Јабораторны исследования метода очистки промывных сточных вод от меди (п)

Н.И.Комар, Е.И.Дмухайло

На гоящие лабораторине исследования проводились с целью решения следующих задач:

- проверка и уточнение технических решений;
- определения оптимальных параметров физико-химических процессов.

Исследования проводились по двум направлениям:

- изучение процессов гидролиза, хлопьеобразования и отстаивания медьзагрязненных сточных вод;
 - изучение свойств медьсодержащих осадков.

Химическая очистка сточных вод от меди (П) основана на связывании их в труднорастворимые соединения, каким является гидроксид меди.

Основная реакция осаждения гидроксида меди Си(ОН),

$$Cu^{2+} + 2(OH) \rightarrow Cu(OH), \downarrow$$

В случае утилизации медьсодержащего осадка сточных вод для осаждения меди (П) желательно использовать каустическую соду NaOH. В этом случае катион Na* переходит в растворенное состояние и осадок им не загрязняется. Если же у заказчика возникнут сложности с приобретением каустической соды, то он может ее заменить известью "пушонкою". При этом степень пистки от меди (П) из-за лучшего осветления будет выше, но осадок будет загрязняться гидроксидом кальция Ca(OH)₂.

Так как процессы осветления при использовании каустической соды идут несколько хуже, чем при использовании извести, исследования проводились с осадитечем NaOH.

В настоящих исследовани: тепользовалась модельная сточная жилкость, тоторую готовили путс расстворения в водопроводной воде. Модельный раствор готовити непользованию перед проведением исследований.

Определение меди с уществлялось по с андартной методике.

Результаты исследований сведены в таклицу.

Таблица

<u>Истрелование по обработке модельного раствора</u>

Серия опы- тов	Кон- центра ция, мг/л	рН			объем осадка		Сод.	Сод. меди в
		исх.	с под- кисле- нием	после	мл	%	отста- ивания мг/л	филь- трате. мг/л
1	2	3	4	5	6	7	8	9
1	5	7,15	4,25	9,2	÷-	-	5,05	0,47
2	10	6,96	4,30	9,1	•	٠	6,06	0,47
3	20	6,85	4,45	9,3	1	2	7,20	0,6
4	50	6,75	4,25	9,4	2	4	6,00	0,51
5	100	6,45	3,85	9,5	4	.8	8,02	0,48
6	150	6,75	4,45	9,2	5 [,]	,10	5,06	0,7
7	200	6,25	4,25	9,3	6	12	6,70	0,52
8	250	6,35	4,00	9,2	7	10	5,30	0,64
9	300	6.85	4,25	9,2	9	10	4,80	0,7
10	400	6,80	4,00	9,3	9,5	11	5,20	0,8
11	500	6,9	4,20	9,2	10	13	6,10	0,7

Малые очистные сооружения канализации с использованием погружных и струйных насосов

Е.И.Дмухайло, Н.И.Комар

Полная биохимическая очистка сточных вод осуществляется в комбинированных сооружениях, аэротенках - отстойниках без предварительного отстаивания в режиме "полного окисления" или продленной аэрации с минимальным объемом избыточной биомассы, не требующей дополнительной обработки.