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Abstract. The authors examine neural network techniques 
for computing o f Lyapunov spectrum using observations 
from unknown dynamical system. Such an approach is 
based on applying o f multilayer perceptron (MLP) for  
forecasting the next state o f  dynamical system from the 
previous one. It allows for evaluating the Lyapunov 
spectrum o f  unknown dynamical system accurately and 
efficiently only by using scalar time series. The results o f  
experiments are discussed.
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I. INTRODUCTION
The chaotic behaviour of a dynamical system has been 

manifested by the study of nonlinear mathematical 
equations and it has been observed on experimental data 
[1,2]. Unfortunately, in typical practical problems, we do 
not know the nonlinear equations that describe the 
underlying dynamical system of an observed process. The 
problem consist of identifying the chaotic behaviour and 
building a model that captures the important properties of 
the unknown system by using only experimental data. In 
order to determine the main properties of the model, we 
must estimate dynamic invariants of the underlying 
system, such as the correlation dimension, the Lyapunov 
exponents and the Kolmogorov entropy. However, in 
practice, the existing approaches for the estimation of the 
Lyapunov exponents from experimental data are 
characterized by computational complexity, require a 
large data length and applied only when we have all 
observations of dynamical system. Working on real world 
data, it is often difficult to obtain a reliable estimate with 
these approaches and thus their applicability is limited.

An important application of chaos theory is the 
analysis of EEG data for the detection and prediction of 
epileptic seizures. Epilepsy is one of the most serious 
neurological disorders, affecting 1% of the population in 
the world. The analysis of the EEG signals has been the 
subject of many rapidly growing studies [3]. The common 
approach is that a dynamical property of choice is 
estimated on EEG records prior to the onset of epileptic 
seizures and the change of the evolution of the estimated 
values, as time approaches the onset of a seizure, is taken 
as a predictor of a seizure. For example, by estimating the 
largest Lyapunov exponent, it has been shown that the 
complexity in the brain decreases as the time approaches 
the onset of epileptic seizure [4]. There are still open 
problems as to which characteristics can exhibit evolution 
indicating a forthcoming seizure, and there is ongoing

investigation of techniques capable of capturing changes 
in the EEG signal prior to seizure [5]. In this respect, 
neural networks combined with the estimation of 
Lyapunov exponents may be an appropriate tool that can 
be developed to a robust method for automatic detection 
and prediction of abnormality in EEG data.

As was shown in [6,7] the multilayer perceptron has 
been used successfully for the estimation of the Lyapunov 
exponents from scalar time series.

The rest of the paper is organized as follows. In 
section 2 is described the Lyapunov exponents. Section 3 
and 4 present the techniques for computing the Lyapunov 
exponents respectively using all and single time series. 
Section 5 discusses the results of experiments. To end, 
Section 6 gives conclusions.

2. THE LYAPUNOV EXPONENTS
The concept of Lyapunov exponents existed before 

the establishment of chaos theory, and was developed to 
characterize the stability of linear as well as non-linear 
systems. The definition covers both discrete and 
continuous systems. A negative exponent indicates a local 
average rate of contraction while a positive value 
indicates a local average rate of expansion. Since the 
advent of chaos, the set or spectrum of Lyapunov 
exponents has been considered a measure of the effect of 
perturbing the initial condition of a dynamical system.

Let’s consider a dynamical system described by n 
differential or difference equations. This system has n 
Lyapunov exponents Xi (/= 1,2,...,«), that are globally 
called Lyapunov spectrum. The Lyapunov spectrum 
describes the system dynamics by defining the evolution 
of the attractor’s trajectories and characterizes the 
sensitive dependence on the initial conditions. These 
exponents are the average exponential rates of 
convergence (divergence) of nearby trajectories in the 
phase space. The largest Lyapunov exponent is the 
statistical measure of the divergence between two orbits 
staiting from slightly different initial conditions. In a 
chaotic system the largest Lyapunov exponent is positive.

Let’s consider a small sphere at the initial condition in 
the n-dimensional phase space. Through the time this 
sphere is transformed into an ellipsoid with n principal 
axes: the Lyapunov spectrum measures the exponential 
growth for the principal axes of the evolving ellipsoid. In 
fact, let’s consider the following Lyapunov spectrum:

Xl >X2 >. . .>Xn (I)

and let’s order the axis of the ellipsoid by decreasing 
length; X1 corresponds to the longest axis, X2 corresponds
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to the subsequent one, and so on. The Lyapunov exponent 
Xi is defined as:

, , . 1 ,  Ц 0Xi = hm - • In ——- 
/->cc t Ii (0)

(2)

where Ij (0 ) and Ij ( t)  are the lengths of Lth axis at the

exponents can be estimated. The algorithm to compute the 
complete Lyapunov spectrum is as follows:

1. Take the initial point N(0)=[xi(0),x2(0),...,xn(0)] 
from the basin of attraction.

_8
2. Choose a small value £ « 1 0  and define the 

coordinates o f next n points as follows:

initial time and at a time t, respectively. Therefore every 
Lyapunov exponent characterizes the modification of the 
principal axis of the ellipsoid. In an «-dimensional chaotic 
system the sum of the n Lyapunov exponents is negative 
for dissipative systems. The positive exponents are 
responsible for the sensitivity to initial conditions. The 
sum of the positive Lyapunov exponents is equal to 
Kolmogorov entropy and determines the upper prediction 
limit. High dimension chaotic systems tend to have very 
large positive exponents and predictions may be of little 
use.

3. COMPUTING OF LYAPUNOV 
SPECTRUM USING ALL 
OBSERVATIONS

Ai(0)=[x,(0)+c,x2(t), ...,xn(t)\

Al(0)=[xl(0),x2(t)+e....xn(t)] (4)

A,(0)=[x,(0),x2(t),...,x„(t)+e]
The following orthogonal vectors are obtained: 

NAj(O)=Iz, 0,...,0]

NA2(0)=[0,z,...,0] (5)

NAn(0)=[0,0,...,t\
3. Compute the length of each vector 

\NA, (0)| =  IWi (0)| =  Б , where i — \ , n .
Let’s consider a dynamical system described by the n- 

dimensional observable vector
X(t)=[Xl(t),X2(t),...,Xn(t)] and assume that the 
observations Xi(t) are known.

A neural network can be created to forecast the next 
state of dynamical system from the previous one. This 
network is a multilayer network with n input units, m 
hidden units, and n output units (Fig. I). The output is 
defined as x(t+l)=F(x(t)). Starting from a given initial 
condition, this network is able to compute the state of the 
dynamical system at any time, as well as to describe the 
evolution of the phase trajectory points. At each step the 
Gram-Schmidt orthogonalization procedure must be used 
to adjust the output vector.

4. At the time t=0, use the set of points N(O), A j(O), 
A2(O),..., An(O) as the input vector of the neural 
network. The output produced by the predicting 
network is the set of the coordinates of the points at 
the next time t=t+l:

N(I) J x ,0 ,N ) ,x 2(I,N).....xn(I,N)]

A l( l)= [x l( l,A l) ,x2 (lJ l) .....xn(l,A l)] (6)

A2O M x l( I J 2)lX2(IlA2)......Xn( I J 2)]

AnO M x iO  J J 1X2O J n) ,- , x n(l J J l  
where x /l,A J  is the y'-th coordinate of the point Aj at 
the time t=l. This leads to the next set of vectors:

Щ 0 )  = ^ ,0 )  = K p W 2,,..., wnI ]

Let I Wj (?)} be the length of the г'-th vector at the time

t. This length characterizes the value of the vector along 
the Lth ellipsoid axis. Thus, the Lth Lyapunov’s exponent 
is given by:

=  I i m - X ln/>-►« p  (=1
Mol

(3)

The correspondent length | W1- (/)] can be evaluated by 

using a neural network and, consequently, the Lyapunov

N A 2{ I) =  W2(I) =  [w12,w 22,..., wn2 ] (7)

Щ ,  0 )  =  W n  ( ! )  = K „  ,  V ,  Wwl ]

where Wg is the Lth coordinate of the y-th vector, 
having defined Wy- =  X1 (I, A j  ) — Xj (I, N ).

5. The basis [Wj(I),W2(I),...,wn(l)] is transformed into 
the orthonormal frame by using the Gram-Schmidt 
algorithm, as follows:

a) The first vector of the orthonormal frame is 
chosen as:
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4 0 )  =
W11 W-21 w.

!wi( i) l ’ lwi ( i ) |v " ’ k ( i ) |
(8)

where I Wj (l)j =  -JWj2J +  W2 j +  .., +  W2J .
b) The subsequent vectors are defined by the 

following recurrent formulas:

w,(l) = Wj(I) (I) • Wj (1)) • Wj (I)
2=1

к о  1= -Jw12 + W 2 l - + .. 2+ W -  
1 vvni

4 0 )  =

£I_______ W  ■ m

к о ) Г  К о ) Г Iwi(I)

where і = 2, n . 
c) Compute:

Si О) =  In
k ( i ) |

W1-(O)I

where і =  I, n .
The result is the new set of points:

А4 1 ) ч * , ( і , л а * 2( і , л а . . . , * и( і ,л о ]  

A](\)=[xi(\,Al),x2(\,Al),...,x„(\,Al)] (9) 
A 2 (I) =  [ jci (I, A2), X2 (I, A 2 Xn (I, A2)]

A n (I) =  [т і (I, A n), X 2 (I, A n),..., x„ (I, An)], 

where X j  (I, A j  ) -  Wij +  X1- (I, N ) .

6. Repeat from step 3 to step 5 for t =  I, p  , where 
^ « 1 0 0 0 .

7. Define the Lyapunov spectrum as:

I P
K = - I lSi (I)

P t =I

where І =  I, n . The following Lyapunov’s exponents 
are therefore obtained:

4  > X 2 (10)

By using this approach, the Lyapunov exponents of the 
Henon time series are 0.442 and -1.625 (the actual values 
are 0.418 and -1.622, respectively). For the Lorenz time 
series they are 0.777, 0.003, and -14.472 (the actual 
values are 0.906, 0, and -14.472, respectively). Figg. 2

V
and 3 show the dependence of 1 from p for the Henon 
and the Lorenz time series, respectively.

4. COMPUTING OF LYAPUNOV 
SPECTRUM USING SINGLE TIME
« Г Ш Г Є
In this case the Lyapunov spectrum can be computed by a 
similar way. However before we must perform the 
reconstruction of attractor dynamics. Let’s assume now, 
that only one observation Xi(t) is known. The main goal 
is to compute Lyapunov exponents of unknown 
dynamical system using only one observation. Then the 
first step of proposed approach is to reconstruct the 
attractor dynamics from a single time series, using the 
method of delays [2].

After this step we can obtain the reconstructed 
trajectory X(t), which can be presented as a matrix where 
each row is a phase-space vector:

X=[X(1) X (2)... X(k)], (11)

where X(i) is the state of the system at discrete time і and 
each X(i) is given by

X(i) = WO x(i -  t) .. .x(i -(/71-1)-1)]
= [*i(0 X2(I)-■■ Xm(J)], (12)

where T is the time delay and m is the embedding 
dimension.

It is based on the Taken’s theorem [8], which states 
that the attractor can be reconstructed from a one 
dimensional observation in a phase space with dimension 
m>2[d\ + \, where d  is the fractal dimension of the 
attractor and [.] is the integer part. Chaotic systems have 
strange attractor characterized by a non-integer dimention 
d. To apply the embedding theorem it is necessary to 
estimate the embedding dimension, i.e. the dimension of 
the reconstructed state space m, and the time delay, 
which is the time separation of lagged samples 
comprising the reconstructed state vector.

There exist several methods for the estimation of these 
parameters, e.g. mutual information for the delay time, 
false nearest neighbors and saturation of measures such as 
correlation dimension for the embedding dimension [2,6].
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Figure 2: Estimation of the Lyapunov spectrum for the 
Henon time series
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Figure 3: Estimation of the Lyapunov spectrum for the 
Lorenz time series

The second step of proposed approach is to create 
neural network in order to forecast the next state of 
dynamical system Xfi) from the previous one X(i-l). This 
network is a multilayer perceptron with m input units, к 
hidden units, and n output units (Fig.I). The output is 
defined as

X(t+l) = F(X(t)). (13)

After training neural network and starting from a given 
initial condition, this network is able to compute the state 
of the dynamical system at any time, as well as to 
describe the evolution of the phase trajectory points. At 
each step the Gram-Schmidt orthogonalization procedure 
must be used to adjust the output vector as it is shown in

section 3. Thus the proposed approach permits to estimate 
Lyapunov exponents using only single time series.

5. EXPERIMENTAL RESULTS
Let’s examine proposed approach for estimation of 
Lyapunov spectrum. As the chaotic systems, which we 
want to model are the Lorenz and Roessler attractors. The 
Lorenz attractor is described by the following three 
coupled nonlinear differential equations:

-  G(y  -  x)

dy
—  =  - x z  + r x -  у  
dt

= xy - b z

(14)

where G=IO, r=28, and 6=8/3 for chaotic behavior. 
Lorenz proposed this model for the atmospheric 
turbulence. For such a system actual values of Lyapunov 
exponents are 0.906, 0, and -14,472. respectively. The 
value of fractal dimension is 2.06. The Roessler attractor 
can be described by the following equations:

^  = - y - z ,dt
dv

• -jt = x F a y ,  (15)

Л  = b + ( x - r ) z ,

where a = 6 = 0.2 and r -  5.7 for chaotic behavior. The 
actual values of Lyapunov exponent are 0.07, 0, and -  
5.39 respictevely. The value of fractal dimension is 2.03. 
Only the X-series has been used in both cases; the size of 
the data set was 400 points. We have been choose the 
embedding dimension m=3 less than in accordance with 
Takens criterion. A multilayer perceptron with 3 input 
units, 10 hidden units, and 3 output units has been used.

Table I. Estimation of Lyapunov spectrum of Lorenz system using neural network

dt T
Lyapunov spectrum

Absolute error Relative
error

0,04170 0,1668 0,612978 -0,2016840 -15,0033 0,559053 3,83%
0,04200 0,1680 0,725777 -0,0211582 -14,6402 0,193839 1,33%
0,04215 0,1686 0,966544 -0,3009800 -15,9458 1,407730 9,64%
0,04220 0,1688 0,965399 -0,3006240 -15,9270 1,389170 9,51%
0,08500 0,1700 1,143851 -0,2816490 -14,9843 0,553092 3,79%
0,04260 0,1704 1,021790 -0,4326160 -15,6514 1,168620 8,00%
0,04260 0,1704 0,483841 0,0528098 -13,3949 1,251610 8,57%
0,04300 0,1720 0,742471 -0,0865899 -14,2650 0,358420 2,45%
0,08600 0,1720 0,830438 -0,3357490 -13,5627 1,066370 7,30%
0,04320 0,1728 0,570654 -0,1465600 -14,9297 0,511766 3,51%
0,08700 0,1740 1,216890 -0,6435080 -14,5374 0,715508 4,90%
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Table 2. Estimation of Lyapunov spectrum of Roessler system using neural network

dt T
Lyapunov spectrum

Absolute error Relative
errorX] X2 L3

0,04 0,04 0,173003 -0,0821049 -5,47571 0,154879 2,87%
0,07 0,07 0,060350 -0,3888620 -5,18352 0,441825 8,19%
0,06 0,12 0,090696 0,0030709 -5,02998 0,363565 6,74%
0,06 0,12 0,106080 -0,0358488 -5,79224 0,402378 7,46%
0,06 0,12 0,077922 -0,0187908 -5,93021 0,537581 9,97%
0,07 0,14 0,129117 -0,1092460 -4,93167 0,477637 8,86%
0,08 0,16 0,106981 -0,0449128 -5,36074 0,065971 1,22%
0,08 0,16 0,085461 -0,0282390 -5,31476 0,084427 1,57%
0,04 0,16 0,119605 -0,2027930 -5,56896 0,272851 5,06%
0,06 0,18 0,141245 -0,0751598 -5,48983 0,141277 2,62%
0,08 0,48 0,078753 -0,0144016 -5,24691 0,147000 2,73%

By using this technique we obtained the Lyapunov 
exponents for Lorenz and Roessler dynamical system, as 
it is shown in tables I and 2. During the experiments the 
time step dt between points and time delay x have been 
changed. As can be seen from tables the proposed 
technique permits to predict the Luaptmov exponents for 
Lorenz and Roessler dynamical systems accurately and 
efficiently, using only one dimensional observations.

6. CONCLUSION
In this paper some aspects of chaotic time series 

processing have been addressed, namely estimation of the 
Lyapunov spectrum from all observations and from the 
single time series. The proposed approach based on the 
applying of the multilayer perceptron for estimation of 
Lyapunov exponents. The neural network technique allow 
for evaluating the Lyapimov spectrum even on small data 
set, that permits both for reducing the computationally 
complexity and for limit the observation time.
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