А.М.Зеленский, канд.техн.наук (БрЛИ), И.В.Лесных, канд.техн.наук (НИИГАиК)

О ТОЧНОСТИ И ЦИКЛИЧНОСТИ НАВЛИДЕНИЙ СООРУЖЕНИЙ АЭС ГЕОМЕТРИЧЕСКИМ МЕТОДОМ НИВЕЛИРОВАНИЯ

По вопросам точности и циктичносты в настоящее время единого мнения нет. Так, в одних работых рекомендуется точность назначать в зависимости от геологического строения оснований сооружений, в других - до I мм. Цикличность измерений осадок также широко варьируется и назначается проектными организациями в зависимости от важности сооружений от I до 6 раз в год.

На наш вэгляд, цикличность должна быть согласована с точностными характеристиками метода определения осадок.

При выверке сооружений геометрическим нивелированием средняя квадратическая ошибка определения превышения m_h может составить 0.13 мм. Основным фактором достижения такой точности является укороченная длина визирного луча (до 20 м); более точная выверка главного условия нивелира (до 3"); применение специальных (часто только эдной) инварных реек, устанавливаемых на специальные осадочные маржи.

ток как осадка марки вычисляется как разность между отметками соседних двух циклов наблюдений, то

 $m_s = m_H \sqrt{2}$,

где М5 - с.к.о. осадки; М4-с.к.о. определения отметки марки.

Средняя квадратическая ошибка отметки марки зависит от средней квадратической ошибки определения превышения $\mathbf{n}_{\mathbf{h}}$ и количества станций \mathbf{n} от исходного репера до марки, $\mathbf{n}_{\mathbf{h}}$.

 $m_n = m_h \sqrt{n}$. $m_s = m_h \sqrt{2n}$.

Таким образом $m_S=m_h\sqrt{2}n$. Предельная же ощибка Δ_S превышает в 2,5-3 раза среднюю квадратическую, т.е. $\Delta_S=3m_h\sqrt{2n}\simeq 0.6\sqrt{n}$.

При ожидаемой осадке S мм/год частота наблюдений не должна превышать $K = \frac{S}{0.6 \, \text{VeV}}$

Учитывая точность следует иметь в виду, что при увеличении числа циклов измерений повышается вероятность Знаружения непредусмотренного явления. Поэтому целесообразно число циклов измерений назначать из условия капитальности и условий работы сооружений. Эти вопросы лучше решать путем экспертных оценок.