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Abstract -  T h is  p a p e r  e x a m in e s  d i f f e r e n t  a p p r o a c h e s  to  
r e m o te  s e n s in g  im a g e s  c la s s if ic a t io n . I n c lu d e d  in  th e  s tu d y  
a r e  s ta ti s t ic a l  a p p r o a c h ,  n a m e ly  G a u s s ia n  m a x im u m  
lik e lih o o d  c la s s if ie r ,  a n d  tw o  d i f f e r e n t  n e u r a l  n e tw o r k s  
p a r a d ig m s :  m u l t i la y e r  p c r e e p t r o n  t r a in e d  w ith  E D B D  
a lg o r i th m , a n d  A R T M A P  n e u r a l  n e tw o r k .  T h e s e  
c la s s if ic a tio n  m e th o d s  a r e  c o m p a r e d  o n  d a t a  a c q u i r e d  f ro m  
L r n d s a t - 7  s a te l l i te .  E x p e r im e n ta l  r e s u l t s  s h o w e d  t h a t  to  
a c h ie v e  b e t t e r  p e r f o r m a n c e  o f  c la s s i f ie r s  m o d u la r  n e u r a l  
n e tw o rk s  a n d  c o m m it te e  m a c h in e s  s h o u ld  b e  a p p l ie d .

Keywords - remote sensing image classification, neural 
networks, statistical methods, Landsat-7 satellite.

I. Introduction

Recent advances in technologies made it possible to 
develop new satellite sensors with considerably improved 
parameters and characteristics. For example, the spectral 
resolution increased up to 144 channels as in Hyperion 
sensor; radiometric resolution increased up to 14 bits as in 
MODIS sensor, etc. In turn, the use of such space-bome 
satellite sensors enables acquisition of valuable data that 
can be efficiently used for various applied problems 
solving in agriculture, natural resources monitoring, land 
use management, environmental monitoring, and so on.

Land cover classification represent one of the most 
important and typical applications of remote sensing data. 
Land cover corresponds to the physical condition of the 
ground surface, for example, forest, grassland, artificial 
surfaces etc. To this end, various approaches have been 
proposed, among which the most popular are neural 
networks [ I ] and statistical [2] methods.

Ir this paper different approaches to remote sensing 
images classification are examined. The following 
approaches are included in the study: statistical approach, 
namely Gaussian maximum likelihood (ML) classifier [2], 
and two different types of neural networks: feed-forward 
multilayer perceptron (MLP) and ARTMAP neural 
network [3]. MLP is trained by means of 
Extended-Delta-Bar-Delta (EDBD) algorithm [4] which 
represent a fast modification of standard error

backpropagation algorithm [5]. In turn, ARTMAP 
belongs to the family of adaptive resonance theory (ART) 
networks [6], which are characterized by their ability to 
carry out fast, stable, on-line learning, recognition, and 
prediction.

Comparative analysis of classification methods is done on 
data acquired by Enhanced Thematic Mapper Plus 
(ETM+) sensor of Landsat-7 satellite [7], and land cover 
data from European Corine project [8].

II. Overview of Related Works

Nowadays, various approaches have been proposed to 
land cover classification of remote sensing data. In past 
classification has traditionally been performed by 
statistical methods (e.g., Bayesian and k-nearest-neighbor 
classifiers). In recent years, the remote sensing 
community has become interested in applying neural 
networks to data classification. Neural networks provide 
an adaptive and robust approach for the analysis and 
generalization of data with no need of a priori knowledge 
on statistical distribution of data. It is particularly 
important for remote sensing image classification since 
information is provided by multiple sensors or by the 
same sensor in many measuring contexts. It is the main 
problem associated with most statistical models, since it is 
difficult to define a single model for different types of 
space-bourn sensors [9]. In this section we give a brief 
overview of approaches to remote sensing data 
classification.

In [10] classification of remote sensing data was done 
using MLP. The main goal was the investigation of 
applicability of MLP to the classification of terrain radar 
images. MLP performances were compared with those of 
a Bayesian classifier, and it was found that significant 
improvements can be obtained by the MLP classifier.

Benediktsson et al. [9] applied MLP to the classification 
of multisource remote sensing data. In particular, Landsat 
MSS and topographic data were considered.
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Classification performances were compared with those of 
a statistical parametric method that takes into account the 
relative reliabilities of the sources of data. They concluded 
that the relative performances of the two methods mainly 
depend on priori knowledge about the statistical 
distribution of data. MLPs are appropriate for cases where 
such distributions are unknown, for they are 
data-distribution-free. The considerable training time 
required is one of the main drawbacks of MLP, compared 
with statistical parametric methods.

Bischof etal. [11] reported the application of a three-layer 
perceptron for classification of Landsat TM data. They 
compared MLP performances with those of Bayesian 
classifier. The obtained results showed that the MLP 
performs better then Bayesian classifier.

Dawson and Fung [12] reviewed examples of the use of 
ML? to classification of remote sensing data. In their 
study they proposed an interesting combination of 
clustering algorithms and scattering models to train MLP 
when no ground truth is available.

Roli et al. [13] proposed a type of structured neural 
networks (treelike networks) to multisource remote 
sensing data classification. This kind of architecture 
allows one to interpret the network operations. For 
example, the roles played by different sensors and by their 
channels can be explained and quantitatively assessed. 
The proposed method was compared with fully connected 
MLP and probabilistic neural networks on images 
acquired by synthetic aperture radar (SAR) sensor.

Carpenter et al. [14] described the ARTMAP information 
fusion system. The fusion system uses distributed code 
representations that exploit the neural network’s capacity 
for one-to-many learning in order to produce 
self-organizing expert systems that discover hierarchical 
knowledge structures. The fusion system infers 
multi-level relationships among groups of output classes, 
without any supervised labeling of these relationships. 
The proposed approach was tested on two testbed images, 
but not limited to the image domain.

In [15] various algorithms are examined in order to 
estimate mixtures of vegetation types within forest stands 
based on data from the Landsat TM satellite. The 
following methods were considered in that study: 
maximum likelihood classification, linear mixture models, 
and a methodology based on the ARTMAP neural 
network The reported experiments showed that 
ARTMAP mixture estimation method provides the best 
estimates of the fractions of vegetation types comparing to 
others.

Hwang et al. [16] described a structured neural network to 
classify Landsat-4 TM data. A one-network one-class 
architecture is proposed to improve data separation. Each 
network is implemented by radial basis function (RBF) 
neural network. The proposed approach outperformed 
other methodologies, such as MLP and a Bayesian 
classifier.

III. M e t h o d o l o g y

In this section we give a brief overview of methodologies 
that will be compared for remote sensing image 
classification.

A. MLP trained with EDBD
MLP represent a kind of feed-forward neural networks in 
which all the connections are unidirectional. MLP consists 
of an input layer, output layer, and at least one hidden 
layer of hidden neurons. Unidirectional connections exist 
from the input layer to hidden layer and from hidden layer 
to output neurons. There are no connections between any 
neurons within the same layer.

Error backpropagation algorithm [5] is a popular method 
for MLP training, i.e. for neural networks weights 
adjustment. However, despite its widespread use for many 
applications, it has a drawback of considerable training 
time required. That is why in this study we use a fast 
modification of error backpropagation method 
Extended-Delta-Bar-Delta (EDBD) rule [4]. This 
algorithm is based on the following heuristics:

— On each step of training process learning rate and 
momentum factor are automatically estimated for each 
neural network weight. On the first step initial and 
maximum values for learning rates and momentum are set, 
and remain constant during the whole training process.

— If partial derivative of error preserves its sign 
(positive or negative) within some training steps, then 
learning rate and momentum for corresponding weight 
increases.

— If partial derivative of error changes its sign within 
some training steps, then learning rate and momentum for 
corresponding weight decreases.

More detailed description of EDBD algorithm can be 
found in [1, 4]. In this study for EDBD simulations we use 
MNN CAD software [17].

B. ARTMAP neural networks
ARTMAP belongs to the family of ART networks [6], 
which are characterized by their ability to carry out fast, 
stable, on-line learning, recognition, and prediction. These 
features differentiate ARTMAP from the family of 
feed-forward MLPs, including backpropagation, which 
typically require slow learning. ARTMAP systems 
self-organize arbitrary mappings from input vectors, 
representing features such as spectral values of remote

176



sensing images and terrain variables, to output vectors, 
representing predictions such as vegetation classes or 
environmental variables. Internal ARTMAP control 
mechanisms create stable recognition categories of 
optimal size by maximizing code compression while 
minimizing predictive error.

ARTMAP is already being used in a variety of application 
settings, including industrial design and manufacturing, 
robot sensory motor control and navigation, machine 
vision, and medical imaging, as well as remote sensing 
[14,15]. A more detailed description of ARTMAP neural 
networks can be found in [3]. For ARTMAP simulations 
we use ClasserScript v 1.1 software [18] from 
http://profiision.bu.edu/techlab/.

C. Gaussian Maximum L ikelihood Classification 
The ML classifier is one of the most popular methods of 
classification in remote sensing, in which a pixel with the 
maximum a posteriori probability is classified into the 
corresponding class. In the case of multivariate Gaussian 
distribution a posteriori probability is defined as follows:

IV. Data Description

An image acquired by ETM+ sensor of Landsat-7 satellite 
was used for comparative analysis of above-described 
methods (Fig. I, a). Parameters of image in World 
Reference System (WRS) [19] are path=l 86, row=25. 
Date of image acquisition is 10.06.2000. Dimensions: 
4336x2524 pixels (30 m resolution) = 130x76 km.

ETM+ sensor provides data in 6 visible and infra-red 
spectral ranges with spatial resolution 30 m (bands 1-5 
and 7); in thermal spectral range with spatial resolution 
60 m (band 6), and in panchromatic range with spatial 
resolution 15 m (band 8). In this study we use as input to 
classification methods the six spectral bands 1-5 and 7.

In raw Landsat-7 images pixel values are digital numbers 
(DN) ranging from I to 255 (8 bits per pixel). Since these 
values are influenced by solar radiation [20], a procedure 
of converting DNs to at-satellite reflectance was applied 
according to [21]. In such a case pixel values lie in range 
[0 ; 1].

/ (XlvltI l) = ( 2 л У \ г р  exp (I)

where ji, and I i are ith class mean vector and covariance 
matrix, respectively, L  is the number of classes and input 
хєЛр. Assuming equally likely classes, the ML 
classification rule then is given by:

x є Ї  о  і  =  arg max d f lx ) , (2)
K i i L

where dt{x) is a discriminate function in the form of:

4 0 0  = I n U W )  =

I
(1 ,)" ( * - / 0  + ln Iz J + C.

The ML method has an advantage from the view point of 
probability theory, but care must be taken with respect to 
the following items:

— - Sufficient ground truth data should be sampled to 
allow estimation of the mean vector and the 
variance-covariance matrix of population.

— The inverse matrix of the variance-covariance 
matrix becomes unstable in the case where there exists 
very high correlation between two bands or the ground 
truth data are very homogeneous.

— When the distribution of the population does not 
follow the Gaussian distribution, the ML method cannot 
be applied.

Since in this study we examine methods of supervised 
classification we need to provide so called ground truth 
data (sample pixels) in order to estimate weights and 
parameters of neural networks and statistical models. 
Unfortunately, we didn’t have a possibility of gathering 
corresponding independent field data. In this case we use 
data provided by European Corine project that aims at 
land cover classification. In particular, we use CLC 2000 
version of this project (Fig. I, b).

Additionally, the following information was also used to 
distinguish land cover classes on Landsat-7 image.

— Estimated Normalized D ifference Vegetation Index 
(ND VI):

NDVI=(ETM4-ETM3)/(ETM4+ETM3) 
where ETM3 and ETM4 are at-satellite reflectance values 
for spectral bands 3 and 4 respectively;

— Tasseled Cap transformation [20] that is based on 
principal component analysis (PCA) algorithm [22], and 
allows one to have decorrelated components. Moreover, 
in tasseled cap transformation first three major 
components has the following physical meaning: 
brightness, greenness, and wetness.

In this study eight target output classes were specified 
(Table I).
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Corine data

Fig. I. (a) Image acquired by ETM+sensor of Landsat-7 satellite (spatial resolution: 30 m). Area covers south-eastern part of Poland 
that borders with Ukraine, (b) Data for the same area provided by Corine project (spatial resolution: 100 m). The study area is 
dominated by forests, arable lands, and pastures. O EEA1 Copenhagen, 2000.

Table I. Class titles, Corine code levels, and number of sample 
pixels for each class.*

# Class Title Corine 
Code Level

Number of 
pixels

I Broad-leaved forest 311 17890
2 Coniferous forest 312 20025
3 Mixed forest 313 10110
4 Non-irrigated arable land 211 25588
5 Pastures 231 9177
6 Inland waters 5 lx 7379
7 Artificial surfaces Ixx 12369
8 Open spaces with little or 

no vegetation
33x 2799

Total 105337
* x symbol is used to denote lower level classes that cannot be 
discriminated on Landsat-7 images. For example, it is hardly 
possible to distinguish water courses (e.g. rivers) from water 
bodies (e.g. lakes), or different types of artificial surfaces since 
their spectral characteristics do not differ. For this purpose, 
additional information should be provided.

V. Results of Experiments

A. Performance Measures and Training and Testing 
Protocols
For comparative analysis o f neural networks and 
statistical models for Landsat-7 images classification we 
use the same measure and the same training and testing 
sefr Performance of classification methods was evaluated 
in terms of classification rate. Both overall classification 
rate for all sample pixels and classification rate for each 
class separately were estimated.

Training and testing was done using five-fold 
cross-validation procedure [1, 23] as statistical design tool 
for methods assessment. According to this procedure 
available set of sample pixels is divided into five disjoint 
subsets; i.e. each subset consists of 20% of data. Models 
are trained on all subsets except for one, and classification 
rate is estimated by testing it on subset left out. All 
reported results reflect values averaged across 5

training/testing runs. So, this procedure produces robust 
performance measures while ensuring that no test sample 
pixels were ever used in training.

From table I it can be seen that number of sample pixels 
among target classes varies considerably. For example, 
there are 25588 sample pixels labeled “Non-irrigated 
arable land”, and 7379 sample pixels labeled “Inland 
waters”. In order for neural networks models to prevent 
imbalances of exemplars, we copied existing sample 
pixels for each class to be the same size. Such procedure 
allows one to “generate” training sets of the same size.

B. Input and Output Representation
Six channels from ETM+ sensor, namely I -5 and 7, were 
selected to form feature vector for each pixel. 
Components of such vector represent at-satellite 
reflectance values lying in the range [0; I ].

Considering output coding for neural networks models, 
both MLP and ARTMAP have 8 output neurons 
corresponding to 8 target classes. During training target 
output is set to I for pixels belonging to such a class; 
otherwise, they are set to 0.

C. Classification with MLP
Five-fold cross-validation procedure was repeated at 
different MLP architectures: with 5, 15,20,25,35, and 45 
hidden neurons. Only one hidden layer was used in this 
study. For MLPs training EDBD algorithm was applied. 
Training was stopped after 500 epochs. Save best mode 
was applied during training process. Within this mode 
training and testing are sequentially applied to neural 
network. After each test the current classification rate is 
compared with previous results, and neural network is 
saved as the best one if  current result is better than 
previous.

In all simulations initial values for learning rate and 
momentum factor in EDBD algorithm were set to 0.7 and 
0.5 respectively.
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Table 2 shows averaged classifications rates on testing Table 4. Averaged cross-validation results for ARTMAP neural 
sets for different MLP architectures. network.*

Table 2. Averaged cross-validation results for MLP trained with 
EDBD algorithm.*

MLP Architecture
Class no. 6-5-8 6-15-8 6-20-8 6-25-8 6-35-8 6-45-8

I 97.63 98.78 98.99 99.02 99.15 98.97
2 80.95 83.57 83.99 84.20 84.64 85.67
3 67.09 68.70 68.12 68.38 68.00 67.37
4 85.44 87.72 88.24 89.03 89.84 89.56
5 86.16 90.42 91.55 90.41 91.01 91.43
6 97.14 97.71 97.66 97.75 97.63 97.64
7 69.09 83.45 84.09 83.99 83.46 83.56
8 95.57 96.82 96.28 96.53 96.79 96.52

Total 84.88 88.40 88.62 88.68 88.81 88.85
* the best estimates are indicated in boldface type.

The best value of classification rate was obtained for MLP

Vigilance parameters
Class no. 0.1 0.2 0.3 0.5 0.95

I 98.92 99.68 99.56 98.52 99.88
2 79.58 80.86 80.34 79.16 80.88
3 69.14 68.16 68.66 69.36 68.14
4 81.50 81.50 81.72 81.88 83.50
5 76.48 74.26 75.34 74.10 78.94
6 96.70 96.60 96.76 97.40 93.76
7 79.38 77.28 78.32 77.12 76.78
8 96.42 97.36 97.00 97.54 98.24

Total 83.68 83.80 83.74 83.24 84.22
* the best estimates are indicated in boldface type.

F. Comparison o f  classification methods 
The comparative analysis o f best results obtained by 
neural networks models with ML classifier show no 
preferences of one method on others (Table 5).

with 45 hidden neurons.

D. Classification with ML
Mean vectors and covariance matrixes were estimated for 
each class using each of five training sets. For this purpose 
we use the following standard estimates

і «,

M 1 j,, Zi =
I

M t - I j .
-  fi){x i -  f i ) T

where xj is y'th sample of ith class, and Mi is number of 
sample pixels in rth class.

The best overall classification rate of 88.85% (on all 
sample pixels) was achieved by using MLP.

Considering classification rates obtained for classes 
separately, different methods performed better on 
different classes. For class no. 2, 6, and 7 MLP 
outperformed ARTMAP and ML classifier. In turn, 
ARTMAP neural network was better for classes I, 3, 8, 
and ML classifier was better for classes 4 and 5.

Averaged classifications rates on testing sets for Gaussian 
ML classifier are shown in Table 3.

Table 3. Averaged cross-validation results for ML classifier. 
Class no.

I 98.73
2 83.68
3 67.68
4 89.66
5 92.82
6 96.57
7 82.18
8 96.75

Total 88.02

E. Classification with ARTMAP
Five-fold cross-validation procedure was repeated for 
different vigilance parameters of ARTMAP network: 0.1, 
0.2, 0.3, 0.5, and 0.95. The obtained results are shown in 
Table 4.

The worst performance of all classification methods was 
for class no. 3, “Mixed forest” (maximum 68.14%). This 
is due to the fact that mixed forests (class 3) consist of 
both broad-leaved (class I) and coniferous forests 
(class 2), and its corresponding spectral properties mix up.

Table 5. Comparison of classification methods.*_____
Method

Class no. MLP ML ARTMAP
I 98.97 98.73 99.88
2 85.67 83.68 80.88
3 67.37 67.68 68.14
4 89.56 89.66 83.50
5 91.43 92.82 78.94
6 97.64 96.57 93.76
7 83.56 82.18 76.78
8 96.52 96.75 98.24

Total 88.85 88.02 84.22
* the best estimates are indicated in boldface type.

The best value of classification rate was obtained for 
ARTMAP with vigilance parameter set to 0.95.

VI. Conclusions and Future Works

In this paper we examined different neural networks 
models, namely MLP and ARTMAP networks, and 
statistical approach, namely maximum likelihood method,

179



for classification of remote sensing images. For 
comparative analysis of these methods data acquired by 
ETM+ sensor of Landsat-7 satellite and land cover data 
from European Corine project were used. The best overall 
classification rate for all classes (88.85%) was achieved 
by using MLP. While considering classification rates 
obtained for classes separately, different methods 
performed better on different classes. This, probably, is 
due to the complex topology of data that were used in this 
paper, and, thus, for different classes different 
classification methods are appropriate. The analysis of 
available data set represents a separate task, and is not 
covered in this article.

In order to improve performance of methods for remote 
sensing image classification future works should be 
directed to the use of modular neural networks and 
committee machines. It envisages the use of different 
models within a single architecture (e.g. neural networks 
with various parameters, or neural networks combined 
with statistical methods) allowing one to exploit 
advantages of different classification methods.
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