МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ ПРИБЛИЖЕНИЙ ДЛЯ РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Матысик О.В., Матусевич А.А.

Брестский государственный университет им. А.С. Пушкина, г. Брест

Для решения операторного уравнения 1-ого рода

$$Ax = y \tag{1}$$

в гильбертовом пространстве H с положительным самосопряженным ограниченным оператором A предлагается неявный итеративный метод

$$(E + \alpha^2 A^2)x_{n+1} = (E - \alpha A)^2 x_n + 2\alpha y, \quad x_0 = 0.$$
 (2)

Здесь $0 \in SpA$, но не является его собственным значением. Поэтому задача отыскания решения уравнения является некорректной. Предполагается существование единственного решения x при точной правой части уравнения (1).

В случае приближённой правой части (1) y_{δ} , $\|y-y_{\delta}\| \leq \delta$ итерационный метод (2) примет вид

$$(E + \alpha^2 A^2) x_{n+1,\delta} = (E - \alpha A)^2 x_{n,\delta} + 2\alpha y_{\delta}, \quad x_{0,\delta} = 0.$$
 (3)

Имеют место

Теорема 1. Процесс (2) при условии $\alpha > 0$ сходится.

Теорема 2. Процесс (3) сходится при условии $\alpha > 0$, если число итераций n выбирать в зависимости от δ так, чтобы $n\delta \to 0$, $n \to \infty$, $\delta \to 0$.

<u>Теорема 3.</u> Если решение x уравнения (1) истокопредставимо, т.е. $x = A^s z$, s > 0, то при условии $\alpha > 0$ для метода (3) справедлива оценка $\|x - x_{n,\delta}\| \le s^s (2n\alpha e)^{-s} \|z\| + 2n\alpha\delta$.

 $\frac{\textbf{Теорема 4.}}{\|x-x_{n,\delta}\|_{_{\rm OHT}}} \leq (1+s)e^{-s/(s+1)}\delta^{s/(s+1)}\|\mathbf{z}\|^{1/(s+1)} \text{ и получается при } n_{_{\rm OHT}} = s(2\alpha)^{-1}e^{-s/(s+1)}\|\mathbf{z}\|^{1/(s+1)}\delta^{-1/(s+1)}.$

Замечание. Неявные методы обладают следующим важным достоинством. В явных методах на параметр α накладывается ограничение сверху, что может привести к необходимости большого числа итераций. В неявных методах никаких ограничений сверху на $\alpha > 0$ нет. Это позволяет брать его произвольно большим (независимо от $\|A\|$). В связи с чем оптимальную оценку погрешности для метода (3) можно получить уже на первых шагах итераций.

НЕЯВНАЯ ИТЕРАЦИОННАЯ ПРОЦЕДУРА РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Матысик О.В., Наумовец С.Н.

Брестский государственный университет им. А.С. Пушкина», г. Брест

Пусть в гильбертовом пространстве H требуется решить уравнение

$$Ax = y, (1)$$

где A — ограниченный, самосопряженный, положительный оператор $A: H \to H$, для которого нуль не является собственным значением. Причем $0 \in Sp\ A$, т.е. задача некорректна. Предполагается существование единственного решения x при точной правой части y. Для его отыскания предлагается итерационный метод

$$(E + \alpha A^2)x_{n+1} = x_n + \alpha Ay, \quad x_0 = 0,$$
 (2)

который в случае приближенной правой части уравнения (1) y_{δ} : $\|y-y_{\delta}\| \leq \delta$ примет вид:

 $(E + \alpha A^2)x_{n+1,\delta} = x_{n,\delta} + \alpha Ay_{\delta}, \quad x_{0,\delta} = 0.$ (3)

Ниже, под сходимостью метода (3) понимается утверждение о том, что приближения (3) сколь угодно близко подходят к точному решению x уравнения (1) при подходящем выборе n и достаточно малых δ .

Иными словами, метод (3) является сходящимся, если $\lim_{\delta \to 0} \left(\inf_{n} \left\| x - x_{n,\delta} \right\| \right) = 0$.

Теорема 1. Итерационный метод (2) сходится в исходной норме гильбертова пространства при условии

$$\alpha > 0$$
. (4)

Доказательство

По индукции нетрудно показать, что $x_n = A^{-1} \Big[E - \big(E + \alpha A^2 \big)^{-n} \Big] y$. Ввиду положительности самосопряженного оператора A его интегральное представление имеет вид $A = \int\limits_0^M \lambda \ dE_\lambda$, где $M = \|A\|$, E_λ — соответствующая спектральная функция. Так как по предположению уравнение (1) имеет единственное точное решение, то $x = A^{-1}y$, поэтому $x - x_n = A^{-1} \big(E + \alpha A^2 \big)^{-n} y$.

Очевидно, что для сходимости метода было бы достаточно потребовать, чтобы $\left\|\left(E+\alpha A^2\right)^{-1}\right\|<1$, где $\left\|\left(E+\alpha A^2\right)^{-1}\right\|=\sup_{\lambda\in SpA}\frac{1}{1+\alpha\lambda^2}$. Для доказательства сходимости воспользуемся интегральным представлением самосопряженного оператора $x-x_n=A^{-1}\big(E+\alpha A^2\big)^{-n}y==\int\limits_0^M\lambda^{-1}\frac{1}{\big(1+\alpha\lambda^2\big)^n}\;dE_\lambda y$ и разобьем полученный ин-

теграл на два: $x - x_n = \int_0^\varepsilon \lambda^{-1} \frac{1}{\left(1 + \alpha \lambda^2\right)^n} dE_{\lambda} y + \int_{\varepsilon}^M \lambda^{-1} \frac{1}{\left(1 + \alpha \lambda^2\right)^n} dE_{\lambda} y$.

Потребуем, чтобы при $\lambda \in (0, M]$ выполнялось неравенство (4). Тогда

$$\frac{1}{1+\alpha\lambda^2} \leq q < 1 \qquad \text{и,} \quad \text{следовательно,} \quad \left\| \int\limits_{\epsilon}^{M} \lambda^{-1} \frac{1}{\left(1+\alpha\lambda^2\right)^n} \ dE_{\lambda} y \right\| \leq q^n \left\| \int\limits_{\epsilon}^{M} \lambda^{-1} dE_{\lambda} y \right\| =$$

$$=q^n\left\|\int_{\varepsilon}^M dE_{\lambda} x\right\| \leq q^n\|x\| \to 0, \ n\to\infty.$$

$$\left\|\int\limits_0^\varepsilon \lambda^{-1} \frac{1}{\left(1+\alpha\lambda^2\right)^n} \ dE_\lambda y\right\| \leq \left\|\int\limits_0^\varepsilon dE_\lambda x\right\| = \|E_\varepsilon x\| \to 0, \ \text{ так как при } \varepsilon \to 0 \quad E_\varepsilon \ \text{ сильно}$$

стремится к нулю в силу свойств спектральной функции. Таким образом, доказано, что $\|x-x_n\| \to 0$, $n \to \infty$, т.е. что метод (2) при условии (4) сходится. Теорема 1 доказана.

Покажем, что при тех же условиях итерационный процесс (3), можно сделать сходящимся, если нужным образом выбрать число итераций n, в зависимости от уровня погрешности δ . Имеет место

Теорема 2. При условии (4) итеративный процесс (3) сходится, если выбирать число итераций п в зависимости от δ так, чтобы $\sqrt{n}\delta \to 0$, $n \to \infty$, $\delta \to 0$.

Доказательство

Будем считать, что $x_{0,\delta} = 0$ и, воспользовавшись интегральным представлением самосопряженного оператора A, получим:

$$x_n - x_{n,\delta} = A^{-1} \left[E - \left(E + \alpha A^2 \right)^{-n} \right] (y - y_{\delta}) = \int_0^M \lambda^{-1} \left[1 - \frac{1}{\left(1 + \alpha \lambda^2 \right)^n} \right] dE_{\lambda} (y - y_{\delta}).$$

По индукции нетрудно показать, что $g_n(\lambda) = \lambda^{-1} \left[1 - \frac{1}{\left(1 + \alpha \lambda^2\right)^n} \right] \le 2 \sqrt{n\alpha}$. Поэтому,

$$||x_n - x_{n,\delta}|| \le 2\sqrt{n\alpha} \left| \int_0^M dE_{\lambda}(y - y_{\delta}) \right| = 2\sqrt{n\alpha} ||y - y_{\delta}|| \le 2\sqrt{n\alpha} \delta.$$

Поскольку $\|x-x_{n,\delta}\| \leq \|x-x_n\| + \|x_n-x_{n,\delta}\| \leq \|x-x_n\| + 2\sqrt{n\alpha} \, \delta$, и, как показано ранее, $\|x-x_n\| \to 0, \, n \to \infty$, то для сходимости метода (3) достаточно, чтобы $\sqrt{n} \, \delta \to 0, \, n \to \infty, \delta \to 0$. Теорема 2 доказана.

Оценить скорость сходимости приближений (3) без дополнительных предположений невозможно, так как неизвестна и может быть сколь угодно малой скорость убывания к нулю $\|x-x_n\|$. Поэтому для оценки скорости сходимости предположим, что точное решение x уравнения (1) истокопредставимо, т.е. $x=A^sz$, s>0, где s — степень истокопредставимости, z — истокопредставляющий элемент.

Тогда
$$y=A^{s+1}z$$
 и, следовательно $x-x_n=\int\limits_0^M\lambda^s\frac{1}{\left(1+\alpha\lambda^2\right)^n}\,dE_\lambda z$. Для функции $f(\lambda)=\lambda^s\left(1+\alpha\lambda^2\right)^{-n}$ нетрудно показать, что $\lambda_*=\sqrt{\frac{s}{(2n-s)\alpha}}$ — её точка глобального максимума при $2n>s$, и что $f(\lambda_*)<\left(\frac{s}{4n\alpha}\right)^{s/2}$. Таким образом, при α , удовлетворяющим условию (4), для любых $n\geq 1$ справедливо $\max_{\lambda\in[0,M]} |f(\lambda)|\leq s^{s/2}(4n\alpha)^{-s/2}$, и, значит, $\|x-x_n\|\leq s^{s/2}(4n\alpha)^{-s/2}\|z\|$.

Итак, доказана

Теорема 3. Если точное решение x уравнения (1) истокопредставимо, то при условии (4) для метода (3) справедлива оценка погрешности $\|x-x_{n,\delta}\| \le s^{s/2} (4n\alpha)^{-s/2} \|z\| + 2\sqrt{n\alpha} \, \delta$.

Оптимизировав по n полученную оценку погрешности, найдем значение $n_{\text{опт}} = 2^{-s/(s+1)} \left(\frac{s}{2}\right)^{(s+2)/(s+1)} \alpha^{-1} \|z\|^{2/(s+1)} \delta^{-2/(s+1)}$, подставив которое в искомую оценку, получим её оптимальное значение $\|x-x_{n,\delta}\|_{\text{опт}} \leq (1+s) \cdot 2^{-s/(2(s+1))} \left(\frac{s}{2}\right)^{-s/(2(s+1))} \delta^{s/(s+1)} \|z\|^{1/(s+1)}$.

Оптимальная оценка погрешности метода (3) не зависит от α , но от α зависит $n_{\text{опт}}$ и, значит, объём вычислительной работы. Поэтому для уменьшения $n_{\text{опт}}$ следует брать α по возможности большим, удовлетворяющим условию (4), и так, чтобы $n_{\text{опт}} \in \mathbb{Z}$.

СХОДИМОСТЬ НЕЯВНОЙ ИТЕРАЦИОННОЙ ПРОЦЕДУРЫ В СЛУЧАЕ НЕЕДИНСТВЕННОГО РЕШЕНИЯ ОПЕРАТОРНОГО УРАВНЕНИЯ

Наумовец С.Н., Матысик О.В.

Брестский государственный университет им. А.С.Пушкина, г.Брест

1. Введение

В последние десятилетия математическая наука обогатилась важным разделом – теорией некорректно поставленных задач и методов их приближенного решения.

Развитие этого раздела математики вызвано многочисленными приложениями в технике, физике, экономике и других естественных науках, поскольку, прежде всего, в приложениях возникают и имеют большое значение подобные некорректные задачи. Потребности практики приводят к необходимости решения некорректно поставленных задач, которые во многих случаях описываются операторными уравнениями первого рода.

Для их решения широко используются итерационные схемы. Поэтому большое значение имеют разработка и изучение итерационных методов, получение условий их сходимости, нахождение оценок погрешности. Важность изучения таких методов решения операторных уравнений объясняется также и тем, что эти методы легко реализуются на ПЭВМ.

2. Постановка задачи

Будем рассматривать в гильбертовом пространстве H операторное уравнение

$$Ax = y \tag{1}$$

с положительным ограниченным самосопряженным оператором A, для которого нуль является собственным значением, т.е. задача (1) имеет неединственное решение. Предположим, что $y \in R(A)$, т.е. при точной правой части y уравнения решение (неединственное) задачи (1) существует. Для его отыскания используем неявную итерационную процедуру

$$(E + \alpha A^2)x_{n+1} = x_n + \alpha Ay, \quad x_0 = 0.$$
 (2)

Докажем сходимость итерационной процедуры (2) к решению операторного уравнения (1) в случае неединственного решения. Более того, покажем, что в этом случае итерационный процесс (2) сходится к решению с минимальной нормой.