водой (многофункциональность машин); разработка дополнительного оборудования для оперативного управления поливом, программирования урожайности, качественного и количественного состава возделываемых культур; использование альтернативных источников энергии для работы оросителей [3].

Список использованных источников

- 1. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2018 году».
- 2. Филиппов, С. А. Мембранная очистка поливных вод для ведения органического сельского хозяйства / С. А. Филиппов, С. А. Меньшова // Современные проблемы развития мелиорации и пути их решения: материалы международной научно-практической конференции. Форум молодых ученых, 1 октября 2020 года. Сборник трудов молодых ученых. М.: Изд. ВНИИГиМ, 2020. С 51–57.
- 3. Ресурсосберегающие энергоэффективные экологически безопасные технологии и технические средства орошения: справ. М. : ФГБНУ «Росинформагротех», 2016. 264 с.

УДК 697.97

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ДИАГОНАЛЬНОГО ПЛАСТИНЧАТОГО РЕКУПЕРАТОРА ПРОМЫШЛЕННОГО ЦЕНТРАЛЬНОГО КОНДИЦИОНЕРА ПРИ РАЗЛИЧНЫХ РАСХОДАХ ВОЗДУХА

Чубрик А. Н., Гришкевич М. Ю.

Учреждение образования «Брестский государственный технический университет», г. Брест, Республика Беларусь, alena.chubrik@gmail.com, mixagrishkevich99@mail.ru

Научный руководитель – Янчилин П. Ф., м. т. н., ст. преподаватель

In this article, we have investigated the efficiency of the plate heat exchanger at different outdoor and exhaust air flow rates. Theobtainedefficiencywascomparedwiththepassportvalue.

Применение установок с рекуперацией тепла позволяет уменьшить потребление электроэнергии, тем самым снизить финансовые затраты. Рекуператор предназначен для повторного применения теплоты или холода, забираемых от уходящего воздуха систем вентиляции и кондиционирования, от технологических потоков, местных отсосов и т. д. [3].

Экспериментальный рекуператор диагональный пластинчатый установлен в лабораторном стенде «Центральный промышленный кондиционер КЦ-ТК-1,6-6/3» (производство «Альтернатива») в ауд. 3/116 кафедры ТГВ, БрГТУ.

В данном исследовании мы выставляли настройки вентилятора, при которых изменялся расход наружного и уходящего воздуха. В первом опыте мы выставили 76 % мощности для вентилятора на приток и 45 % мощности для вентилятора на вытяжку (соотношение воздухообменов k=1:0,7). Во втором опыте мы изменили

настройки вентилятора на приток -45 % и вентилятора на вытяжку -76 % (k=0,6:1,3). При работе вентиляторов на 76 % (k=1:1) обеспечивается расход воздуха по паспорту центрального кондиционера: $L=1500\pm10$ %, [1350 ч 1650] м³/ч. КПД при этом составляет: $\eta=59,3$ %. Площадь сечения приточного и вытяжного канала: F=2000 см².

На рисунке 1 представлена схема пластинчатого рекуператора с направлениями движения потоков воздуха: H — наружный воздух, B — уходящий воздух, Π — приточный воздух, P — уходящий воздух после рекуператора.

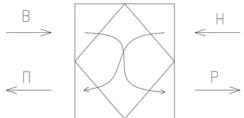


Рисунок 1 — Упрощенная схема пластинчатого рекуператора центрального кондиционера

Tаблица 1 - Данные полученные при k = 1:0,7

t,	Н		П		В		Р Термогигро- метр		η, %	G _{пр.} , кг/ч	Iп, кДж∕ кг	I _н , кДж∕ кг	Q	
МИН	T, ∘C	ф,%	T, ∘C	,%	, ∘C	,%	ф,%	T, ∘C					кДж/ч	кВт
вкл.		84,5	17,1	1,7	7,9	7,0	65,0	3,0	97	1821	23,8	1,7	46435,5	12,9
			15,0	3,8	7,9	7,0	65,7	2,3	88	1839	21,4		42480,9	11,8
1			13,9	6,3	7,8	7,1	66,2	1,8	84	1845	20,5		40959	11,4
			12,0	8,6	7,8	7,2	67,0	1,0	76	1858	18,3		37160	10,3
2			10,1	0,5	7,7	7,2	67,9	0,6	68	1870	16		33099	9,2
			8,4	2,3	7,7	7,3	68,2	0,4	61	1876	14		29453,2	8,2
3			7,0	6,2	7,6	7,3	68,6	-0,2	56	1886	12,7		27158,4	7,5
			5,9	8,6	7,4	8,1	69,9	-0,6	51	1894	11,5		25000,8	6,9
4	-6,3		5,5	0,1	7,3	8,2	70,8	-0,7	50	1897	11,1		24281,6	6,7
			5,1	0,6	7,3	8,3	71,4	-0,9	48	1898	10,6		23345,4	6,5
5			4,9	0,9	7,1	8,7	71,3	-1,1	48	1900	10,4		22990	6,4
			4,8	1,2	7,1	8,6	71,6	-1,2	47	1901	10,3		22812	6,3
6			4,7	1,8	7,1	8,4	7 1,8	-1,2	47	901 901	0,2		226 21,9	,3 6
			4,5	2,1	7,0	8,7	7 2,0	-1,2	46	903	0 1		222 65,1	,2 6
7			4,5	2,3	7,1	8,6	7 1,7	-1,2	46	903	0 1		222 65,1	,2 6
			4,4	2,5	7,1	8,7	7 1,6	-1,2	46	904 904	,9		220 86,4	,1
8			4,4	2,8	7,0	8,6	7 1,4	-1,2	46	904	0		222 76,8	,2

По полученным данным видно, что температура приточного воздуха уменьшается, но затем становится постоянной, а влажность при этом выросла почти до 43 %. Температура и влажность вытяжного воздуха практически остались те же. В начале опыта при k = 1:0,7 КПД был достаточно высоким (97 %) из-за того, что разница между приточным и внутренним воздухом была небольшая. После стабилизации температуры приточного воздуха КПД стало постоянным и равным 46 %. Вытяжной воздух отдал 6,2 кВт тепла.

Таблица 2 - Данные полученные при <math>k = 0.6:1.3

	7 7 7		· · ·		, ,		D				1			
t, мин	Н		П		В		Р Тер- могигро-метр		η, %	G _{пр.} , кг/ч	I _п , кДж/кг	I _н , кДж/кг	Q	
	T, ∘C	φ,%	T, ∘C	ф,%	T, ∘C	ф,%	ф,%	T, ∘C					кДж/ч	кВт
вкл.			5,2	42,6	17,0	28,7	54,0	5,5	49	1176	11,1		15052,8	4,2
			6,7	39,1	17,0	29,5	48,8	6,5	56	1170	12,7		16848	4,7
1			7,7	36,2	17,0	28,8	47,4	6,7	60	1166	13,6		17839,8	5,0
			8,4	34,7	17,0	28,4	46,9	6,8	63	1162	14,4		18708,2	5,2
2			8,9	33,1	17,0	28,7	47,0	6,7	65	1161	14,8		19156,5	5,3
			9,5	32,0	17,0	28,5	47,0	7,0	68	1159	15,5		19934,8	5,5
3			9,8	31,5	16,9	28,6	47,0	7,0	69	1157	15,8		20247,5	5,6
	-6,3	84,5	10,2	30,8	17,0	28,7	46,7	7,1	71	1155	16,2	-1,7	20674,5	5,7
4			10,4	30,2	17,0	28,5	47,8	7,0	72	1155	16,4		20905,5	5,8
	-		10,6	30,7	17,0	28,5	47,0	7,2	73	1154	16,8		21349	5,9
5			10,7	30,0	17,0	28,8	47,0	7,2	73	1153	16,8		21330,5	5,9
			10,9	29,9	17,1	29	47,3	7,2	74	1152	17		21542,4	6,0
6			10,9	29,6	17,0	29,0	47,7	7,2	74	1152	17		21542,4	6,0
			11,0	30,2	17,0	28,9	47,6	7,2	74	1152	17,2		21772,8	6,0
7			11,0	29,6	17,0	28,5	47,6	7,1	74	1152	17,1		21657,6	6,0

По таблице видно, что температура приточного воздуха росла, а после стабилизировалась. Влажность при этом понизилась прмерно до 30 %. Тепература и влажность вытяжного воздуха остались те же. При k = 0,6:1,3 КПД сначала был низким (49 %) из-за того, что в первом опыте пластины рекуператора были охлаждены наружным воздухом (так как наружного воздуха было больше, чем уходящего), но после КПД повысилось (74 %) и стабилизировалось (уходящего воздуха больше, следовательно, тепла наружному воздуху он отдает больше, чем в первом опыте). Вытяжной воздух отдал 6 кВт тепла.

По полученным данным построим процессы изменения состояния воздуха внутри рекуператора на I-d диаграмме влажного воздуха, где точка \mathbf{H} — наружный воздух, $\mathbf{\Pi}$ — приточный воздух, \mathbf{B} — внутренний воздух, \mathbf{P} — удаляемый воздух после рекуператора. Процесс $\mathbf{H}_{\mathbf{H}}$ — процесс прохождения наружного воздуха через рекуператор в кондиционере, после которого мы получаем приточный воздух — в начале опыта, $\mathbf{H}_{\mathbf{K}}$ — тот же процесс в конце опыта. $\mathbf{B}_{\mathbf{H}}$ — процесс, при котором вытяжной воздух, проходя через рекуператор, отдает свою теплоту наружному воздуху и выходит из рекуператора с параметрами точки $\mathbf{P}_{\mathbf{H}}$ — в начале опыта, $\mathbf{B}_{\mathbf{K}}$ — $\mathbf{P}_{\mathbf{K}}$ — тот же процесс в конце опыта.

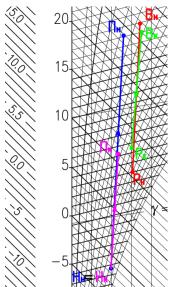


Рисунок 2 — Процесс изменения состояния воздуха в рекуператоре при k = 1.0,7

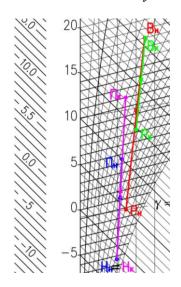


Рисунок 3 — Процесс изменения состояния воздуха в рекуператоре при k = 0.6:1.3

Вывод: В ходе изучения работы пластинчатого диагонального рекуператора в составе центрального промышленного кондиционера сравнили КПД, полученные при различных расходах наружного и удаляемого воздуха. Выяснили, что при k = 1:0,7 составило 46 %, при k = 0,6:1,3-74 %, а при работе двух вентиляторов на 76 % мощности КПД составляет 59,3 % (по данным паспорта центрального кондиционера).

Список использованных источников

- 1. Руководство по эксплуатации. Лабораторный стенд «Центральный промышленный кондиционер» КЦ-ТК-1,6-6/3. Внедренческое предприятие « Альтернатива», 2012. 24 с.
- 2. Методические указания для выполнения курсового проекта по дисциплине «Кондиционирование воздуха и холодоснабжение». Ч. 2. Сост.: Янчилин П. Ф Брест, 2020. 45 с.
- 3. Дячек, П. И. Кондиционирование воздуха и холодоснабжение: учеб. пособие/ П. И. Дячек. М.: Издательство АСВ, 2017. 676 с.