approach of expressing the rigidity of the elements);
— We can express the stiffness of the areas through a certain amount of EJ, com-
mon to all areas EJ;= £ EJ ; in this case for the frame on figure 5.10 a, we'll get:
S EJ. - Kk :
|01:|23:T’ '12:%5]’
— We can conveniently set for the parameters i, EJ some numerical values for

further calculations, from our point of view. This can be done, because when the final
diagrams of the forces are plotted, the values that are common to all areas are re-
duced. So their parameters i, EJ do not affect the results of the calculation (area
stiffness ratios have significance); for the frame on the figure 5.10 a, it is convenient,
for example, to take: EJ=ih.
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The frame presented in the figure 5.10a, as previously defined (Figure 5.1), has
two unknowns of the slope and deflection method (the degree of its kinematic inde-
terminacy is two). The conjugate system of the deflection method for this frame has
the appearance shown on the figure 5.10 b. Unit diagrams of M: and M bending
moments from the action of the Z; and Z; shifts of a unit magnitude (Z;i =1) and
Mp diagram due to the actual applied loading (as well as deformation schemes corre-

sponding to unit displacements) are presented on figure 5.10 n - 5.10 g.
5.7. Determining the Coefficients and Free Terms of the Canonical Equations

Coefficients and free terms of equations in their physical meaning, as already not-
ed, can be two Kinds — reactive moments in additional pinched supports (r, or R.;)

and reactive forces in additional hinge supports (r;, or R,,). Their definition, as the

definition of any reactions, can be made on the basis of equilibrium equations either
as a whole system or a part of it (static way). Experience has shown that it is more
convenient to consider the balance of individual parts of the conjugate system, which
are under the exposures from which the desired reactive force is determined. At the
same time, the following rule of signs is used for reactive forces in additional sup-
ports (restrictions) — reactive force is considered positive if its direction coincides
with the direction of movement of the appropriate additional restriction. In the pro-
cess of identifying unknowns, reactive forces should always be directed in positive
directions.

According to the above, the definition of the r,, coefficients and R,, terms in the
meaning of the reactive moments of the additional pinched supports, is most conven-
ient to perform on the basis of consideration of the equilibrium of nodes, in which
were installed appropriate additional pinched supports, preliminarily cutting out these
nodes. Then one after another the equilibrium equations for the nodes are derived up,
(summing all the moments acting in the i-node, we get one equation). From these
equations can be determined the desired reactive moments.

So, for the frame on the figure 5.10 when determining the I, coefficient repre-
senting the reactive moment in the 1-st additional fixed support from its rotation by a

unit angle, it is necessary to cut the node 1 from the M, diagram, (which was built

from the turn of the 1-st pinched support to a unit angle) (see Figure 5.10s), from the
equilibrium of which we will get:

SM, =0 r,—4i-3Ki=0; 1,=4i+XK;

Factor of I, can be found by cutting out 1 node on the Mz diagram
(figure 5.10 u):
6i 6i
ZM]_:O; r12+F:O; I’lzz—F.
For definitions of R, free term, we need to cut the 1 node on the M, diagram

(Figure 5.10 k):
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12 12
M, =0, ap+%—m=o; R,=m-+_

Thus, the first index of the coefficient or free term here essentially shows
the node number which has to be cut to determine this factor, and the second index
indicates the diagram from which this node has to be cut.

For example, to determine the I,, coefficient, which is being a reactive force
in the 2-nd additional hinge support from its own unit displacement, we can cut the 2
node on the M, diagram (Figure 5.11); As a result, we will receive:

ZX =0, 1 —Qpu—=Np =0, 1y =Qp+Nyp. Qp @. e x
The value of Q,, is easy to determine by M, dia- Iq_ — >
gram, using, for example, a formula: 12 <_¢ Q,;
M ri _Me
Q=Q—* | - ‘ (5.4) Figure 5.11

where: Q, — takes into account the effect of the g distributed load on the area
of frame, i.e. it is a diagram of shear forces on the area, likewise in a simple beam
(if g does not exist, then Q,=0); M .., M, — ordinates of bending moment on the

right and left ends of the area; | — length of the area;
The sign before the module is accepted by the following rule: if the rod of frame
on which the M is plotted must be rotated before combining with the straight line

connecting the ordinates of M, and M, on the shortest path clockwise, the sign

is taken “+”. If it's counterclockwise, it's a “- sign.
As a result, we will get for area 2-3 (Figure 5.10 g):

3i/h—0] 3i
Q23 - O + h ‘ - F
It should be noted that the value of Q,, can be obtained through a support reac-

tion in the 2-3 rod from the action of the accepted of Z, =1 linear unit deflection.

Considering that the shear force nearby support section is equal to the value of the re-
action of the corresponding support, which is given in table diagrams, we can calcu-
late it. The shear force sign is determined by the usual rule of the signs for Q or from

M diagram. In order to determine the value of the N, , normal force in the 1-2 rod,

it is necessary, first, by use of M, diagram, and the formula (4), to plot a diagram

of (_22 shear-forces, and then the value of N, , from the cutting of node can be found.
This process, as we can see, is quite labor-intensive.
It will be easier to determine the I, R, coefficients which are the reactions

in the linear restrictions (in additional hinged supports), if we cut definite parts of the
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conjugate system instead of nodes. Thus, the equations of equilibrium should include
only shear forces; and it is most convenient to use as equilibrium equations the sum
of the projections of forces on the axis, parallel to the unknown reactive force.

So to determine the I,, coefficient it is convenient to cut out the top of the M,
diagram, shown on figure 10 I, out of balance of which we will get:

6i 6i
D> X =0 Gt =00 hy=—

Similarly, we will find a coefficient r,, (Figure 5.10 m) and the absolute termR,
(Figure_ 10 n), cutting the corresponding parts of the conjugate system out
of the M, and M diagrams:

D X=0; .

22 h2 _F 22:F;

5 5
> X =0 R2P+Pl—EP2 =0; RZP:EPZ—Pl.

It should be noted that the r, and R, values can also be determined by Mohr’s
formula. At the same time, the magnitudes of r; and I, can be calculated by formulas:

WZ[ME SRRt ey _nliline

s 7]
The value of R, absolute term can be calculat- ' m h
ed according to the formula: | P 2
— 2
M;M/ ds - —r
R, =— ——r 5.6
b =2 (5.6) i
where: M/ — the diagram of bending moment from h 2
the action of the applied loads in a statically deter- 2 7 —f
minate system obtained from a given system (or |

conjugate system) by removing redundant re- Figure 5.12
strictions, including necessarily the restriction, the
reaction of which is determined.

Calculate for the example under consideration (Figure 5.10), the I, I, factors
and R, an absolute term. Unit diagrams in the conjugate system are shown on the

figure 10, and one of the possible options for the M, diagram on the figure 5.12.

Giventhat: =1 and = =@M _ @ vl find:
I keJ kEJ ki
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<« (MMyds  h (6 .. .. 6i) 6i
= =2 EJ _653(_?2'_4'?)__?
(Gijz (6ij2 h (3i)2 (1,5ij2 15i
— | =] | Ft= = | t4| | =
h h 6EJ | h h h

M,M;ds  h ( .om j | gl® 15k
= =— -m-4i-4.-—-i |- 4.—. I |=
R =2 EJ 6E] 2 ) 6kEJ 8 «

The values calculated here are the same as values which were found by static
method previously.

5.8. Checks of Coefficients and Free Terms of Canonical Equations

Checking the correct calculation of coefficients and absolute terms of canonical
equations can be done similarly as the method of force. At the same time, a Unit To-

tal Diagram must be plotted to carry out the checking of MS , representing the sum of
all unit diagrams in the conjugate system:

MS:M1+M2+M3+...+Mn. (5.7)

The following checks can then be carried out in the method of deflection:
a) Universal verification:

—2
Msds G
P E=E AN 58)
B TG
where: XX ;) — the sum of all unit deflections (the sum of factors of all equations):

I3 b=+, 4ot )+ (M + Dy 4ot 1 )+
tot (L + T, +ot 1)

If a universal check is performed, it confirms the correct calculations of coeffi-
cients (principal deflections, and secondary deflections), and absolute terms;
if the universal check is not performed, then to find out which group of coefficients
Is an error, we can make so-called line checks.

b) Line checks, i.e. checks of the coefficients that are included in each
of the equations of the method of slope and deflection (1st, 2nd, ... n) has:

M M.ds ¢ .
s L =1...n), 59
X[ TE T Tl (=l (5.9)
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where: 21, — the amount of coefficients included in i-equation of the method of

slope and deflection.

Such checks, as can be seen, should carry out of n-times; some of them will be
executed (this will mean that corresponding coefficients were calculated correctly),
and some may not; analysis of the results reveals the coefficients in which errors
were made.

Note; if a universal check is carried out, there is no need to perform line checks.

c) column check serves to check absolute terms and it is executed according
to the formula:

MM/ ds ¢
ZI EJP S:ZRiP’ (5.10)
i=1

where: R, =R, +R,, +...+ R, —total number of all absolute terms;

M, — the diagram of bending moments from the applied loads in a statically de-
terminate system derived from a given system or a conjugate system by discarding
redundant restrictions, including necessarily additional restriction, where are defined
reactions R, (see Figure 5.12).

5.9. Plotting the Final Diagram of Forces and Verifying Them

The found values of coefficients and absolute terms are substituted into the sys-
tem of canonical equations (5.3), through which we can determine of Z. (i =1...n)

unknowns. After that, the final diagram of bending moment on the base of the princi-
ple of independence of force and actions (deflections) can be plotted according to the
formula:

M=M,Z +M,Z,+..+ M, Z, + M,.. (5.11)

The final diagram of the shear forces is plotted out on the base of M diagram by
using the formula (5.4). The final normal forces diagram is plotted out on the base of
Q diagram by cutting out the joints. To confirm the correctness of calculations of M,
Q and N final diagrams, the following checks are carried out:

a) Checking the balance of the nodes on the base of M diagram; this check is
important when frames are calculated with the deflection method. Because the bal-

ance of joints (in the conjugate system) is not performed on the M; unit diagram or
on the M, diagram (from applied loads), without taking into account additional

pinched supports (which the system does not really have); In the M final diagram the
balance of the nodes must be performed,;

b) deformation (kinematic) check of the M diagram; this check can be done
in the same way as in the method of force, but here to perform it for a given system,
choose the primary system of the method of force (preliminarily determining
the number of redundant restrictions). Then we need to plot a total unit diagram

M ™" from the unit values of all unknowns of method of force (or at least one
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of the M, ™" unit diagrams). In such case, the maximum number of areas of the
system should be covered; after that the deformation check is performed by formula:

N force meth. n a force meth.
M Mds _ L -Mdszo}

DI or TIM

The physical meaning of this check here is the same as in the method of force;

c) Checking the equilibrium of the nodes when plotting the N diagram out of
the Q diagram; N diagram is plotted, as already noted, on the base of the Q diagram
in the way of cutting nodes, i.e., normal forces can be found from equations of pro-
jections of forces to any two axes. Keeping the balance of all nodes in this way indi-
cates the correctness of the calculation. If at least one of the equilibrium equations is
not performed in at least one of the nodes, it means that a mistake has been made in
the calculation. Most often, this error is associated with incorrect determination of
coefficients or absolute terms, which are reactive forces in additional restrictions
(movable hinges);

d) Static verification is performed in the same way as in the method of force.
The projections of all the applied loads and support reactions to any two axes and the
sum of the moments of forces w.r.t. any point should be zero.

(5.12)

5.10. An Example of Calculation

From the frame depicted in the figure 5.13 a, we can see the degree of instability
of the system equals three (n=na+n; = 2+ 1 =3). The conjugate system is presented
in figure 5.13 b. The relative stiffness of the areas is:

B . . . Bl . E
'01:7’ '12:'24:'35271 '23:?

Through a common value for all areas — i=EJ/12 (EJ=121), we can receive:
i, =60, i, =iy, =iy =3i; iy, =2i;
To be clear, this relative stiffness of areas is shown in the conjugate system of the

deflection method (Figure 5.13 b). The M,, M,, M, unit bending moments in con-

jugate system as shown respectively on figure 5.13 d, 5.13 g, 5.13 j, are plotted on the
basis of deformation schemes of conjugate system from deflections of Z,, Z,, Z,

nodes on unit values (Figure 5.13 ¢, 5.13 f, 5.13 i) using table diagrams (table.1). Unit
coefficients or absolute terms of canonical equations are determined in a static way:

reactive moments I, ,r,, can be derived by cutting out 1 and 2 nodes of the M, dia-
gram. The r, reactive force can be derived from cutting out the top part

of the frame on the M, diagram (Figure 5.13 1, 5.13 h, 5.13 k).

> M, =0; r, —12i -18i =0; r,, = 30i;
~figure 5.13e: < > M, =0; r,, —6i=0; r,, = 6i;
D> X =0; r, +9i=0; r, =—9i;
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Figure 5.13
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4,31 Figure 5.13 (continued)
D> M, =0; r,-6i=0; I, = 6i;
—figure 5.13h:< > M, =0; 1, —6i—-12i—12i =0; r,, = 30i;
> X =0 r,, +4,5i =0; r,, =—4,5i;
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P.S. n - force meth.
TXZ force meth. Tl M S

n:4 7777 7777 8 4

Figure 5.14 (continued)

13,96 5,597
0,484 3,661 3661 /5997
R 0,484 1 \ @ ﬂ\
AQ \ @1|||||||||Cf>|||||||155’597 8 0 S
— 1,936 =
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S \ @] R — 0,484
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Figure 5.15 Figure 5.16
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—Figure 5.13k: + > M, =0; 1, +4,51=0; r,, = —4,5i;
> X =0; ry—45i-2,25-0,5625 =0; r,=7,3125i.

The diagram M, in the conjugate system is presented in figure 5.14 a. Absolute

terms are defined by analogy with coefficients (principal deflections and secondary
deflections) (see Figure 5.14 b):

>M,;=0; R,+8-3=0; R,=-5
dM,=0; R,,-8-3=0; R, =11
> X =0 R, +25-6=0;, R, =35.

After substituting the found values of coefficients and absolute terms in the sys-
tem of equations (3) we get the form of system:

30i-Z,+6i-Z,-91-2,-5=0;
6i-Z,+30i-Z,-4,51-Z,+11=0;
—9i-72,-4,51-72,+7,31251-Z, +3,5=0;
Having solved this system of equations, we will find unknown deflections of
frame joints:

700484, _ 0483 _ 07169

After that, the final diagram of bending moment is plotted according to the for-
mula:

M=MZ +M,Z, +M;Z; + M,

And it will have the look presented in figure 5.14 c; Figure 5.14 d shows the bal-
ance of nodes 1 and 2 on the final diagram M.

To perform a deformation, check of diagram M, we have to select conjugate sys-
tem in the form shown in figure 5.14 e with four redundant restrictions (n = 4). Total

unit diagram ™" is plotted at once from all the unknowns X, ... X, of unit val-
ues, shown in figure 5.14 f; then the deformation check can be recorded as :

I\Wforce meth. . MdS

3 I

2’903'6-§6+g(4-2-3,194—

EJ

1 [7,3223-2%2%(10’323,2+4.5,597.o_2.2,484)+
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~9,613-4)~(8:3)- =5 4 (81 ;

5,387-0,419 8,677—5,387}:El‘J (9,764 +13, 764 —

—3,312 + 34,838 +17,032 — 25,634 — 59,612 +13,161) = E—]:](88, 559 —88,558) ~ 0,

88,559 —88,558
88,558

The diagram of the shear force Q (Figure 5.15) can be plotted by use of areas,
where diagram M changes continuously according to formula (4):

Discrepancy [

-100% = O,l%j Is negligible.

Qo_lz_m :_3’661 kN’ Ieft —+__‘
rlght ____‘ :—6 kN

e — 04 +‘10’323‘2’484‘ =12+1,96=13,96 kN;

2 4
o __0°4 ‘10 323-2,484 _ 15 1 .96=-10,04 kN:
2 4 |
Q273 :+‘M‘:O’484 kN, Q4iB :+‘8,677—§_5,387) :14,064 kN,
0. :_‘5,387—:()’—0,419)§:_1’936 o Qe :+4é4_‘9,6l3—0‘:5’597 o
e _ 424 %9 61:’ O%:—8—2,403=—10,403 KN.

Normal force diagram (Figure 5.16) can be plotted by cutting out the nodes (from
the diagram Q ):

Node 1 Node 2 Node 3
1 y 10,04 1Y 0484 0,484 *V
@ 13,960 X @I : « I @ x
l | ()l N »l () | ()l N . T() ~ _
N,, 3,661 l N, 5,597
5,597
—_ —
3,661 1,936
NlO N24 N35 l

> X =0; Ni;= —3.661 kN; X =0; N, =-5597 kN; EX =0; 5597—5,597=0;
SY =0; N,,=—19,96 kN; =Y =0; N,, =-10,524 kN; XY =0; N, =0,484 kN;

Cutting out the supporting joints, we can determine the supporting reactions:
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Node 0 Node 4 Node 5
19,96 ‘10,524 0,484

H, = 3,661 7&@ @ ;=10,403 @
. 8,677 4
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o i Y A -

MR4—8 66?’\‘01 / F/ J

R,=10,524 Hs =10,403 ¢R5=G,484
1m) 4m | 6 m B

A1 Ll A A

Figure 5.17

ZX =0; 3,661-14,064+10,403-4-4+16=0; 30,064 —30,064 =0;
ZY =0; 19,96+10,524-0.484—-6-5=0; 30,484 —30,484 =0;
Z:I\/IA =0; 6-5-2,5-16-3+4-4-2-3,661-2+14,064-4-10,403-4 —

-19,96-1-10,524-5+0,484-11-8,667 + 9,613 =0;

178,193-178,191~0.
All checks carried out, the frame calculation is done.

5.11. Tasks to Self-Solution

Plot the diagrams of bending moment, shear and normal forces according to the
given frames. Perform their calculations by means of the slope and deflection method
(key to tasks is presented at figure on pages 63-66).
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Key to Tasks for Self-Solution

Section 4. Calculating Statically Redundant Frames by Method of Force
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Section 5. Calculation of the Statically Redundant Frames by Slope and
Deflection Method
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i
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5.1. The degree of instability of the frame is
equal to two (r = 2) — the turn of the D node
(Z1) and the linear shift (horizontally) of the D
and 7 nodes (Z); at EJ = 1 deflections are equal
to: Z;= 2,045 (clockwise), Z,= 10,020 (to the
right). The internal forces are shown in the pic-
tures.

5.2. The degree of instability of the frame is
equal to two (r = 2) — turning of D node (Z)
and a linear shift (horizontally) D and T nodes
(Z2). When EJ = 1 the unknowns of the slope
and deflection method are equal: Z;= 2,045

(counterclockwise), Z,= 10,020 (to the right).
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The internal forces are shown in the pictures.
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5.3 The degree of instability (freedom) of the frame is one (r =1) — the upper
hinge node can move linearly horizontally.

When EJ = 108 the displacement of their nodes: Z; is 0,4 (to the left). Internal
force diagrams are shown in the pictures (N diagram is zero).
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5.4. The degree of instability (freedom) of the frame is equal to two (r = 2) — un-
knowns are the turns of 1 and 2 rigid nodes. When EJ = 12 these angles of turns of
nodes are: Z; = - 0,5 (counterclockwise), Z, = 0,325 (clockwise). Diagrams of internal
forces are shown in figures.
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