

<u>Литература.</u>
Немарк И.И., Ланда П.С. Стахостические и хаотические колебания. Москва.-"Наука", 1987.

ИССЛЕДОВАНИЕ ОТНОСИТЕЛЬНОЙ СТАБИЛЬНОСТИ ПРОТОНИРОВАННЫХ ФОРМ НЕСИММЕТРИЧНО-ЗАМЕЩЕННЫХ 1,3-ДИОКСАНОВ МЕТОДОМ МПЛП

Н.М.Сигаева

Особенностью гидролиза 4- и 4,4-Дизамещенных 1,3-диоксанов заключается в разрушении цикла не только по связям 0(1)-C(2) и C(2)-0(3), в также и по связям 0(3)-C(4).

Учитывая, что лимитирующей стадией гидрирования является раскрытие цикла, были просчитаны возможные интермедианты начальной стадии кислотно-катализируемой реакции 1,3-диоксанов.

a)
$$R^1 = R^2 = H$$
 6) $R^1 = H$, $R^2 = CH$, b) $R^1 = R^2 = CH$,

Структура	Теплота образования (реакций), кДж/моль					
	$\Delta H_f(1)$	$\Delta H_f(\Pi)$	$\Delta H_f(III)$	$\Delta H_f(IV)$	$\Delta H_f(V)$	$\Delta H_f(VI)$
а	-375,8	409,1	409,1	7	428,8	428,8
6	-394,2	389,1	393,1	479,2	517,8	518,2
В	-394,9	391,1	401,3	435,4	442,4	434,8

Результаты расчетов показывают, что оксониевые ионы Пав, более стабильны, чем ІІІ а-в. Введение заместителей в четвертое положение уменьшает стабильность оксониевых ионов. Алкоксикорбениевые ионы VI б-в более стабильны, чем соответствующие V б-в, т.е. более вероятен разрыв 0(1)- C(2) связи. Алкоксикорбениевые ионы IV б-в по теплотам образования стабильнее V-VI а-в.

На основании этого можно предположить, что механизмкатализируемых реакций не симметрично замещенных 1,3-диоксанов включиет в себя дополнительное направление связанное с разрывом связей 0(3)-C(4).

АЛЬТЕРНАТИВНЫЕ МЕХАНИЗМЫ ГИДРОЛИЗА ЗАМЕЩЕННЫХ 1,3-ДИОКСАНОВ И ИНДЕКСЫ РЕАКЦИОННОЙ СПОСОБНОСТИ

Н.М.Сигаева

Механизм гидрг тиза 4- и 4,4-дизамещенных 1,3-диоксанов до настоящего времени являются дискуссионными Одни авторы утверждают, что раскрытие цикла происходит как по связям 0(1)-С(2), 0(3)-С(2), так и 0(3)-С(4), другие считают, что связь 0(3)-С(4) не затрагивается. Различия в механизме определятся электронным и пространственным строением оксониевых и алкоксикарбениевых ионов этих соединений. Единственной возможностью оценки строения таких интермедиантов в настоящее время, являются квантово-химические расчеты.