7/LK 906.972.165

н.и. Довнар прегодаватель БИСИ

CE 340ERTURHOCTM HPI-LEHENH HOEAROK LUIH ORTAMISALIM CHOMICTH CHOPHOLO E FLUESOEETOHA

Повышение технико-экономической эффективности сельскохозяйственного строительства нерезумено связано с онижением материзмоемичести изделий и исуммением их эксплуатациочных свойств.

Ончем из направлений, способотвующих выполнению этох дечи, являетсяввещение в состав бетона добавок-ускорителей тверцении. В качестве ускорителей тверцения бетона в настоящее времи прадможено много солей, однако особщения о ях влиянии на основные свойства бетона часто разноречиви. Это затуудняет вноор добавки иля получения оптимального решения в конкретних условиях строительства. В этой свизи нами проведени сравнительние исследования влияния вамболее распространениях ускорителей тверцения на технологические и экспиратационные свой тва сетона. Оценка вобскатавности добавки производилась с то им эрения получения основного положительного эффекта -увеличения прочности бетона. При этом рессматривались сопутствующие основному положительные имк отрицательные вуфекти влияния добавок на другие свойства бетона, что позводило более объективно характеризовать преимущества и недостатки отдельных добавок.

Результати исследований представлени в табл. І.

Анылиз получениях данных о влиянии добавок на прирост прочности цементного камня и бетона в возраста 28 суток показая, что наиболее эффективной добавкой наимется хлористий кальцай. Максимальный попрост прочности при введении 5% СаСІ2 достагает ЗЕ. Цементный камк в с добавкой имеет более постную структуру. Его пористость сиккается при этом примерно на 5%. Повышение плотности структуры цементного камня в бетоне с добавкой СаСІ2 спосоствует уменьшению проницаемости и повышению морозостойкости етона. Оптимальное количество добавки СаСІ2, при котором достигается максимальный эффект уплотнения и упрочнения цементного камня и бетона, при низких значениях В/Ц состветствует 5%. Однако такое количество добавки в соорном железобетоне недопустымо, из-за нарушения пассивности стальной арматури под воздемствием

Таблига Т Оценка вебективности воздействия добавок на своиство цементного теста, камня и бетона

Втд добавки	Объемная масса цемент-	Пластичность пемнтвого теста	Температу- ра тесте	Сроки схватываемя	температура замереания теста	перистость	COPPOSMODESA CLOMENTE EPMSTYPH	Относитель- ний прирост прочности бетона
CaCL	+ 5		+	х	-	-	1 75	1,31
NECT	+	+	-	+	-	-	-	1.06
Na SO4	+	+	-	X	-10.3	-	. 0	I, I7
Na ₂ S0 ₄ Na N0 ₃ Na N0 ₂	0	0	C	0	0	C	+	0.83
Na NO2	0	0	0	0	- !	0		0,57
K,00,	C	- 1	+	X		+	+	0,99
IG S OA	0	-	+	11	- 2	+	0	0,87
H ₂ CO ₃ H ₂ S O ₄ Ce(NO ₃) ₂ NH ₄ OH NH ₄ NO ₃	+	+	0	X	-	-	+	1,22
NHAOH	+	+	-	X		_	0	I; E
NHANO.	+		-	X	-	1.1	0	I, Ib
HHK	. +	+	0	X	-	-	+	1,18
I·HXK	+	. +	+	X	12.3	44	0	1,25
HHK + Naci	+	+	0	x	-	-	0	I, 15
CaCI2+ Na	402+	+ +	+	x	-	-	0	1,2

Примечание: знаком "+" обозначено повышение показателей свойств и параметров под воздействием добивки; знаком "-" сбозначено снимение свойств и параметров; знак "х" соответствует сокрещению срсков схвативания цементного теста; знак "о" обсыщачает неизменлемость свойств под воздействием добики.

нонов СТ - Кроме того, введение 5% СеСТ, резко сокращает время загуотевания бетон ой смеси. Введение же рекомендуемых в нормативных документах 2% добавки недостаточно для проявих ия полного активизирущего действия добавки.

Среди других исследованих добивок наиболее эффективными для ислучения высокопрочных бетонов следует считать комилсконие ооли инж и Састу + Nano2. Сочетание в них сильного актуризатора твердения бетона СасТ2 и ингибитора коррозии интриг мона поэвселет не только избежать отрицительного в инил на арматуру

ноног клора, но и из 20-30% повесить прочность бетона. Коме того, приме эгие указанных добавок позволяет получать другие положительные эфт кти: пластибиванию бетонной смеси, сискение температуры замерзания бетона, повишение долговенности бетона вследствие уветличения члотности цементного каг и др.

Последованиями также установлено, что применение индивидуальных добавок, пассимрующих стальную арматуру, интрита и нитрата матрия для получения високопрочних бетонов нецелесообразно, т.м. эти добавки не проявляют эффекта антивизации упрочления цеменного камия и бетона. Уступоют по эффективности хлористому кальцом и добавки ННК, Са(NO₃) 2, Na₂SO₄. Позимение прочности цементного камия и бетона при введении этих добавок не превишает 23%. Вначиленые меньшее увеличение прочности 7-15° наблюдается при введении вимиачной селитры, аммиачной воды и повареньой соли. Эти добавки могут бить использованы в большей мере в качестве понизителей температуры замерязиля бетона при зимнем бетонаровании. Исключением являтся соли калия -поташ и сернокислый калий. Ввещения их резко ухудшает пластические свойства бетонной омеси и отрицательно суавивается на прочности бетона впоследствим.

При номинеконом рассмотрении получаемих эффектов от введения пооверк, обнаруживается определенная глапмосвязь между отдельными из них. Так, повышение плотности и прочности нементного камия и бетона вызывают лишь те добавки, которие кратковременно размикают цементное тесто В/Ц теста нормальной густоти снижается на 7-11% и повышают его объемную массу. Это обстоятельство может бить использовано для обнаружения наличия уплотилищего и упрочняющего действия досавки в самой ранней стадии формкрования структури цементного камия и бетона, т.е. сще в момент приготовления сетонной смеси. При этом представляется возможним установить оптимальное количество добавки по максымельной величине объемной массы теста или бетонной смеси.

Производственная проверка эффективности пременения исследованиях добавок ниж и СаСІ2 + Nа NO2 на заводах сфорного железобетона г.Минска и г.Бреста при изготовленаи призделий: колочн, неремичек, плит и гр, подтвердила полученные в ласоратории резултать. Полученный за счет введения добавок попрост прочности бетона на ЗОЖ обуславливает вкономическую целесообразность их применения. Спежение осбестоимости I м³ бетона в этом случае только за счет элономи цемента составляет примерно О.Бруб.